Articles | Volume 2, issue 3
https://doi.org/10.5194/soil-2-433-2016
https://doi.org/10.5194/soil-2-433-2016
Original research article
 | 
06 Sep 2016
Original research article |  | 06 Sep 2016

Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model

Louise C. Andresen, Anna-Karin Björsne, Samuel Bodé, Leif Klemedtsson, Pascal Boeckx, and Tobias Rütting

Related authors

The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023,https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil
Anne B. Jansen-Willems, Gary J. Lanigan, Timothy J. Clough, Louise C. Andresen, and Christoph Müller
SOIL, 2, 601–614, https://doi.org/10.5194/soil-2-601-2016,https://doi.org/10.5194/soil-2-601-2016, 2016
Short summary
Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought
L. C. Andresen, S. Bode, A. Tietema, P. Boeckx, and T. Rütting
SOIL, 1, 341–349, https://doi.org/10.5194/soil-1-341-2015,https://doi.org/10.5194/soil-1-341-2015, 2015

Related subject area

Soils and biogeochemical cycling
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024,https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024,https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024,https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Freeze-thaw processes correspond to the protection-loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Ruizhe Wang and Xia Hu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1833,https://doi.org/10.5194/egusphere-2024-1833, 2024
Short summary
The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol
Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng
SOIL, 10, 451–465, https://doi.org/10.5194/soil-10-451-2024,https://doi.org/10.5194/soil-10-451-2024, 2024
Short summary

Cited articles

Andresen, L. C., Michelsen, A., Jonasson, S., and Ström, L.: Seasonal changes in nitrogen availability, and root and microbial uptake of 15N13C9-phenylalanine and 15N-ammonium in situ at a temperate heath, Appl. Soil Ecol., 5, 94–101, 2011.
Andresen, L. C., Bode, S., Tietema, A., Boeckx, P., and Rütting, T.: Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought, SOIL, 1, 341–349, https://doi.org/10.5194/soil-1-341-2015, 2015.
Bai, Z., Bodé, S., Huygens,D., Zhang, X., and Boeckx, P.: Kinetics of amino sugar formation from organic residues of different quality, Soil Biol. Biochem., 57, 814–821, 2013.
Bardgett, R. D., Streeter, T. C., and Bol, R.: Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands, Ecology, 84, 1277–1287, 2003.
Bjarnason, S.: Calculation of gross nitrogen immobilization and mineralization in soil, J. Soil Sci., 39, 393–406, 1988.
Download
Short summary
In soil the constant transport of nitrogen (N) containing compounds from soil organic matter and debris out into the soil water, is controlled by soil microbes and enzymes that literally cut down polymers (such as proteins) into single amino acids (AA), hereafter microbes consume AAs and excrete ammonium back to the soil. We developed a method for analysing N turnover and flow of organic N, based on parallel 15N tracing experiments. The numerical model gives robust and simultaneous quantification.