Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-309-2025
https://doi.org/10.5194/soil-11-309-2025
Short communication
 | 
09 Apr 2025
Short communication |  | 09 Apr 2025

Effects of nitrogen and phosphorus amendments on CO2 and CH4 production in peat soils of Scotty Creek, Northwest Territories: potential considerations for wildfire and permafrost thaw impacts on peatland carbon exchanges

Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen

Related authors

A geospatial inventory dataset of study sites in a Korean Quaternary paleoecology database
Soo Hyun Kim and Eunji Byun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-130,https://doi.org/10.5194/essd-2025-130, 2025
Preprint under review for ESSD
Short summary

Related subject area

Soils and biogeochemical cycling
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025,https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary
Depth dependence of soil organic carbon additional storage capacity in different soil types by the 2050 target for carbon neutrality
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025,https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Biochar reduces early-stage mineralization rates of plant residues more in coarse-textured soils than in fine-textured soils – an artificial-soil approach
Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, and Daniel P. Rasse
SOIL, 11, 141–147, https://doi.org/10.5194/soil-11-141-2025,https://doi.org/10.5194/soil-11-141-2025, 2025
Short summary
Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, and Steven Sleutel
SOIL, 11, 105–119, https://doi.org/10.5194/soil-11-105-2025,https://doi.org/10.5194/soil-11-105-2025, 2025
Short summary
Effect of colloidal particle size on physicochemical properties and aggregation behaviors of two alkaline soils
Yuyang Yan, Xinran Zhang, Chenyang Xu, Junjun Liu, Feinan Hu, and Zengchao Geng
SOIL, 11, 85–94, https://doi.org/10.5194/soil-11-85-2025,https://doi.org/10.5194/soil-11-85-2025, 2025
Short summary

Cited articles

Ackley, C., Tank, S. E., Haynes, K. M., Rezanezhad, F., McCarter, C., and Quinton, W. L.: Coupled hydrological and geochemical impacts of wildfire in peatland-dominated regions of discontinuous permafrost, Sci. Total Environ., 782, 146841, https://doi.org/10.1016/j.scitotenv.2021.146841, 2021. 
Amador, J. A. and Jones, R. D.: Nutrient limitations on microbial respiration in peat soils with different total phosphorus content, Soil Biol. Biochem., 25, 793–801, https://doi.org/0.1016/0038-0717(93)90125-U, 1993. 
Aspila, K. I., Agemian, H., and Chau, A. S.: A semi-automated method for the determination of inorganic, organic and total phosphate in sediments, Analyst, 101, 187–197, https://doi.org/10.1039/an9760100187, 1976. 
Bona, K. A., Shaw, C., Thompson, D. K., Hararuk, O., Webster, K., Zhang, G., Voicu, M., and Kurz, W. A.: The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting, Ecol. Model., 431, 109164, https://doi.org/10.1016/j.ecolmodel.2020.109164, 2020. 
Brookes, P. C., Powlson, D. S., and Jenkinson, D. S.: Phosphorus in the soil microbial biomass, Soil Biol. Biochem., 16, 169–175, https://doi.org/10.1016/0038-0717(84)90108-1, 1984. 
Download
Short summary
To investigate how added nutrient nitrogen (N) and phosphorus (P) affect subarctic peatlands, we sampled peat soils from bog and fen type peatlands in the Northwest Territories, Canada, and measured CO2 and CH4 production rates by means of laboratory incubations. Our short-term experiments show that changes in nutrient concentrations in soil water can significantly affect microbial carbon cycling, suggesting the necessity of additional considerations of wildfire and permafrost thaw impacts on peatland carbon storage.
Share