Articles | Volume 2, issue 1
https://doi.org/10.5194/soil-2-13-2016
https://doi.org/10.5194/soil-2-13-2016
Original research article
 | 
18 Jan 2016
Original research article |  | 18 Jan 2016

On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India

H. C. Hombegowda, O. van Straaten, M. Köhler, and D. Hölscher

Related authors

Forest liming in the face of climate change: the implications of restorative liming for soil organic carbon in mature German forests
Oliver van Straaten, Larissa Kulp, Guntars O. Martinson, Dan Paul Zederer, and Ulrike Talkner
SOIL, 9, 39–54, https://doi.org/10.5194/soil-9-39-2023,https://doi.org/10.5194/soil-9-39-2023, 2023
Short summary
Nutrient limitations regulate soil greenhouse gas fluxes from tropical forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021,https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Stem and soil nitrous oxide fluxes from rainforest and cacao agroforest on highly weathered soils in the Congo Basin
Najeeb Al-Amin Iddris, Marife D. Corre, Martin Yemefack, Oliver van Straaten, and Edzo Veldkamp
Biogeosciences, 17, 5377–5397, https://doi.org/10.5194/bg-17-5377-2020,https://doi.org/10.5194/bg-17-5377-2020, 2020
Short summary
Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils
Syahrul Kurniawan, Marife D. Corre, Amanda L. Matson, Hubert Schulte-Bisping, Sri Rahayu Utami, Oliver van Straaten, and Edzo Veldkamp
Biogeosciences, 15, 5131–5154, https://doi.org/10.5194/bg-15-5131-2018,https://doi.org/10.5194/bg-15-5131-2018, 2018
Short summary
Transpiration in an oil palm landscape: effects of palm age
A. Röll, F. Niu, A. Meijide, A. Hardanto, Hendrayanto, A. Knohl, and D. Hölscher
Biogeosciences, 12, 5619–5633, https://doi.org/10.5194/bg-12-5619-2015,https://doi.org/10.5194/bg-12-5619-2015, 2015
Short summary

Related subject area

Soils and biogeochemical cycling
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023,https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023,https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Tatjana Carina Speckert, Jeannine Suremann, Konstantin Gavazov, Maria Joao Santos, Frank Hagedorn, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-645,https://doi.org/10.5194/egusphere-2023-645, 2023
Short summary
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023,https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188, https://doi.org/10.5194/soil-9-169-2023,https://doi.org/10.5194/soil-9-169-2023, 2023
Short summary

Cited articles

Achard, F., Beuchle, R., Mayaux, P., Stibig, H.-J., Bodart, C., Brink, A., Carboni, S., Desclée, B., Donnay, F., Eva, H. D., Lupi, A., Raši, R., Seliger, R., and Simonetti, D.: Determination of tropical deforestation rates and related carbon losses from 1990 to 2010, Glob. Change Biol., 20, 2540–2554, https://doi.org/10.1111/gcb.12605, 2014.
Acker, S. A., Halpern, C. B., Harmon, M. E., and Dyrness, C. T.: Trends in bole biomass accumulation, net primary production and tree mortality in Pseudotsuga menziesii forests of contrasting age, Tree Physiol., 22, 213–217, https://doi.org/10.1093/treephys/22.2-3.213, 2002.
Albrecht, A. and Kandji, S. T.: Carbon sequestration in tropical agroforestry systems, Agr. Ecosyst. Environ., 99, 15–27, https://doi.org/10.1016/S0167-8809(03)00138-5, 2003.
Cadotte, M. W.: Experimental evidence that evolutionarily diverse assemblages result in higher productivity, P. Natl. Acad. Sci. USA, 110, 8996–9000, https://doi.org/10.1073/pnas.1301685110, 2013.
Cardinale, B. J., Wright, J. P., Cadotte, M. W., Carroll, I. T., Hector, A., Srivastava, D. S., Loreau, M., and Weis, J. J.: Impacts of plant diversity on biomass production increase through time because of species complementarity, P. Natl. Acad. Sci. USA, 104, 18123–18128, 2007.
Download
Short summary
Incorporating trees into agriculture systems provides numerous environmental services. In this chronosequence study conducted across S. India, we found that agroforestry systems (AFSs), specifically home gardens, coffee, coconut and mango, can cause soil organic carbon (SOC) to rebound to forest levels. We established 224 plots in 56 clusters and compared the SOC between natural forests, agriculture and AFSs. SOC sequestered depending on AFS type, environmental conditions and tree diversity.