Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of nitrogen and phosphorus amendments on CO2 and CH4 production in peat soils of Scotty Creek, Northwest Territories: potential considerations for wildfire and permafrost thaw impacts on peatland carbon exchanges
Department of Earth System Sciences, Yonsei University, Seoul, 03722, Korea
Fereidoun Rezanezhad
Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Stephanie Slowinski
Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Christina Lam
Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Saraswati Bhusal
Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Department of Geography and Geospatial Sciences, South Dakota State University, Brookings, SD 57007, USA
Stephanie Wright
Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
William L. Quinton
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
Kara L. Webster
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON P6A 2E5, Canada
Philippe Van Cappellen
Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Related authors
Soo Hyun Kim and Eunji Byun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-130, https://doi.org/10.5194/essd-2025-130, 2025
Preprint under review for ESSD
Short summary
Short summary
Site and sample metadata from 328 paleoecological study sites in South Korea were compiled from 66 papers, addressing regional gaps in data availability in recent global data syntheses. The sites reflect the diversity of depositional environments, studied over many years with the development of multi-proxy approaches and regional collaborations. The GeoEcoKorea online platform, developed alongside this dataset, aims to enhance data accessibility and promote FAIR data sharing among researchers.
Soo Hyun Kim and Eunji Byun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-130, https://doi.org/10.5194/essd-2025-130, 2025
Preprint under review for ESSD
Short summary
Short summary
Site and sample metadata from 328 paleoecological study sites in South Korea were compiled from 66 papers, addressing regional gaps in data availability in recent global data syntheses. The sites reflect the diversity of depositional environments, studied over many years with the development of multi-proxy approaches and regional collaborations. The GeoEcoKorea online platform, developed alongside this dataset, aims to enhance data accessibility and promote FAIR data sharing among researchers.
Alexandre Lhosmot, Gabriel Hould Gosselin, Manuel Helbig, Julien Fouché, Youngryel Ryu, Matteo Detto, Ryan Connon, William Quinton, Tim Moore, and Oliver Sonnentag
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-367, https://doi.org/10.5194/hess-2024-367, 2025
Preprint under review for HESS
Short summary
Short summary
Climate change induces permanently frozen ground thaw, altering landscapes and water movements. We assess water balances (water entering and leaving difference) in a thawing boreal peatland complex in western Canada at two drainage scales: three < 1 km² basins (2014–2016) and one 130–202 km² basin (1996–2022). Both scales show similar patterns. We highlight challenges in accurate water balance estimation in low-relief areas. This study underscores ground thaw’s role in water movement dynamics.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Olivia Carpino, Kristine Haynes, Ryan Connon, James Craig, Élise Devoie, and William Quinton
Hydrol. Earth Syst. Sci., 25, 3301–3317, https://doi.org/10.5194/hess-25-3301-2021, https://doi.org/10.5194/hess-25-3301-2021, 2021
Short summary
Short summary
This study demonstrates how climate warming in peatland-dominated regions of discontinuous permafrost is changing the form and function of the landscape. Key insights into the rates and patterns of such changes in the coming decades are provided through careful identification of land cover transitional stages and characterization of the hydrological and energy balance regimes for each stage.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
William Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, Laura Chasmer, Ryan Connon, James Craig, Élise Devoie, Masaki Hayashi, Kristine Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert Schincariol, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019, https://doi.org/10.5194/hess-23-2015-2019, 2019
Short summary
Short summary
This paper synthesizes nearly three decades of eco-hydrological field and modelling studies at Scotty Creek, Northwest Territories, Canada, highlighting the key insights into the major water flux and storage processes operating within and between the major land cover types of this wetland-dominated region of discontinuous permafrost. It also examines the rate and pattern of permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the region.
Katheryn Burd, Suzanne E. Tank, Nicole Dion, William L. Quinton, Christopher Spence, Andrew J. Tanentzap, and David Olefeldt
Hydrol. Earth Syst. Sci., 22, 4455–4472, https://doi.org/10.5194/hess-22-4455-2018, https://doi.org/10.5194/hess-22-4455-2018, 2018
Short summary
Short summary
In this study we investigated whether climate change and wildfires are likely to alter water quality of streams in western boreal Canada, a region that contains large permafrost-affected peatlands. We monitored stream discharge and water quality from early snowmelt to fall in two streams, one of which drained a recently burned landscape. Wildfire increased the stream delivery of phosphorous and possibly increased the release of old natural organic matter previously stored in permafrost soils.
Kristine M. Haynes, Ryan F. Connon, and William L. Quinton
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-68, https://doi.org/10.5194/essd-2018-68, 2018
Preprint withdrawn
Short summary
Short summary
This paper presents a hydrological and micrometeorological dataset collected in the Scotty Creek basin, Northwest Territories, Canada over the course of the Changing Cold Regions Network (CCRN) Special Observation and Analysis Period (SOAP) year of 1 October 2014 to 30 September 2015. This dataset can be used in coordination with other datasets, including those from the CCRN, to examine spatio-temporal effects of meteorological conditions on local hydrological responses across cold regions.
Chris T. Parsons, Fereidoun Rezanezhad, David W. O'Connell, and Philippe Van Cappellen
Biogeosciences, 14, 3585–3602, https://doi.org/10.5194/bg-14-3585-2017, https://doi.org/10.5194/bg-14-3585-2017, 2017
Short summary
Short summary
Phosphorus (P) has accumulated in sediments due to past human activities. The re-release of this P to water contributes to the growth of harmful algal blooms. Our research improves our mechanistic understanding of how P is partitioned between different chemical forms and between sediment and water under dynamic conditions. We demonstrate that P trapped within iron minerals may be less mobile during anoxic conditions than previously thought due to reversible changes to P forms within sediment.
Related subject area
Soils and biogeochemical cycling
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Depth dependence of soil organic carbon additional storage capacity in different soil types by the 2050 target for carbon neutrality
Biochar reduces early-stage mineralization rates of plant residues more in coarse-textured soils than in fine-textured soils – an artificial-soil approach
Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter
Effect of colloidal particle size on physicochemical properties and aggregation behaviors of two alkaline soils
Comprehensive increase in CO2 release by drying–rewetting cycles among Japanese forests and pastureland soils and exploring predictors of increasing magnitude
Mixed Signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling
Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions
Freeze–thaw processes correspond to the protection–loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Calcium is associated with specific soil organic carbon decomposition products
Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica)
Investigating the complementarity of thermal and physical soil organic carbon fractions
Methane oxidation potential of soils in a rubber plantation in Thailand affected by fertilization
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Gradual drying of permafrost peat decreases carbon dioxide in drier peat plateaus but not in wetter fens and bogs
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
Isotopic exchangeability reveals that soil phosphate is mobilised by carboxylate anions whereas acidification had the reverse effect
The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol
Dissolved carbon flow to particulate organic carbon enhances soil carbon sequestration
Shifts in controls and abundance of particulate and mineral-associated organic matter fractions among subfield yield stability zones
The six rights of how and when to test for soil C saturation
Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions
Soil carbon, nitrogen, and phosphorus storage in juniper–oak savanna: role of vegetation and geology
Organic matters, but inorganic matters too: column examination of elevated mercury sorption on low organic matter aquifer material using concentrations and stable isotope ratios
Contrasting potential for biological N2 fixation at three polluted central European Sphagnum peat bogs: combining the 15N2-tracer and natural-abundance isotope approaches
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Semantics about soil organic carbon storage: DATA4C+, a comprehensive thesaurus and classification of management practices in agriculture and forestry
Forest liming in the face of climate change: the implications of restorative liming for soil organic carbon in mature German forests
Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Transformation of n-alkanes from plant to soil: a review
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Soil organic carbon mobility in equatorial podzols: soil column experiments
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics
Continental-scale controls on soil organic carbon across sub-Saharan Africa
Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments
Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025, https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary
Short summary
This study investigated soil respiration and the main factors involved in a semi-arid environment (olive grove). For this purpose, 1 year's worth of automatic multi-chamber measurements was used, accompanied by ecosystem respiration data obtained using the eddy covariance technique. The soil respiration annual balance, Q10 parameter, rain pulses, and spatial and temporal variability of soil respiration are presented in this paper.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025, https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depths that need to be preserved.
Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, and Daniel P. Rasse
SOIL, 11, 141–147, https://doi.org/10.5194/soil-11-141-2025, https://doi.org/10.5194/soil-11-141-2025, 2025
Short summary
Short summary
Here, we investigated how biochar, a potential C sequestration tool, affects early carbon storage in different soils. We created artificial soils to isolate the impact of soil texture. We found that biochar significantly reduces plant residue’s breakdown in all soil textures but mainly in sandy soils, which naturally hold less carbon. This suggests that biochar could be a valuable tool for improving soil health, especially in sandy soils.
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, and Steven Sleutel
SOIL, 11, 105–119, https://doi.org/10.5194/soil-11-105-2025, https://doi.org/10.5194/soil-11-105-2025, 2025
Short summary
Short summary
Farmers frequently apply fresh organic matter such as crop residues to soil to boost its carbon content. Yet, one burning question remains: does the quantity of applied organic matter affect its decomposition and that of native soil organic matter? Our experiment suggests that smaller application doses might deplete soil organic matter more rapidly, at least in coarser-textured soil. In contrast, applying intermediate or high doses might be a promising strategy for maintaining it.
Yuyang Yan, Xinran Zhang, Chenyang Xu, Junjun Liu, Feinan Hu, and Zengchao Geng
SOIL, 11, 85–94, https://doi.org/10.5194/soil-11-85-2025, https://doi.org/10.5194/soil-11-85-2025, 2025
Short summary
Short summary
The differences in organic matter contents and clay mineralogy are the fundamental reasons for the differences in colloidal suspension stability behind the size effects of Anthrosol and Calcisol colloids. The present study revealed the size effects of two alkaline soil colloids on carbon content, clay minerals, surface properties and suspension stability, emphasizing that soil nanoparticles are prone to be more stably dispersed instead of being aggregated.
Yuri Suzuki, Syuntaro Hiradate, Jun Koarashi, Mariko Atarashi-Andoh, Takumi Yomogida, Yuki Kanda, and Hirohiko Nagano
SOIL, 11, 35–49, https://doi.org/10.5194/soil-11-35-2025, https://doi.org/10.5194/soil-11-35-2025, 2025
Short summary
Short summary
We incubated 10 Japanese soils to study CO2 release under drying–rewetting cycles (DWCs). CO2 release was increased by DWCs among all soils, showing soil-by-soil variations in CO2 release increase magnitude. The organo-Al complex was the primary predictor for the increase magnitude, suggesting vulnerability of carbon protection by reactive minerals against DWCs. Microbial biomass decrease by DWCs was also suggested, although its link with the CO2 release increase is still unclear.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
SOIL, 11, 1–15, https://doi.org/10.5194/soil-11-1-2025, https://doi.org/10.5194/soil-11-1-2025, 2025
Short summary
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through an analysis of soil environmental characteristics and microbiomes, soil N2O and N2 emissions as well as biomass production. The results show that wheat grew well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climates.
Ruizhe Wang and Xia Hu
SOIL, 10, 859–871, https://doi.org/10.5194/soil-10-859-2024, https://doi.org/10.5194/soil-10-859-2024, 2024
Short summary
Short summary
This study characterized pore structure and soil organic carbon (SOC) fractions of aggregates during the seasonal freeze–thaw process. Freezing was associated with SOC accumulation, while the early stage of thawing was characterized by SOC loss. In the freezing period, pore structure could enhance SOC accumulation by promoting formation of > 80 μm pores. In the thawing period, pores of < 15 μm might inhibit SOC loss. These results present new perspectives on soil microstructure–SOC interactions.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
EGUsphere, https://doi.org/10.5194/egusphere-2024-3343, https://doi.org/10.5194/egusphere-2024-3343, 2024
Short summary
Short summary
This study shows calcium helps to preserve soil organic carbon in acidic soils, challenging previous beliefs that their interactions were largely limited to alkaline soils. Using spectromicroscopy, we found calcium is co-located with aromatic and phenolic-rich carbon and that this association was disrupted when the calcium was removed, and only reformed during decomposition with added calcium. This suggests that calcium amendments could enhance soil organic carbon stability.
Vítězslav Vlček, David Juřička, Martin Valtera, Helena Dvořáčková, Vojtěch Štulc, Michaela Bednaříková, Jana Šimečková, Peter Váczi, Miroslav Pohanka, Pavel Kapler, Miloš Barták, and Vojtěch Enev
SOIL, 10, 813–826, https://doi.org/10.5194/soil-10-813-2024, https://doi.org/10.5194/soil-10-813-2024, 2024
Short summary
Short summary
The aim of this work was to evaluate the correlation between soil organic carbon (SOC) and various soil properties. Nine plots across an altitudinal range from 10 to 320 m were investigated in the deglaciated region of James Ross Island (Antarctica). Our results indicate that the primary factor influencing the SOC content is likely not altitude or coarse-fraction content; rather, other hard-to-quantify factors, such as the presence of liquid water during the summer period, impact SOC content.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Jun Murase, Kannika Sajjaphan, Chatprawee Dechjiraratthanasiri, Ornuma Duangngam, Rawiwan Chotiphan, Wutthida Rattanapichai, Wakana Azuma, Makoto Shibata, Poonpipope Kasemsap, and Daniel Epron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2937, https://doi.org/10.5194/egusphere-2024-2937, 2024
Short summary
Short summary
Tropical forest soils are vital for methane uptake, but deforestation and agriculture can alter soil methane oxidation. An experiment in Thailand shows that fertilization significantly suppresses methane oxidation in rubber plantation soils, affecting depths up to 60 cm. Without fertilization, deeper soil layers (below 10 cm) actively oxidize methane. These findings suggest that fertilization negatively impacts the methane uptake capacity of deep-layer soils in rubber plantations.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2248, https://doi.org/10.5194/egusphere-2024-2248, 2024
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
Siobhan Staunton and Chiara Pistocchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1791, https://doi.org/10.5194/egusphere-2024-1791, 2024
Short summary
Short summary
Mineral phosphate is a finite resource and so ways must be found to optimize the use of native soil P. We have used isotopic dilution to assess how acidification and the addition of citrate or oxalate modify the lability of soil P in four contrasting soils from the Mediterranean region. Acidification did not mobilise soil P, whereas both carboxylate anions promoted soil P lability. This suggests that soil amendments and the choice of crops that exude carboxylates could optimize P nutrition.
Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng
SOIL, 10, 451–465, https://doi.org/10.5194/soil-10-451-2024, https://doi.org/10.5194/soil-10-451-2024, 2024
Short summary
Short summary
Land use change to cropping is known to greatly reduced organic carbon and nitrogen concentrations, but much remains unknown about the mechanisms influencing their persistence in soil. In a soil from a subtropical Australian cropping system, we demonstrate that organic carbon is protected by mineral associations but not particulate forms. Importantly, we also show that reversion from cropping to pasture or plantation can partially restore this organic carbon.
Qintana Si, Kangli Chen, Bin Wei, Yaowen Zhang, Xun Sun, and Junyi Liang
SOIL, 10, 441–450, https://doi.org/10.5194/soil-10-441-2024, https://doi.org/10.5194/soil-10-441-2024, 2024
Short summary
Short summary
Our soil incubation experiment demonstrates that dissolved labile carbon substrate is a significant contributor to the soil particulate organic carbon pool. Dissolved carbon flow to particulate organic carbon is regulated by microbial biomass carbon and soil texture. The soil carbon model underestimates soil carbon sequestration when carbon flow from dissolved substrates to particulate organic carbon through microbial processes is not considered.
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024, https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary
Short summary
We examined physical soil organic matter fractions to understand their relationship to temporal variability in crop yield at field scale. We found that interactions between crop productivity, topography, and climate led to variability in soil organic matter stocks among different yield stability zones. Our results imply that linkages between soil organic matter and yield stability may be scale-dependent and that particulate organic matter may be an indicator of unstable areas within croplands.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, and Georg Guggenberger
SOIL, 10, 139–150, https://doi.org/10.5194/soil-10-139-2024, https://doi.org/10.5194/soil-10-139-2024, 2024
Short summary
Short summary
Cover crops have substantial impacts on soil properties, but so far it is not clear how long a legacy effect of cover cropping will remain in the soil. We found that cover crops attenuate negative effects on soil structure that come from soil cultivation. The combination of plants with different litter qualities and rhizodeposits in biodiverse cover crop mixtures can improve the positive effects of cover cropping on soil structure amelioration.
Che-Jen Hsiao, Pedro A. M. Leite, Ayumi Hyodo, and Thomas W. Boutton
SOIL, 10, 93–108, https://doi.org/10.5194/soil-10-93-2024, https://doi.org/10.5194/soil-10-93-2024, 2024
Short summary
Short summary
Tree cover has increased in grasslands worldwide, with juniper and oak trees expanding in the southern Great Plains, USA. Here, we examine how these changes interact with geology to affect soil C, N, and P storage. Soil concentrations of these elements were significantly higher under trees than grasslands but increased more under trees growing on Edwards soils. Our results suggest that geology and vegetation change should be considered when predicting soil storage in dryland ecosystems globally.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
Marketa Stepanova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Frantisek Veselovsky, Jan Curik, Eva Prechova, Arnost Komarek, and Leona Bohdalkova
SOIL, 9, 623–640, https://doi.org/10.5194/soil-9-623-2023, https://doi.org/10.5194/soil-9-623-2023, 2023
Short summary
Short summary
Biological N2 fixation helps to sustain carbon accumulation in peatlands and to remove CO2 from the atmosphere. Changes in N2 fixation may affect the dynamics of global change. Increasing inputs of reactive N from air pollution should lead to downregulation of N2 fixation. Data from three N-polluted peat bogs show an interplay of N2-fixation rates with 10 potential drivers of this process. N2 fixation was measurable only at one site characterized by high phosphorus and low sulfate availability.
Tatjana C. Speckert, Jeannine Suremann, Konstantin Gavazov, Maria J. Santos, Frank Hagedorn, and Guido L. B. Wiesenberg
SOIL, 9, 609–621, https://doi.org/10.5194/soil-9-609-2023, https://doi.org/10.5194/soil-9-609-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188, https://doi.org/10.5194/soil-9-169-2023, https://doi.org/10.5194/soil-9-169-2023, 2023
Short summary
Short summary
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm monocultures. Our study shows that current oil-palm management practices and topsoil erosion on oil-palm plantations in Indonesia have caused a spatial distribution of essential Si pools in soil. A lack of well-balanced Si levels in topsoil could negatively affect crop yield and soil fertility for future replanting at the same plantation site. Potential measures are suggested to maintain Si cycling.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Oliver van Straaten, Larissa Kulp, Guntars O. Martinson, Dan Paul Zederer, and Ulrike Talkner
SOIL, 9, 39–54, https://doi.org/10.5194/soil-9-39-2023, https://doi.org/10.5194/soil-9-39-2023, 2023
Short summary
Short summary
Across northern Europe, millions of hectares of forest have been limed to counteract soil acidification and restore forest ecosystems. In this study, we investigated how restorative liming affects the forest soil organic carbon (SOC) stocks and correspondingly ecosystem greenhouse gas fluxes. We found that the magnitude and direction of SOC stock changes hinge on the inherent site characteristics, namely, forest type, soil texture, initial soil pH, and initial soil SOC stocks (before liming).
Junxiao Pan, Jinsong Wang, Dashuan Tian, Ruiyang Zhang, Yang Li, Lei Song, Jiaming Yang, Chunxue Wei, and Shuli Niu
SOIL, 8, 687–698, https://doi.org/10.5194/soil-8-687-2022, https://doi.org/10.5194/soil-8-687-2022, 2022
Short summary
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang
SOIL, 8, 605–619, https://doi.org/10.5194/soil-8-605-2022, https://doi.org/10.5194/soil-8-605-2022, 2022
Short summary
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
Ling Mao, Shaoming Ye, and Shengqiang Wang
SOIL, 8, 487–505, https://doi.org/10.5194/soil-8-487-2022, https://doi.org/10.5194/soil-8-487-2022, 2022
Short summary
Short summary
Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and balance of chemical elements. This study improved the understanding of soil organic carbon and nutrient dynamics in tea plantation ecosystems and also provided supplementary information for soil ecological stoichiometry in global terrestrial ecosystems.
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211, https://doi.org/10.5194/soil-8-199-2022, https://doi.org/10.5194/soil-8-199-2022, 2022
Short summary
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021, https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Short summary
Transfer of organic C from topsoil to deeper horizons and the water table is little documented, especially in equatorial environments, despite high primary productivity in the evergreen forest. Using column experiments with podzol soil and a percolating solution sampled in an Amazonian podzol area, we show how the C-rich Bh horizon plays a role in natural organic matter transfer and Si, Fe and Al mobility after a kaolinitic layer transition, thus giving insight to the genesis of tropical podzol.
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021, https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Claudia Cagnarini, Stephen Lofts, Luigi Paolo D'Acqui, Jochen Mayer, Roman Grüter, Susan Tandy, Rainer Schulin, Benjamin Costerousse, Simone Orlandini, and Giancarlo Renella
SOIL, 7, 107–123, https://doi.org/10.5194/soil-7-107-2021, https://doi.org/10.5194/soil-7-107-2021, 2021
Short summary
Short summary
Application of organic amendments, although considered a sustainable form of soil fertilisation, may cause an accumulation of trace elements (TEs) in the topsoil. In this research, we analysed the concentration of zinc, copper, lead and cadmium in a > 60-year experiment in Switzerland and showed that the dynamic model IDMM adequately predicted the historical TE concentrations in plots amended with farmyard manure, sewage sludge and compost and produced reasonable concentration trends up to 2100.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Cited articles
Ackley, C., Tank, S. E., Haynes, K. M., Rezanezhad, F., McCarter, C., and Quinton, W. L.: Coupled hydrological and geochemical impacts of wildfire in peatland-dominated regions of discontinuous permafrost, Sci. Total Environ., 782, 146841, https://doi.org/10.1016/j.scitotenv.2021.146841, 2021.
Amador, J. A. and Jones, R. D.: Nutrient limitations on microbial respiration in peat soils with different total phosphorus content, Soil Biol. Biochem., 25, 793–801, https://doi.org/0.1016/0038-0717(93)90125-U, 1993.
Aspila, K. I., Agemian, H., and Chau, A. S.: A semi-automated method for the determination of inorganic, organic and total phosphate in sediments, Analyst, 101, 187–197, https://doi.org/10.1039/an9760100187, 1976.
Bona, K. A., Shaw, C., Thompson, D. K., Hararuk, O., Webster, K., Zhang, G., Voicu, M., and Kurz, W. A.: The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting, Ecol. Model., 431, 109164, https://doi.org/10.1016/j.ecolmodel.2020.109164, 2020.
Brookes, P. C., Powlson, D. S., and Jenkinson, D. S.: Phosphorus in the soil microbial biomass, Soil Biol. Biochem., 16, 169–175, https://doi.org/10.1016/0038-0717(84)90108-1, 1984.
Burd, K., Tank, S. E., Dion, N., Quinton, W. L., Spence, C., Tanentzap, A. J., and Olefeldt, D.: Seasonal shifts in export of DOC and nutrients from burned and unburned peatland-rich catchments, Northwest Territories, Canada, Hydrol. Earth Syst. Sci., 22, 4455–4472, https://doi.org/10.5194/hess-22-4455-2018, 2018.
Burd, K., Estop-Aragonés, C., Tank, S. E., Olefeldt, D., and Naeth, M. A.: Lability of dissolved organic carbon from boreal peatlands: interactions between permafrost thaw, wildfire, and season, Can. J. Soil Sci., 100, 503–515, https://doi.org/10.1139/cjss-2019-0154, 2020.
Byun, E., Rezanezhad, F., Fairbairn, L., Slowinski, S., Basiliko, N., Price, J. S., Quinton, W. L., Roy-Léveillée, P., Webster, K., and Van Cappellen, P.: Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands, Sci. Rep.-UK, 11, 23219, https://doi.org/10.1038/s41598-021-02606-3, 2021.
Byun, E., Rezanezhad, F., Slowinski, S., Lam, C., Saraswati, S., Wright, S., Quinton, W., Webster, K., and Van Cappellen, P.: Dataset for Examining the Effects of Nutrient Pulses on Biogeochemical Cycling in Subarctic Peatlands in the Context of Permafrost Thaw and Wildfires, Federated Research Data Repository [data set], https://doi.org/10.20383/102.0712, 2024.
Carpino, O., Haynes, K., Connon, R., Craig, J., Devoie, É., and Quinton, W.: Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes, Hydrol. Earth Syst. Sci., 25, 3301–3317, https://doi.org/10.5194/hess-25-3301-2021, 2021.
CGDI National Frameworks Data: A National Ecological Framework for Canada: GIS Data, Agriculture and Agri-Food Canada [data set], https://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html (last access: 4 April 2025), 2025.
Chasmer, L., Kenward, A., Quinton, W., and Petrone, R.: CO2 Exchanges within Zones of Rapid Conversion from Permafrost Plateau to Bog and Fen Land Cover Types, Arct. Antarct. Alp. Res., 44, 399–411, https://doi.org/10.1657/1938-4246-44.4.399, 2012.
Connon, R. F., Quinton, W. L., Craig, J. R., and Hayashi, M.: Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada, Hydrol. Process., 28, 4163–4178, https://doi.org/10.1002/hyp.10206, 2014.
Emelko, M. B., Stone, M., Silins, U., Allin, D., Collins, A. L., Williams, C. H., Martens, A. M., and Bladon, K. D.: Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems, Glob. Change Biol., 22, 1168–1184, https://doi.org/10.1111/gcb.13073, 2016.
Emmerton, C. A., Cooke, C. A., Hustins, S., Silins, U., Emelko, M. B., Lewis, T., Kruk, M. K., Taube, N., Zhu, D., Jackson, B., Stone, M., Kerr, J. G., and Orwin, J. F.: Severe western Canadian wildfire affects water quality even at large basin scales, Water Resour., 183, 116071, https://doi.org/10.1016/j.watres.2020.116071, 2020.
Geyer, K. M., Kyker-Snowman, E., Grandy, A. S., and Frey, S. D.: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter, Biogeochemistry, 127, 173–188, https://doi.org/10.1007/s10533-016-0191-y, 2016.
Gibson, C. M., Chasmer, L. E., Thompson, D. K., Quinton, W. L., Flannigan, M. D., and Olefeldt, D.: Wildfire as a major driver of recent permafrost thaw in boreal peatlands, Nat. Commun., 9, 3041, https://doi.org/10.1038/s41467-018-05457-1, 2018.
Giesler, R., Esberg, C., Lagerström, A., and Graae, B. J.: Phosphorus availability and microbial respiration across different tundra vegetation types, Biogeochemistry, 108, 429–445, https://doi.org/10.1007/s10533-011-9609-8, 2011.
Haynes, K. M., Connon, R. F., and Quinton, W. L.: Permafrost thaw induced drying of wetlands at Scotty Creek, NWT, Canada, Environ. Res. Lett., 13, 114001, https://doi.org/10.1088/1748-9326/aae46c, 2018.
Hill, B. H., Elonen, C. M., Jicha, T. M., Kolka, R. K., Lehto, L. L. P., Sebestyen, S. D., and Seifert-Monson, L. R.: Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types, Biogeochemistry, 120, 203–224, https://doi.org/10.1007/s10533-014-9991-0, 2014.
Hoyos-Santillan, J., Lomax, B. H., Turner, B. L., Sjögersten, S., and Austin, A.: Nutrient limitation or home field advantage: Does microbial community adaptation overcome nutrient limitation of litter decomposition in a tropical peatland?, J. Ecol., 106, 1558–1569, https://doi.org/10.1111/1365-2745.12923, 2018.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA, 117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020.
Jenkinson, D. S., Brookes, P. C., and Powlson, D. S.: Measuring soil microbial biomass, Soil Biol. Biochem., 36, 5–7, https://doi.org/10.1016/j.soilbio.2003.10.002, 2004.
Joergensen, R. G.: The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value, Soil Biol. Biochem., 28, 25–31, https://doi.org/10.1016/0038-0717(95)00102-6, 1996.
Koch, J. C., Bogard, M. J., Butman, D. E., Finlay, K., Ebel, B., James, J., Johnston, S. E., Jorgenson, M. T., Pastick, N. J., Spencer, R. G. M., Striegl, R., Walvoord, M., and Wickland, K. P.: Heterogeneous Patterns of Aged Organic Carbon Export Driven by Hydrologic Flow Paths, Soil Texture, Fire, and Thaw in Discontinuous Permafrost Headwaters, Global Biogeochem. Cy., 36, e2021GB007242, https://doi.org/10.1029/2021gb007242, 2022.
Lin, X., Tfaily, M. M., Green, S. J., Steinweg, J. M., Chanton, P., Imvittaya, A., Chanton, J. P., Cooper, W., Schadt, C., and Kostka, J. E.: Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland, Appl. Environ. Microb., 80, 3531–3540, https://doi.org/10.1128/AEM.00206-14, 2014.
Liu, C., Tian, H., Gu, X., Li, N., Zhao, X., Lei, M., Alharbi, H., Megharaj, M., He, W., and Kuzyakov, Y.: Catalytic efficiency of soil enzymes explains temperature sensitivity: Insights from physiological theory, Sci. Total Environ., 822, 153365, https://doi.org/10.1016/j.scitotenv.2022.153365, 2022.
Liu, H., Zak, D., Zableckis, N., Cossmer, A., Langhammer, N., Meermann, B., and Lennartz, B.: Water pollution risks by smoldering fires in degraded peatlands, Sci. Total Environ., 871, 161979, https://doi.org/10.1016/j.scitotenv.2023.161979, 2023.
Lu, F., Wu, J., Yi, B., Xu, Z., Wang, M., Sundberg, S., and Bu, Z.-J.: Long-Term Phosphorus Addition Strongly Weakens the Carbon Sink Function of a Temperate Peatland, Ecosystems, 26, 201–216, https://doi.org/10.1007/s10021-022-00754-9, 2022.
Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F., Salehi, B., Homayouni, S., and Bourgeau-Chavez, L.: The Third Generation of Pan-Canadian Wetland Map at 10 m Resolution Using Multisource Earth Observation Data on Cloud Computing Platform, IEEE J. Sel. Top. Appl., 14, 8789–8803, https://doi.org/10.1109/jstars.2021.3105645, 2021.
Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Agren, G. I.: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils, New Phytol., 196, 79–91, https://doi.org/10.1111/j.1469-8137.2012.04225.x, 2012.
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Shirley, I. A., Bouskill, N. J., and Grant, R. F.: Wildfire exacerbates high-latitude soil carbon losses from climate warming, Environ. Res. Lett., 17, 094037, https://doi.org/10.1088/1748-9326/ac8be6, 2022.
Moore, T. R., Knorr, K.-H., Thompson, L., Roy, C., and Bubier, J. L.: The effect of long-term fertilization on peat in an ombrotrophic bog, Geoderma, 343, 176–186, https://doi.org/10.1016/j.geoderma.2019.02.034, 2019.
Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C. M., and Venkiteswaran, J. J.: Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis, Can. J. Fish. Aquat. Sci., 74, 2005–2029, https://doi.org/10.1139/cjfas-2016-0500, 2017.
Orlova, J., Olefeldt, D., Yasinski, J. H., and Anderson, A. E.: Effects of Prescribed Burn on Nutrient and Dissolved Organic Matter Characteristics in Peatland Shallow Groundwater, Fire, 3, 53, https://doi.org/10.3390/fire3030053, 2020.
Porter, T. J., Schoenemann, S. W., Davies, L. J., Steig, E. J., Bandara, S., and Froese, D. G.: Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum, Nat. Commun., 10, 1631, https://doi.org/10.1038/s41467-019-09622-y, 2019.
Post, E., Alley, R. B., Christensen, T. R., Macias-Fauria, M., Forbes, B. C., Gooseff, M. N., Iler, A., Kerby, J. T., Laidre, K. L., Mann, M. E., Olofsson, J., Stroeve, J. C., Ulmer, F., Virginia, R. A., and Wang, M.: The polar regions in a 2 °C warmer world, Sci. Adv., 5, eaaw9883, https://doi.org/10.1126/sciadv.aaw9883, 2019.
Qualls, R. G. and Richardson, C. J.: Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms, Soil Sci. Soc. Am. J., 64, 799–808, https://doi.org/10.2136/sssaj2000.642799x, 2000.
Quinton, W., Berg, A., Braverman, M., Carpino, O., Chasmer, L., Connon, R., Craig, J., Devoie, É., Hayashi, M., Haynes, K., Olefeldt, D., Pietroniro, A., Rezanezhad, F., Schincariol, R., and Sonnentag, O.: A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada, Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019, 2019.
Schillereff, D. N., Chiverrell, R. C., Sjöström, J. K., Kylander, M. E., Boyle, J. F., Davies, J. A. C., Toberman, H., and Tipping, E.: Phosphorus supply affects long-term carbon accumulation in mid-latitude ombrotrophic peatlands, Communications Earth and Environment, 2, 241, https://doi.org/10.1038/s43247-021-00316-2, 2021.
Schuur, E. A. G., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., Treat, C., and Turetsky, M.: Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic, Annu. Rev. Env. Resour., 47, 343–371, https://doi.org/10.1146/annurev-environ-012220-011847, 2022.
Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., and Richter, A.: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling, Ecol. Lett., 16, 930–939, https://doi.org/10.1111/ele.12113, 2013.
Sinsabaugh, R. L., Turner, B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., and Follstad Shah, J. J.: Stoichiometry of microbial carbon use efficiency in soils, Ecol. Monogr., 86, 172–189, https://doi.org/10.1890/15-2110.1, 2016.
Talucci, A. C., Loranty, M. M., and Alexander, H. D.: Siberian taiga and tundra fire regimes from 2001–2020, Environ. Res. Lett., 17, 025001, https://doi.org/10.1088/1748-9326/ac3f07, 2022.
Treat, C. C., Kleinen, T., Broothaerts, N., Dalton, A. S., Dommain, R., Douglas, T. A., Drexler, J. Z., Finkelstein, S. A., Grosse, G., Hope, G., Hutchings, J., Jones, M. C., Kuhry, P., Lacourse, T., Lahteenoja, O., Loisel, J., Notebaert, B., Payne, R. J., Peteet, D. M., Sannel, A. B. K., Stelling, J. M., Strauss, J., Swindles, G. T., Talbot, J., Tarnocai, C., Verstraeten, G., Williams, C. J., Xia, Z., Yu, Z., Valiranta, M., Hattestrand, M., Alexanderson, H., and Brovkin, V.: Widespread global peatland establishment and persistence over the last 130 000 y, P. Natl. Acad. Sci. USA, 116, 4822–4827, https://doi.org/10.1073/pnas.1813305116, 2019.
Van Beest, C., Petrone, R., Nwaishi, F., Waddington, J. M., and Macrae, M.: Increased Peatland Nutrient Availability Following the Fort McMurray Horse River Wildfire, Diversity, 11, 142, https://doi.org/10.3390/d11090142, 2019.
Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem., 19, 703–707, https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
Webster, K. L., Bhatti, J. S., Thompson, D. K., Nelson, S. A., Shaw, C. H., Bona, K. A., Hayne, S. L., and Kurz, W. A.: Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands, Carbon Balance Manag., 13, 16, https://doi.org/10.1186/s13021-018-0105-5, 2018.
Worrall, F., Moody, C. S., Clay, G. D., Burt, T. P., and Rose, R.: The total phosphorus budget of a peat-covered catchment, J. Geophys. Res.-Biogeo., 121, 1814–1828, https://doi.org/10.1002/2016jg003375, 2016.
Wright, S. N., Thompson, L. M., Olefeldt, D., Connon, R. F., Carpino, O. A., Beel, C. R., and Quinton, W. L.: Thaw-induced impacts on land and water in discontinuous permafrost: A review of the Taiga Plains and Taiga Shield, northwestern Canada, Earth-Sci. Rev., 232, 104104, https://doi.org/10.1016/j.earscirev.2022.104104, 2022.
Wu, Y., Xu, X., McCarter, C. P. R., Zhang, N., Ganzoury, M. A., Waddington, J. M., and de Lannoy, C. F.: Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection, Sci. Total Environ., 822, 153579, https://doi.org/10.1016/j.scitotenv.2022.153579, 2022.
Short summary
To investigate how added nutrient nitrogen (N) and phosphorus (P) affect subarctic peatlands, we sampled peat soils from bog and fen type peatlands in the Northwest Territories, Canada, and measured CO2 and CH4 production rates by means of laboratory incubations. Our short-term experiments show that changes in nutrient concentrations in soil water can significantly affect microbial carbon cycling, suggesting the necessity of additional considerations of wildfire and permafrost thaw impacts on peatland carbon storage.
To investigate how added nutrient nitrogen (N) and phosphorus (P) affect subarctic peatlands, we...