Articles | Volume 2, issue 4
https://doi.org/10.5194/soil-2-601-2016
https://doi.org/10.5194/soil-2-601-2016
Original research article
 | 
30 Nov 2016
Original research article |  | 30 Nov 2016

Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil

Anne B. Jansen-Willems, Gary J. Lanigan, Timothy J. Clough, Louise C. Andresen, and Christoph Müller

Related authors

The isotopic signatures of nitrous oxide produced by eukaryotic and prokaryotic phototrophs
Maxence Plouviez, Peter Sperlich, Benoit Guieysse, Tim Clough, Rahul Peethambaran, and Naomi Wells
EGUsphere, https://doi.org/10.5194/egusphere-2025-2337,https://doi.org/10.5194/egusphere-2025-2337, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
The role of mycorrhizal type and plant dominance in regulating nitrogen cycling in Oroarctic soils
Aurora Patchett, Louise Rütting, Tobias Rütting, Samuel Bodé, Sara Hallin, Jaanis Juhanson, C. Florian Stange, Mats P. Björkman, Pascal Boeckx, Gunhild Rosqvist, and Robert G. Björk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2179,https://doi.org/10.5194/egusphere-2025-2179, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Carbon footprint and greenhouse gas emissions from rice based agricultural systems calculated with a co-designed carbon footprint calculation tool
Mohammad Mofizur Rahman Jahangir, Eduardo Aguilera, Jannatul Ferdous, Farah Mahjabin, Abdullah Al Asif, Hassan Ahmad, Maximilian Bauer, Alberto Sanz Cobeña, Christoph Müller, and Mohammad Zaman
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-165,https://doi.org/10.5194/bg-2023-165, 2023
Publication in BG not foreseen
Short summary
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023,https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Regulation of N2O emissions from acid organic soil drained for agriculture
Arezoo Taghizadeh-Toosi, Lars Elsgaard, Tim J. Clough, Rodrigo Labouriau, Vibeke Ernstsen, and Søren O. Petersen
Biogeosciences, 16, 4555–4575, https://doi.org/10.5194/bg-16-4555-2019,https://doi.org/10.5194/bg-16-4555-2019, 2019
Short summary

Related subject area

Soils and biogeochemical cycling
Isotopic exchangeability reveals that soil phosphate is mobilised by carboxylate anions, whereas acidification had the reverse effect
Siobhan Staunton and Chiara Pistocchi
SOIL, 11, 389–394, https://doi.org/10.5194/soil-11-389-2025,https://doi.org/10.5194/soil-11-389-2025, 2025
Short summary
Calcium is associated with specific soil organic carbon decomposition products
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025,https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Gradual drying of permafrost peat decreases carbon dioxide production in drier peat plateaus but not in wetter fens and bogs
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025,https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Effects of nitrogen and phosphorus amendments on CO2 and CH4 production in peat soils of Scotty Creek, Northwest Territories: potential considerations for wildfire and permafrost thaw impacts on peatland carbon exchanges
Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen
SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025,https://doi.org/10.5194/soil-11-309-2025, 2025
Short summary
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025,https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary

Cited articles

Andresen, L. C., Michelsen, A., Jonasson, S., Beier, C., and Ambus, P.: Glycine uptake in heath plants and soil microbes s responds to elevated temperature, CO2 and drought, Acta Oecol., 313, 283–295, 2009.
Andresen, L. C., Michelsen, A., Jonasson, S., Schmidt, I. K., Mikkelsen, T. N., Ambus, P., and Beier, C.: Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought, Plant Soil, 328, 381–396, 2010.
Andresen, L. C., Michelsen, A., Jonasson, S., and Ström, L.: Seasonal changes in nitrogen availability, and root and microbial uptake of 15N13C9-phenylalanine and 15N-ammonium in situ at a temperate heath, Appl. Soil Ecol., 51, 94–101, 2011.
Andresen, L. C., Bode, S., Tietema, A., Boeckx, P., and Rütting, T.: Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought, SOIL, 1, 341–349, https://doi.org/10.5194/soil-1-341-2015, 2015.
Arah, J.: Apportioning nitrous oxide fluxes between nitrification and denitrification using gas-phase mass spectrometry, Soil Biol. Biochem., 29, 1295–1299, 1997.
Download
Short summary
Legacy effects of increased temperature on both nitrogen (N) transformation rates and nitrous oxide (N2O) emissions from permanent temperate grassland soil were evaluated. A new source-partitioning model showed the importance of oxidation of organic N as a source of N2O. Gross organic (and not inorganic) N transformation rates decreased in response to the prior soil warming treatment. This was also reflected in reduced N2O emissions associated with organic N oxidation and denitrification.
Share