Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-287-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-287-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping near-real-time soil moisture dynamics over Tasmania with transfer learning
Marliana Tri Widyastuti
CORRESPONDING AUTHOR
School of Life and Environmental Sciences & Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
José Padarian
School of Life and Environmental Sciences & Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
Budiman Minasny
School of Life and Environmental Sciences & Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
Mathew Webb
Department of Natural Resources and Environment Tasmania, Prospect, Tasmania, Australia
Muh Taufik
Department of Geophysics and Meteorology, IPB University, Jalan Meranti Wing 19 Level 4 Darmaga Campus, Bogor, 16680, Indonesia
Darren Kidd
Department of Natural Resources and Environment Tasmania, Prospect, Tasmania, Australia
Related authors
Marliana Tri Widyastuti, Budiman Minasny, José Padarian, Federico Maggi, Matt Aitkenhead, Amélie Beucher, John Connolly, Dian Fiantis, Darren Kidd, Yuxin Ma, Fraser Macfarlane, Ciaran Robb, Rudiyanto, Budi Indra Setiawan, and Muh Taufik
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-333, https://doi.org/10.5194/essd-2024-333, 2024
Preprint withdrawn
Short summary
Short summary
PEATGRIDS, the first dataset containing maps of global peat thickness and carbon stock at 1 km resolution. The dataset has been publicly available at Zenodo to support further analyses and modelling of peatlands across the globe. This work employed the random forest machine learning model to provide spatially explicit peat carbon stock at pixel basis.
Yin-Chung Huang, José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 11, 553–563, https://doi.org/10.5194/soil-11-553-2025, https://doi.org/10.5194/soil-11-553-2025, 2025
Short summary
Short summary
Uncertainty quantification plays a crucial role in reporting machine learning models in soil spectroscopy. This study introduces Monte Carlo conformal prediction (MC-CP), a novel method for uncertainty quantification in deep-learning soil spectral models. MC-CP outperformed two established methods, providing the most reliable results. Its efficiency and robustness make it a practical choice for implementing soil spectral models in decision making.
Marliana Tri Widyastuti, Budiman Minasny, José Padarian, Federico Maggi, Matt Aitkenhead, Amélie Beucher, John Connolly, Dian Fiantis, Darren Kidd, Yuxin Ma, Fraser Macfarlane, Ciaran Robb, Rudiyanto, Budi Indra Setiawan, and Muh Taufik
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-333, https://doi.org/10.5194/essd-2024-333, 2024
Preprint withdrawn
Short summary
Short summary
PEATGRIDS, the first dataset containing maps of global peat thickness and carbon stock at 1 km resolution. The dataset has been publicly available at Zenodo to support further analyses and modelling of peatlands across the globe. This work employed the random forest machine learning model to provide spatially explicit peat carbon stock at pixel basis.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Frisa Irawan Ginting, Rudiyanto Rudiyanto, Fatchurahman, Ramisah Mohd Shah, Norhidayah Che Soh, Sunny Goh Eng Giap, Dian Fiantis, Budi Indra Setiawan, Sam Schiller, Aaron Davitt, and Budiman Minasny
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-90, https://doi.org/10.5194/essd-2024-90, 2024
Preprint withdrawn
Short summary
Short summary
This study is the first to map rice cropping intensity and the harvested area across Southeast Asia at a spatial resolution of 10 m (SEA-Rice-Ci10). We have developed a geospatial inventory of paddy rice parcels and rice cropping intensity by integrating Sentinel-1 and 2 time-series data in a framework called LUCK-PALM, based on local phenological expert interpretation. According to our best knowledge, it is the finest-resolution and most accurate database of paddy rice in Southeast Asia.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73, https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
Short summary
Soil organic carbon sequestration is considered an attractive technology to partially mitigate climate change. Here, we show how the SOC storage potential varies globally. The estimated additional SOC storage potential in the topsoil of global croplands (29–67 Pg C) equates to only 2 to 5 years of emissions offsetting and 32 % of agriculture's 92 Pg historical carbon debt. Since SOC is temperature-dependent, this potential is likely to reduce by 18 % by 2040 due to climate change.
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020, https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary
Short summary
The number of samples utilised to create predictive models affected model performance. This research compares the number of samples needed by a deep learning model to outperform the traditional machine learning models using visible near-infrared spectroscopy data for soil properties predictions. The deep learning model was found to outperform machine learning models when the sample size was above 2000.
Cited articles
Aas, K., Jullum, M., and Løland, A.: Explaining individual predictions when features are dependent: More accurate approximations to Shapley values, Artif. Intell., 298, 103502, https://doi.org/10.1016/j.artint.2021.103502, 2021.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., and Devin, M.: TensorFlow: Large-scale machine learning on heterogeneous systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2015.
Alemohammad, S. H., Kolassa, J., Prigent, C., Aires, F., and Gentine, P.: Global downscaling of remotely sensed soil moisture using neural networks, Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, 2018.
Behrens, T., Schmidt, K., MacMillan, R. A., and Viscarra Rossel, R. A.: Multi-scale digital soil mapping with deep learning, Sci. Rep.-UK, 8, 15244, https://doi.org/10.1038/s41598-018-33516-6, 2018.
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, 2016.
Bishop, T. F. A., McBratney, A. B., and Laslett, G. M.: Modelling soil attribute depth functions with equal-area quadratic smoothing splines, Geoderma, 91, 27–45, https://doi.org/10.1016/S0016-7061(99)00003-8, 1999.
Cai, Y., Fan, P., Lang, S., Li, M., Muhammad, Y., and Liu, A.: Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network, Remote Sens.-Basel, 14, 5681, https://doi.org/10.3390/rs14225681, 2022.
Cotching, W. E.: Organic matter in the agricultural soils of Tasmania, Australia – A review, Geoderma, 312, 170–182, https://doi.org/10.1016/j.geoderma.2017.10.006, 2018.
Cotching, W. E., Lynch, S., and Kidd, D. B.: Dominant soil orders in Tasmania: Distribution and selected properties, Aust. J. Soil Res., 47, 537–548, https://doi.org/10.1071/SR08239, 2009.
Dashtian, H., Young, M. H., Young, B. E., McKinney, T., Rateb, A. M., Niyogi, D., and Kumar, S. V.: A framework to nowcast soil moisture with NASA SMAP level 4 data using in-situ measurements and deep learning, Journal of Hydrology: Regional Studies, 56, 102020, https://doi.org/10.1016/j.ejrh.2024.102020, 2024.
Datta, P. and Faroughi, S. A.: A multihead LSTM technique for prognostic prediction of soil moisture, Geoderma, 433, 116452, https://doi.org/10.1016/j.geoderma.2023.116452, 2023.
Department of Agriculture Fisheries and Forestry: Catchment Scale Land Use of Australia – Update December 2018, Department of Agriculture, Fisheries and Forestry [data set], https://www.agriculture.gov.au/abares/aclump/land-use/catchment-scale-land-use-of-australia-update-december-2018 (Last access: 28 August 2023), 2019.
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
Fang, K. and Shen, C.: Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel, J. Hydrometeorol., 21, 399–413, https://doi.org/10.1175/JHM-D-19-0169.1, 2020.
Frost, A., Ramchurn, A., and Hafeez, M.: Evaluation of the Bureau's Operational AWRA-L Model, Melbourne, Bureau of Meteorology, 80 pp., https://awo.bom.gov.au/assets/notes/publications/Frost_Evaluation_Report.pdf (last access: 25 August 2023), 2016.
Fuentes, I., Padarian, J., and Vervoort, R. W.: Towards near real-time national-scale soil water content monitoring using data fusion as a downscaling alternative, J. Hydrol., 609, 127705, https://doi.org/10.1016/j.jhydrol.2022.127705, 2022.
Gütter, J., Kruspe, A., Zhu, X. X., and Niebling, J.: Impact of Training Set Size on the Ability of Deep Neural Networks to Deal with Omission Noise, Front. Remote Sens., 3, 932431, https://doi.org/10.3389/frsen.2022.932431, 2022.
Han, H., Choi, C., Kim, J., Morrison, R. R., Jung, J., and Kim, H. S.: Multiple-Depth Soil Moisture Estimates Using Artificial Neural Network and Long Short-Term Memory Models, Water-Sui, 13, 2584, https://doi.org/10.3390/w13182584, 2021.
Hu, F., Wei, Z., Zhang, W., Dorjee, D., and Meng, L.: A spatial downscaling method for SMAP soil moisture through visible and shortwave-infrared remote sensing data, J. Hydrol., 590, 125360, https://doi.org/10.1016/j.jhydrol.2020.125360, 2020.
Huang, Y.: Advances in Artificial Neural Networks – Methodological Development and Application, Algorithms, 2, 973–1007, 2009.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database, 2008.
Kidd, D., Webb, M., Malone, B., Minasny, B., and McBratney, A.: Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia, Soil Res., 53, 932–955, https://doi.org/10.1071/SR14268, 2015a.
Kidd, D., Webb, M., Malone, B., Minasny, B., and McBratney, A.: Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia, Geoderma Regional, 6, 7–21, https://doi.org/10.1016/j.geodrs.2015.08.005, 2015b.
Kidd, D. B., Malone, B. P., McBratney, A. B., Minasny, B., and Webb, M. A.: Digital mapping of a soil drainage index for irrigated enterprise suitability in Tasmania, Australia, Soil Res., 52, 107–119, https://doi.org/10.1071/SR13100, 2014.
Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., de Lannoy, G., Mocko, D., Steele-Dunne, S. C., Save, H., and Bettadpur, S.: Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges, Water Resour. Res., 55, 7564–7586, https://doi.org/10.1029/2018WR024618, 2019.
Li, Q., Wang, Z., Shangguan, W., Li, L., Yao, Y., and Yu, F.: Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning, J. Hydrol., 600, 126698, https://doi.org/10.1016/j.jhydrol.2021.126698, 2021.
Li, Q., Li, Z., Shangguan, W., Wang, X., Li, L., and Yu, F.: Improving soil moisture prediction using a novel encoder-decoder model with residual learning, Comput. Electron. Agr., 195, 106816, https://doi.org/10.1016/j.compag.2022.106816, 2022a.
Li, Q., Zhu, Y., Shangguan, W., Wang, X., Li, L., and Yu, F.: An attention-aware LSTM model for soil moisture and soil temperature prediction, Geoderma, 409, 115651, https://doi.org/10.1016/j.geoderma.2021.115651, 2022b.
Li, Q., Shi, G., Shangguan, W., Nourani, V., Li, J., Li, L., Huang, F., Zhang, Y., Wang, C., Wang, D., Qiu, J., Lu, X., and Dai, Y.: A 1 km daily soil moisture dataset over China using in situ measurement and machine learning, Earth Syst. Sci. Data, 14, 5267–5286, https://doi.org/10.5194/essd-14-5267-2022, 2022c.
Li, X., Zhu, Y., Li, Q., Zhao, H., Zhu, J., and Zhang, C.: Interpretable spatio-temporal modeling for soil temperature prediction, Front. Forests Global Change, 6, 1295731, https://doi.org/10.3389/ffgc.2023.1295731, 2023.
Lin, H., Yu, Z., Chen, X., Gu, H., Ju, Q., and Shen, T.: Spatial–temporal dynamics of meteorological and soil moisture drought on the Tibetan Plateau: Trend, response, and propagation process, J. Hydrol., 130211, https://doi.org/10.1016/j.jhydrol.2023.130211, 2023.
Lin, L. I. K.: A Concordance Correlation Coefficient to Evaluate Reproducibility, Biometrics, 45, 255–268, https://doi.org/10.2307/2532051, 1989.
Lindemann, B., Müller, T., Vietz, H., Jazdi, N., and Weyrich, M.: A survey on long short-term memory networks for time series prediction, Proc. CIRP, 99, 650–655, https://doi.org/10.1016/j.procir.2021.03.088, 2021.
Liu, J., Rahmani, F., Lawson, K., and Shen, C.: A Multiscale Deep Learning Model for Soil Moisture Integrating Satellite and In Situ Data, Geophys. Res. Lett., 49, e2021GL096847, https://doi.org/10.1029/2021GL096847, 2022.
Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., and Zhang, G.: Transfer learning using computational intelligence: A survey, Knowl.-Based Syst., 80, 14–23, https://doi.org/10.1016/j.knosys.2015.01.010, 2015.
Lundberg, S. M. and Lee, S. I.: A unified approach to interpreting model predictions, arXiv [preprint], https://doi.org/10.48550/arXiv.1705.07874, 2017.
Malone, B. and Searle, R.: Soil and Landscape Grid National Soil Attribute Maps – Clay (3′′ resolution) – Release 2. v5., CSIRO [data set], https://doi.org/10.25919/hc4s-3130, 2022.
Minasny, B. and McBratney, A. B.: Integral energy as a measure of soil-water availability, Plant Soil, 249, 253–262, https://doi.org/10.1023/A:1022825732324, 2003.
Minasny, B., Bandai, T., Ghezzehei, T. A., Huang, Y.-C., Ma, Y., McBratney, A. B., Ng, W., Norouzi, S., Padarian, J., Rudiyanto, Sharififar, A., Styc, Q., and Widyastuti, M.: Soil Science-Informed Machine Learning, Geoderma, 452, 117094, https://doi.org/10.1016/j.geoderma.2024.117094, 2024.
Mohammadifar, A., Gholami, H., and Golzari, S.: Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory, Sci. Rep.-UK, 12, 15167, https://doi.org/10.1038/s41598-022-19357-4, 2022.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Ng, W., Minasny, B., Mendes, W. D. S., and Demattê, J. A. M.: The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data, SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020, 2020.
Odebiri, O., Mutanga, O., and Odindi, J.: Deep learning-based national scale soil organic carbon mapping with Sentinel-3 data, Geoderma, 411, 115695, https://doi.org/10.1016/j.geoderma.2022.115695, 2022.
Padarian, J., Minasny, B., and McBratney, A. B.: Transfer learning to localise a continental soil vis-NIR calibration model, Geoderma, 340, 279–288, https://doi.org/10.1016/j.geoderma.2019.01.009, 2019a.
Padarian, J., Minasny, B., and McBratney, A. B.: Using deep learning for digital soil mapping, SOIL, 5, 79–89, https://doi.org/10.5194/soil-5-79-2019, 2019b.
Padarian, J., McBratney, A. B., and Minasny, B.: Game theory interpretation of digital soil mapping convolutional neural networks, SOIL, 6, 389–397, https://doi.org/10.5194/soil-6-389-2020, 2020.
Pan, S. J. and Yang, Q.: A Survey on Transfer Learning, IEEE T. Knowl. Data En., 22, 1345–1359, https://doi.org/10.1109/TKDE.2009.191, 2010.
Park, S.-H., Lee, B.-Y., Kim, M.-J., Sang, W., Seo, M. C., Baek, J.-K., Yang, J. E., and Mo, C.: Development of a Soil Moisture Prediction Model Based on Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) in Soybean Cultivation, Sensors, 23, 1976, https://doi.org/10.3390/s23041976, 2023.
Park, Y. S. and Lek, S.: Chapter 7 – Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling, in: Developments in Environmental Modelling, edited by: Jørgensen, S. E., Elsevier, 123–140, https://doi.org/10.1016/B978-0-444-63623-2.00007-4, 2016.
Reichle, R. H., De Lannoy, G. J. M., Liu, Q., Ardizzone, J. V., Colliander, A., Conaty, A., Crow, W., Jackson, T. J., Jones, L. A., Kimball, J. S., Koster, R. D., Mahanama, S. P., Smith, E. B., Berg, A., Bircher, S., Bosch, D., Caldwell, T. G., Cosh, M., González-Zamora, Á., Holifield Collins, C. D., Jensen, K. H., Livingston, S., Lopez-Baeza, E., Martínez-Fernández, J., McNairn, H., Moghaddam, M., Pacheco, A., Pellarin, T., Prueger, J., Rowlandson, T., Seyfried, M., Starks, P., Su, Z., Thibeault, M., van der Velde, R., Walker, J., Wu, X., and Zeng, Y.: Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements, J. Hydrometeorol., 18, 2621–2645, https://doi.org/10.1175/JHM-D-17-0063.1, 2017.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-propagating errors, Nature, 323, 533–536, 1986.
Searle, R., Somarathna, P. D. S. N., and Malone, B.: Soil and Landscape Grid National Soil Attribute Maps – Available Volumetric Water Capacity (Percent) (3 arc second resolution) Version 2. v3. (v2), CSIRO [data set], https://doi.org/10.25919/4jwj-na34, 2022.
Smith, A. B., Walker, J. P., Western, A. W., Young, R. I., Ellett, K. M., Pipunic, R. C., Grayson, R. B., Siriwardena, L., Chiew, F. H. S., and Richter, H.: The Murrumbidgee soil moisture monitoring network data set, Water Resour. Res., 48, W07701, https://doi.org/10.1029/2012WR011976, 2012.
Stenson, M., Searle, R., Malone, B., Sommer, A., Renzullo, L., and Di, H.: Australia wide daily volumetric soil moisture estimates (1.0), Terrestrial Ecosystem Research Network [data set], https://doi.org/10.25901/b020-nm39, 2021.
Sulla-Menashe, D. and Friedl, M. A.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061, USGS [data set], https://doi.org/10.5067/MODIS/MCD12Q1.061, 2021.
Taufik, M., Widyastuti, M. T., Sulaiman, A., Murdiyarso, D., Santikayasa, I. P., and Minasny, B.: An improved drought-fire assessment for managing fire risks in tropical peatlands, Agr. Forest Meteorol., 312, 108738, https://doi.org/10.1016/j.agrformet.2021.108738, 2022.
Teixeira, I., Morais, R., Sousa, J. J., and Cunha, A.: Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review, Agriculture, 13, 13050965, https://doi.org/10.3390/agriculture13050965, 2023.
van Klompenburg, T., Kassahun, A., and Catal, C.: Crop yield prediction using machine learning: A systematic literature review, Comput. Electron. Agr., 177, 105709, https://doi.org/10.1016/j.compag.2020.105709, 2020.
Védère, C., Lebrun, M., Honvault, N., Aubertin, M.-L., Girardin, C., Garnier, P., Dignac, M.-F., Houben, D., and Rumpel, C.: How does soil water status influence the fate of soil organic matter? A review of processes across scales, Earth-Sci. Rev., 234, 104214, https://doi.org/10.1016/j.earscirev.2022.104214, 2022.
Wadoux, A. M. J. C., Roman Dobarco, M., Malone, B., Minasny, B., McBratney, A., and Searle, R.: Soil and Landscape Grid National Soil Attribute Maps – Organic Carbon (3′′ resolution) – Release 2. v3. [data set], https://doi.org/10.25919/ejhm-c070, 2022.
Webb, M. A., Kidd, D., and Minasny, B.: Near real-time mapping of air temperature at high spatiotemporal resolutions in Tasmania, Australia, Theor. Appl. Climatol., 141, 1181–1201, https://doi.org/10.1007/s00704-020-03259-4, 2020.
Wei, Z., Meng, Y., Zhang, W., Peng, J., and Meng, L.: Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau, Remote Sens. Environ., 225, 30–44, https://doi.org/10.1016/j.rse.2019.02.022, 2019.
Widyastuti, M.: marliana-widyastuti2/sm-map-tas: v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.15134144, 2025 (data available at: https://github.com/marliana-widyastuti/sm-map-tas.git, last access: 4 April 2025)
Wimalathunge, N. S. and Bishop, T. F. A.: A space–time observation system for soil moisture in agricultural landscapes, Geoderma, 344, 1–13, https://doi.org/10.1016/j.geoderma.2019.03.002, 2019.
Xu, M., Yao, N., Yang, H., Xu, J., Hu, A., Gustavo Goncalves de Goncalves, L., and Liu, G.: Downscaling SMAP soil moisture using a wide and deep learning method over the Continental United States, J. Hydrol., 609, 127784, https://doi.org/10.1016/j.jhydrol.2022.127784, 2022.
Xu, W., Zhang, Z., Long, Z., and Qin, Q.: Downscaling SMAP Soil Moisture Products With Convolutional Neural Network, IEEE J. Sel. Top. Appl., 14, 4051–4062, https://doi.org/10.1109/JSTARS.2021.3069774, 2021.
Yang, M., Wang, G., Lazin, R., Shen, X., and Anagnostou, E.: Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management, Agr. Water Manage., 243, 106430, https://doi.org/10.1016/j.agwat.2020.106430, 2021.
Yao, Y., Zhao, Y., Li, X., Feng, D., Shen, C., Liu, C., Kuang, X., and Zheng, C.: Can transfer learning improve hydrological predictions in the alpine regions?, J. Hydrol., 625, 130038, https://doi.org/10.1016/j.jhydrol.2023.130038, 2023.
Young, R., Walker, J., Yeoh, N., Smith, A., Ellett, K., Merlin, O., and Western, A.: Soil moisture and meteorological observations from the Murrumbidgee catchment, Department of Civil and Environmental Engineering, University of Melbourne, https://www.researchgate.net/publication/267832777 (last access: 23 August 2023), 2008.
Zhang, J., Zeng, Y., and Starly, B.: Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis and prognosis, SN Applied Sciences, 3, 442, https://doi.org/10.1007/s42452-021-04427-5, 2021.
Zhao, H., Li, J., Yuan, Q., Lin, L., Yue, L., and Xu, H.: Downscaling of soil moisture products using deep learning: Comparison and analysis on Tibetan Plateau, J. Hydrol., 607, 127570, https://doi.org/10.1016/j.jhydrol.2022.127570, 2022.
Short summary
This work aims to predict soil water content at a fine spatiotemporal resolution (80 m grids, daily) to support agricultural management in Tasmania. It proves that transfer learning can improve the accuracy of deep learning models to predict multilevel soil moisture. We address the challenge of mapping soil moisture at field-scale resolution and integrate the model into a near-real-time monitoring system.
This work aims to predict soil water content at a fine spatiotemporal resolution (80 m grids,...