Articles | Volume 3, issue 3
https://doi.org/10.5194/soil-3-161-2017
https://doi.org/10.5194/soil-3-161-2017
Original research article
 | 
28 Sep 2017
Original research article |  | 28 Sep 2017

Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils

Sebastian Rainer Fiedler, Jürgen Augustin, Nicole Wrage-Mönnig, Gerald Jurasinski, Bertram Gusovius, and Stephan Glatzel

Related authors

Tillage-induced short-term soil organic matter turnover and respiration
Sebastian Rainer Fiedler, Peter Leinweber, Gerald Jurasinski, Kai-Uwe Eckhardt, and Stephan Glatzel
SOIL, 2, 475–486, https://doi.org/10.5194/soil-2-475-2016,https://doi.org/10.5194/soil-2-475-2016, 2016
Short summary

Related subject area

Soils and biogeochemical cycling
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024,https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024,https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol
Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng
SOIL, 10, 451–465, https://doi.org/10.5194/soil-10-451-2024,https://doi.org/10.5194/soil-10-451-2024, 2024
Short summary
Dissolved carbon flow to particulate organic carbon enhances soil carbon sequestration
Qintana Si, Kangli Chen, Bin Wei, Yaowen Zhang, Xun Sun, and Junyi Liang
SOIL, 10, 441–450, https://doi.org/10.5194/soil-10-441-2024,https://doi.org/10.5194/soil-10-441-2024, 2024
Short summary
Shifts in controls and abundance of particulate and mineral-associated organic matter fractions among subfield yield stability zones
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024,https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary

Cited articles

Andruschkewitsch, M., Wachendorf, C., and Wachendorf, M.: Effects of digestates from different biogas production systems on above and belowground grass growth and the nitrogen status of the plant-soil-system, Grassland Sci. Eu., 59, 183–195, https://doi.org/10.1111/grs.12028, 2013.
Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G.: Inhibition of Nitrification by Ammonia and Nitrous Acid, J. Water Pollut. Con. F., 48, 835–852, 1976.
Azam, F., Müller, C., Weiske, A., Benckiser, G., and Ottow, J.: Nitrification and denitrification as sources of atmospheric nitrous oxide – role of oxidizable carbon and applied nitrogen, Biol. Fert. Soils, 35, 54–61, https://doi.org/10.1007/s00374-001-0441-5, 2002.
Balaine, N., Clough, T. J., Beare, M. H., Thomas, S. M., and Meenken, E. D.: Soil Gas Diffusivity Controls N2O and N2 Emissions and their Ratio, Soil. Sci. Soc. Am. J., 80, 529–540, https://doi.org/10.2136/sssaj2015.09.0350, 2016.
Ball, B. C.: Soil structure and greenhouse gas emissions: a synthesis of 20 years of experimentation, Eur. J. Soil Sci., 64, 357–373, https://doi.org/10.1111/ejss.12013, 2013.
Download
Short summary
Injection of biogas digestates (BDs) is suspected to increase losses of N2O and thus to counterbalance prevented NH3 emissions. We determined N2O and N2 losses after mixing high concentrations of BD into two soils by an incubation under an artificial helium–oxygen atmosphere. Emissions did not increase with the application rate of BD, probably due to an inhibitory effect of the high NH4+ content in BD on nitrification. However, cumulated gaseous N losses may effectively offset NH3 reductions.