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Abstract. Soil moisture, an essential parameter for hydroclimatic studies, exhibits considerable spatial and
temporal variability, which complicates its mapping at high spatiotemporal resolutions. Although current remote
sensing products offer global estimates of soil moisture at fine temporal resolutions, they do so at a coarse spa-
tial resolution. Deep learning (DL) techniques have recently been employed to produce high-resolution maps of
various soil properties; however, these methods require substantial training data. This study sought to map daily
soil moisture across Tasmania, Australia, at an 80 m resolution using a limited set of training data. We assessed
three modeling strategies: DL models calibrated using an Australian dataset (51 411 observation points), models
calibrated using the Tasmanian dataset (9825 observation points), and a transfer learning technique that trans-
ferred information from the Australian models to Tasmania using region-specific data. We also evaluated two
DL approaches, i.e., multilayer perceptron (MLP) and long short-term memory (LSTM). The models included
the Soil Moisture Active Passive (SMAP) dataset, weather data, an elevation map, land cover, and multilevel soil
property maps as inputs to generate soil moisture at the surface (0–30 cm) and subsurface (30–60 cm) layers.
Results showed that (1) models calibrated from the Australian dataset performed worse than Tasmanian models
regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using local data, resulted in
shortcomings in predicting soil moisture; and (3) transfer learning exhibited remarkable performance improve-
ments (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the
two previous models. The LSTM models with transfer learning had the highest overall performance with an
average mean absolute error (MAE) of 0.07 m3 m−3 and a correlation coefficient (r) of 0.77 across stations for
the surface layer as well as MAE= 0.07m3 m−3 and r = 0.69 for the subsurface layer. The fine-resolution soil
moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct
seasons in Tasmania. The models were then applied to generate daily soil moisture maps of Tasmania, integrated
into a near-real-time monitoring system to assist agricultural decision-making.
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1 Introduction

Soil moisture plays an essential role in land surface model-
ing, serving as a key link between soil, climate, and vegeta-
tion. In hydrology, it is frequently used as a proxy for eval-
uating hydrological extremes, including drought assessment
(Taufik et al., 2022; Lin et al., 2023). In agricultural prac-
tices, soil moisture provides valuable information for soil
water management and crop yield predictions (Yang et al.,
2021). Mapping and monitoring soil moisture present sig-
nificant challenges for soil scientists due to its high spatial
and temporal diversity. The variation in soil moisture is influ-
enced by factors such as climate, topographic features, vege-
tation cover, and soil characteristics, including clay content,
soil aggregation, and organic carbon content (Minasny and
McBratney, 2003; Védère et al., 2022).

Globally, soil moisture information is available in vari-
ous formats and with various coverage. At the point scale,
the International Soil Moisture Network provides a harmo-
nized measured soil moisture database worldwide (Dorigo
et al., 2021). In Australia, soil moisture observations can be
found in the OzNet and OzFlux databases (Smith et al., 2012;
Beringer et al., 2016). However, despite accurate informa-
tion on observations at the point level, the spatial coverage
of these measurements is limited, meaning that soil mois-
ture content in unmonitored areas is uncertain. To bridge this
gap, various spatial datasets were generated to complement
the point-scale measurements. Remote sensing, geostatistical
models, water balance models, or a combination of them are
the principal methods to derive soil moisture images cover-
ing multiple scales of space and time.

Notable soil moisture sources across the Australian con-
tinent include the Australian Water Resource Assessment
Landscape (AWRA-L), which provides a 5 km resolution soil
moisture level based on the water balance approach (Frost
et al., 2016). Using the OzFlux and OzNet data points as
input, this dataset covers moisture prediction for three soil
layers (0–10, 10–100, and 100–600 cm). The Soil Moisture
Integration and Prediction System (SMIPS) provides a daily
soil water balance map at 1 km resolution by integrating ma-
chine learning and water balance models (Wimalathunge and
Bishop, 2019; Stenson et al., 2021). This product presents the
proportion of available water within the 90 cm soil layer and
is updated daily with a latency of 3 d.

In addition, some global datasets are available as near-
present soil moisture maps at various spatial and tempo-
ral resolutions. The Global Land Data Assimilation System
(GLDAS) products offer estimated soil moisture for the sur-
face (0–2 cm) and root zone (0–100 cm) layers (Li et al.,
2019). The GLDAS images are at 0.25 to 1° with 3 h to daily
temporal resolution, and they are updated daily with 1 month
of latency time. ERA5-Land provides four levels of daily soil
moisture (0–7, 7–28, 28–100, 100–289 cm depth) at 0.1° spa-
tial resolution with a 2- to 3-month delay (Muñoz-Sabater
et al., 2021). Soil Moisture Active Passive level 4 (SMAP-

L4), as the most recent product, provides a vertical aver-
age of soil moisture for the surface (0–5 cm) and root zone
(0–100 cm) layers based on NASA’s Catchment land sur-
face model assimilated with L-band imagery (Reichle et al.,
2017). With the shortest latency time, the SMAP product has
been widely used in continuous monitoring systems. How-
ever, SMAP data require downscaling for higher spatial res-
olution to enhance its reliability for agricultural and environ-
mental monitoring. Previous studies have addressed this by
developing finer-resolution maps (Cai et al., 2022; Hu et al.,
2020; Wei et al., 2019; Xu et al., 2022, 2021; Li et al., 2022b;
Dashtian et al., 2024).

Recent advances in deep learning (DL) have enabled the
production of high-resolution maps of soil properties (Padar-
ian et al., 2020, 2019b; Behrens et al., 2018; Minasny et al.,
2024). DL algorithms have been assessed to map soil mois-
ture at high spatial resolution (Fuentes et al., 2022). Addi-
tionally, several studies using DL models have investigated
downscaling the global soil moisture dataset based on point
data observations, yet they only attempt to produce 1 km res-
olution maps, which are still too coarse for agricultural man-
agement (Zhao et al., 2022; Cai et al., 2022; Alemohammad
et al., 2018; Li et al., 2022c).

Despite its high applicability, the performance of the DL
model is highly influenced by the amount of data for model
development (Gütter et al., 2022; Ng et al., 2020). Small
datasets may lead to overfitting during the model training,
which can further impact the final model accuracy (Ng et al.,
2020). To address the issue of a small training dataset, sev-
eral studies employed the transfer learning (TL) technique
to leverage models created from a larger dataset. TL works
by transferring the information derived from a model trained
from a large dataset to a new model with a similar archi-
tecture. This technique is commonly used to increase the
performance of models built from a limited number of ob-
servations (Yao et al., 2023). Several studies, particularly in
soil science, have implemented this technique to enhance the
performance of DL models on local datasets. Padarian et al.
(2019a) used TL to localize a global soil Vis–NIR model for
local-scale predictions. TL was able to lower the error in the
prediction of local data in up to 90 % of the cases. In soil
moisture prediction, Li et al. (2021) applied TL to improve
the predictability (reduced error by up to 30 %) of DL models
derived from the latest SMAP dataset using the ERA5-land
dataset, which has a longer time span.

Tasmania presents an ideal case study due to its diverse
soils and unique climate, supporting both agriculture and bio-
diversity (Cotching, 2018; Cotching et al., 2009). While dig-
ital soil assessments have been conducted in Tasmania for
irrigation and land management (Kidd et al., 2015b), there
is a need for high-resolution soil moisture maps to moni-
tor soil water content within the profile (Kidd et al., 2015a,
2014). This study aims to generate near-real-time daily soil
moisture maps at an 80 m, providing detailed spatial informa-
tion for agricultural and environmental applications. Given
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Tasmania’s limited point observations of soil moisture, the
study explores the feasibility of applying the transfer learn-
ing technique in DL. We hypothesize that transfer learning
from models trained on Australia-wide data can enhance soil
moisture prediction accuracy in Tasmania. Specifically, this
paper’s contributions include the following:

i. a systematic evaluation of DL algorithms to identify
the most effective approaches for downscaling SMAP
datasets to finer spatial resolution;

ii. the innovative application of transfer learning in DL,
utilizing Australia-wide data to enhance soil moisture
prediction accuracy in data-scarce regions like Tasma-
nia;

iii. comprehensive validation of the Tasmania-specific soil
moisture map, providing a benchmark for future studies
in areas with sparse observational data; and

iv. a demonstration of the feasibility of delivering live,
daily soil moisture predictions, highlighting potential
real-time applications in precision agriculture, water
resource management, and environmental monitoring.
Overall, this study addresses the current data gap by
proposing scalable methods for soil moisture predic-
tion in regions with limited observational infrastruc-
tures, thereby contributing to global efforts in sustain-
able land and water management.

2 Data and methods

2.1 Study area

Tasmania is an island state and Australia’s southernmost ter-
ritory. This area has a cool temperate climate with average
annual rainfall of over 1500 mm in the west and less than
600 mm in the central midlands. The rainfall variability cor-
responds to its topographical features, which is characterized
by rugged and high mountainous areas in the west and south-
west. The state’s central area has a large plateau with an el-
evation of around 1000 m above sea level (Fig. 1). The mid-
land areas are dominated by flat lowlands (less than 290 m)
for agricultural uses, with relatively small hills and moun-
tains. Tasmania has various soils due to the diversity of land-
scape, climate, and geology with Dermosols and Organosols
dominating the soil types (equivalent to Alfisols and His-
tosols) (Cotching et al., 2009). According to the Australian
Bureau of Meteorology, soil moisture in Tasmania was 50 %
in the upper soil layer (0–10 cm) and ranged from 10 %–85 %
for the root zone soil layer (0–100 cm) during the year 2022.

2.2 Data sources

For the model development, we collected spatial data on pa-
rameters related to soil moisture from the Google Earth En-
gine database and Tasmanian geospatial layers. Soil moisture

reference datasets were obtained from publicly available in
situ and telemetered soil moisture measurements. We sepa-
rated the Australia and Tasmania datasets. The detailed in-
formation on each dataset is summarized in Tables 1 and 2.
Locations of the soil moisture stations are presented in Fig. 1
for Tasmania and in Fig. S1 in the Supplement for Aus-
tralia. For Australia, data were collected from the OzFlux
and OzNet databases. OzFlux provides SM data from the
flux monitoring tower set up to understand the exchanges of
carbon and water between terrestrial ecosystems and the at-
mosphere across Australia. OzFlux stations use a time do-
main reflectometry sensor to record moisture level at specific
soil depths that vary among the stations (see the details at
https://www.ozflux.org.au/, last access: 23 July 2023). Mean-
while, OzNet provides soil moisture records from several
sites in the Murrumbidgee catchment, southern New South
Wales, Australia. Each site measures soil moisture at 0–5 cm
with a soil dielectric sensor (Stevens Hydraprobe®) or 0–8,
0–30, 30–60, and 60–90 cm with water content reflectome-
ters (Campbell Scientific) (Young et al., 2008).

For stations in Tasmania, soil moisture data were recorded
using capacitance (EnviroPro) probes based on the frequency
domain principle. Each device records a moisture value every
10 cm up to 80 cm soil depth with a frequency of 15 min.

2.3 Deep learning approaches

In this work, we used three types of DL algorithms, which are
multilayer perceptron, long-short term memory, and transfer
learning, to develop soil moisture models. These algorithms
were executed in Python using keras in the TensorFlow mod-
ule (Abadi et al., 2015).

2.3.1 Multilayer perceptron

A multilayer perceptron (MLP) is a type of artificial neural
network consisting of hidden layers between input and output
layers (Park and Lek, 2016; Rumelhart et al., 1986). Each
layer is connected by multiple perceptrons. A perceptron is
a type of neuron with a logical threshold in producing an
output value. In MLP, the weights attached to the input of
perceptrons are combined into a weighted sum and become
the base value against a threshold of whether the neuron will
be activated. The threshold is set by an activation function.

Since the MLP algorithm contains more than one hidden
layer, combinations of perceptrons between layers could re-
solve nonlinear relationships between input and output lay-
ers. The multilayer concept means that the perceptron’s out-
put values in one layer are propagated to the next layer as the
input. At the end of the perceptron, the final output value is
compared to the reference value and is evaluated using a cost
function to quantify the difference between predicted and ac-
tual values. An optimization function is then used to mini-
mize this difference metric. Additionally, this algorithm has
a backpropagation scheme, which calculates the gradient er-
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Figure 1. Elevation map of Tasmania. Red points represent soil moisture probes. The labeled points are stations that have recorded soil
moisture data for more than 1 year.

ror across all pairs of input and output into the first hidden
layer and uses the gradient to update the weight values. All
these processes are processed in an iteration or epoch. De-
tailed explanations of MLP as an advanced neural network
can be found in Huang (2009).

2.3.2 Long short-term memory

Long short-term memory (LSTM) is a type of recurrent neu-
ral network (RNN) that overcomes the challenge of long-
term dependency in regular RNN (Zhang et al., 2021). This
approach is commonly applied to sequence datasets such as
time series data (Lindemann et al., 2021). In one neuron of
LSTM, there is a cell state representing the long-term mem-
ory responsible for filtering and controlling the information
from input and other layers. This cell state decides which in-
formation will be stored and passed through as output and
which information will be removed as it does not correlate
with the function. There are two types of LSTM: unidirec-
tional LSTM and bidirectional LSTM. The one-directional
LSTM only stores information about the network that moves
forward. Meanwhile, in bidirectional LSTM, the neural net-
work can work in both forward and backward directions of
the information flow. LSTM has been utilized for a wide
range of problems, including soil moisture and soil temper-
ature estimation (Li et al., 2023). The use of the LSTM ap-

proach in crop yield prediction research has been reviewed
by Van Klompenburg et al. (2020) and Teixeira et al. (2023).

2.3.3 Transfer learning

Transfer learning (TL) is a technique in deep learning that
transfers knowledge from a trained model to a new model
that has a similar architecture (Lu et al., 2015). Theoreti-
cally, the new model does not need to be trained from scratch
since the transferred knowledge has an overview pattern of
the data. This can reduce training time or even increase the
model’s performance (Pan and Yang, 2010). A TL approach
generally consists of three stages, which are (i) developing
or selecting a pre-trained model, (ii) reusing the model, and
(iii) fine tuning the model. A pre-trained model can be a
globally accepted general model or a model developed based
on a large dataset. Reusing the model means importing the
weights of all or several layers from the pre-trained model
to the new model. Fine tuning is the training process on the
transferred new model using a new specific dataset. A clear
illustration of how transfer learning works is presented in
Padarian et al. (2019a).
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Table 1. Sources of datasets as inputs for soil moisture modeling.

Type of Group of Usage Dataset Spatial/temporal variables (units) Reference/source
features datasets resolution

Dynamic Global soil
moisture
data

All SMAP L4
products
(SPL4SMGP)

9 km/3-hourly sm_surface (m3 m−3)
sm_rootzone (m3 m−3)

Reichle et al.
(2017)

Weather
data

AU ERA5-Land 25 km/daily total_precipitation_sum (m)
temperature_2m_min (K)
temperature_2m_max (K)

Muñoz-Sabater
et al. (2021)

TAS Weather-Now
Map Tasmania

80 m/daily RainPrediction24h (mm)
TminPrediction (°C)
TmaxPrediction (°C)

Webb et al.
(2020)

Static Soil
properties

AU Soil and
Landscape Grid
of Australia
(SLGA)

90 m/– AWC_xxx_EV (%)
SOC_xxx_EV (%)
CLY_xxx_EV (%)

Searle et al.
(2022),
Wadoux et al.
(2022), Malone
and Searle
(2022),

TAS Digital Soil Maps
of Tasmania

30 or 80 m/– AWC_Tas_xxx_predicted_mean (%)
SOC_xxx (%)
Clay_Tas_xxx_mean (%)

Kidd et al.
(2015a)

Topography All The Shuttle Radar
Topography
Mission (SRTM)

90 m/– elevation (m) Jarvis et al.
(2008)

Land
use/land
cover

All Australian
Collaborative
Land Use and
Management V8

50 m/– clum_50m1218m Department of
Agriculture
Fisheries and
Forestry
(2019),

All MODIS Land
Cover
(MCD12Q1)

500 m/– LC_Type1
(Annual International
Geosphere–Biosphere Programme
(IGBP) classification)

Sulla-Menashe
and Friedl
(2021)

Note: xxx in soil datasets represents soil depth variation. Tmin= daily minimum air temperature, Tmax= daily maximum air temperature.

Table 2. Detailed information for the soil moisture data. The location of Australian stations used in this study can be found in the Supplement.
“Number of data” refers to the dataset used for model training.

Dataset Source Number of stations Period of data coverage Number of data

Australia OzNet 20 Jan 2016–Apr 2020 51 411
OzFlux 19

Tasmania Ag Logic 39 Jan 2022–Jul 2023 9825

2.4 Soil moisture modeling

2.4.1 Data preparation

Preparing datasets for model development included data
cleaning of the reference soil moisture probes data, stack-
ing images of covariates, and sampling the covariates based
on probe locations. For the Tasmanian dataset, the recorded
soil moisture data were in percentage values representing the

proportion of water within the pore space in the soil. Since
we need the proportion of water within the soil volume, we
converted the measured data by multiplying them by total
porosity calculated from bulk density (BD) values. The BD
values were derived from the digital soil map of Tasmania
extracted at each probe location. The Australian soil mois-
ture dataset has been calibrated from each database source;
thus, we use the values directly for analysis. We then calcu-
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lated the measured moisture values at various depths into an
aggregated mean value for the surface (0–30 cm) and subsur-
face (30–60 cm) soil layers. We applied the equal-area spline
interpolation (Bishop et al., 1999) and calculated the average
daily soil moisture from sub-hourly records. We also con-
verted all soil moisture data in decimals of volumetric water
content (m3 m−3).

Covariates were collected using the Google Earth Engine
platform. We first stacked weather datasets, including daily
accumulated rainfall and daily maximum and minimum tem-
perature (Tmax and Tmin) as the reference date. Since rain-
fall has an extended effect on soil moisture levels, we in-
cluded the current and the last 3 d of rainfall data in the co-
variate list. Thus, we had four layers of rainfall data for each
day (RAINt , RAINt−1, RAINt−2, and RAINt−3).

Daily values of SMAP soil moisture were averaged, and
we only selected the surface (surf_SMAP) and root zone
bands (rootz_SMAP) representing 0–5 and 0–100 cm soil
layers. Since SMAP-L4 products have a 3 d latency, we used
backward 4–7 d windows to get the sequence of SMAP bands
(SMAPt , SMAPt−1, . . ., SMAPt−n with t as the day and n
from 4 to 7 referring to the backward sequence). This series
was then converted into a multiband image and stacked to-
gether with the weather data.

The multiband images of weather and SMAP data were
then combined with land cover, elevation, and spatial soil
property data. For the land cover, we used five categories, i.e.,
pasture, forest, rain-fed agricultural, savannah, and irrigation
(PAST, FORE, AGRI, SAVA, and IRRI). FORE includes ar-
eas classified as native vegetation and native forest in CLUM
or any type of forest defined in IGBP. Cropping and horticul-
ture classes in CLUM are included in AGRI. The IRRI cat-
egory covers area production from irrigated agriculture and
plantations in the CLUM classification. SAVA includes areas
defined as closed shrublands, woody savannahs, and savan-
nahs in IGBP. The rest of the classes are categorized as PAST.
We applied a one-hot-encoding method to convert land cover
categories into a binary (zeros and ones) numerical format.
Each class is represented as a separate column, where a value
of 1 indicates the presence of that category, and 0 indicates
its absence.

For soil properties, we selected three variables that affect
the water storage of soils, including available water content
(AWC), soil organic carbon (SOC), and clay content (CLY).
Maps representing four layers of soil depth (0–5, 5–15, 15–
30, and 30–60 cm) of each variable were incorporated as co-
variates. These were further named AWCLx, SOCLx, and
CLYLx, with L being a layer and x an integer from 1 to 4.

Finally, the daily multiband image containing all covari-
ates was generated based on the time frame of the Australian
and Tasmanian datasets. Covariate values were then sampled
at each location with measured soil moisture data, produc-
ing paired datasets of covariates and observed data for each
date at every station. Any row that contained missing values
in either covariates or observed data was excluded. This led

to 51 411 observations covering the period of January 2016–
April 2020 for the Australia dataset and 9825 observations
for Tasmania from January 2022–July 2023.

2.4.2 Model setup

This study set the deep learning models to have two output
values representing soil moisture for the surface and subsur-
face layers (0–30 and 30–60 cm, respectively). The structure
of the MLP model consisted of four dense layers of 128, 64,
32, and 16 neurons as the hidden layer, existing in between
the input and output layers. We used a Rectified Linear Unit
(ReLU) and Adam optimizer as the activation and optimiza-
tion functions, respectively. The learning rate, batch size, and
number of epochs used in this algorithm were 0.0001, 128,
and 150, respectively. To avoid overfitting in the training pro-
cess, an early stopping was applied based on the validation
loss, which halted the training if there was no improvement
after five epochs.

For the LSTM algorithm, the time series dataset of SMAP
was used as input in bidirectional LSTM. This part formed a
2× 8 shape, which then passed through a dense layer of 100
neurons. Combined with the rest of the covariates, this be-
came the input of four hidden layers with 128, 64, 32, and 16
neurons. To make a fair comparison, we set the activation and
optimization functions, learning rate, batch size, and number
of epochs in LSTM that are similar to the MLP.

During model training and validation, the value of 1− ρc
(Lin’s concordance correlation coefficient, Eq. 1) was used as
a loss function. We aimed its minimum value for validation to
get the best model performance. Lin’s coefficient represents
the distance of predicted data plotted against the observed
data with the 45° line (Lin, 1989):

ρc =
2sxy

s2
x + s

2
y + (x− y)2 , (1)

where s2
x and s2

y are the variances, while x and y are the mean
of the observed and the predicted soil moisture. sxy is the
covariance value calculated using Eq. (2):

sxy =
1
n

n∑
i=1

(xi − x)(yi − y), (2)

where n is the number of data, and i is the order of data
being calculated. This function can represent how well the
model captures temporal patterns of the observed data in a
time series.

For analysis, we had three scenarios for feeding these two
DL algorithms. Figure 2 shows the modeling scheme used in
this study.

a. The Australian (AU) model was trained on the Aus-
tralian dataset. This was based on the model developed
by Fuentes et al. (2022) with a modification of feature
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Figure 2. Soil moisture modeling scheme.

selection as model input: (1) used the most recent prod-
uct of the SMAP dataset; (2) excluded variables hav-
ing the least impact on DL predictions, which are the
Sentinel-1 dataset, vegetation index, and land surface
temperature; (3) added daily maximum and minimum
air temperature. We derived only one AU model for each
DL algorithm by splitting the dataset into 2016–2018
for training and 2019–2020 for validation.

b. The Tasmanian (TAS) model was trained on the Tasma-
nian dataset. We derived multiple models for analysis
using the leave-one-station-out cross-validation schema
across 39 monitoring stations.

c. The transfer learning (TL) model was also used. Here,
we used the trained AU model and fine-tuned the model
using the Tasmanian dataset. For MLP, we transferred
the weights of the first three hidden layers of the AU
model and kept them unchanged during the fine-tuning
process. Meanwhile, for LSTM, we kept the first three
hidden layers after LSTM output (128, 64, and 32 neu-
ron layers) unchanged. The rest of the neurons, includ-
ing the weights on LSTM architecture, were retrained.

2.4.3 Model evaluation

An evaluation was first conducted on AU models. We applied
AU models to predict soil moisture in Tasmania and quanti-
fied the goodness of fit between predicted and measured val-
ues. Subsequently, the TAS and TL models were evaluated
using the leave-one-station-out cross-validation (CV) testing
scheme. This scheme comprised randomly selecting one sta-
tion as a testing set, another station as a validation set, and

the rest of the stations as the training set. The scheme was
applied to all probes, thus resulting in 39 models for each of
the TAS and TL models.

The goodness of fit between the prediction and observa-
tions was quantified based on mean absolute error (MAE),
root mean square error (RMSE), and Pearson’s linear corre-
lation coefficient (Eqs. 3–5).

MAE=
∑n
i=1|yi − xi |

n
(3)

RMSE=

√√√√ n∑
i=1

(yi − xi)2

n
(4)

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(5)

Here, yi is moisture prediction, xi is an observation, and n is
the amount of data. The final Tasmanian soil moisture maps
were calculated from the average of 39 maps derived from
the leave-one-station-out CV schema using the LSTM-TL al-
gorithm. We also calculated the standard deviation from this
model output to show the model’s uncertainty.

2.4.4 Model interpretation

To explain the contribution of each input variable in soil
moisture prediction, we calculated the Shapley value (Aas
et al., 2021). The Shapley value is the marginal contribution
of each predictor after considering all possible combinations.
The SHAP value is derived from game theory and optimal
Shapley values and has been widely used to interpret fea-
ture contribution in deep learning models (Padarian et al.,
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2020; Odebiri et al., 2022; Mohammadifar et al., 2022). In
this study, SHAP calculation was based on the transferred
LSTM model with a random split of 0.9 : 0.1 for training
and testing. SHAP values resulting from the testing dataset
were summed across different times or covariates for anal-
ysis. The calculation was done using the Shapley Additive
exPlanations (SHAP) library in Python language (Lundberg
and Lee, 2017).

3 Results

3.1 Distribution of moisture data

We first compared the soil moisture (SM) data from the
Australian and Tasmanian datasets that were used for build-
ing the DL models. Figure 3 shows the distribution of SM
data over the analysis period based on density probability
and histogram plots. The Tasmanian data generally had a
similar pattern to that of the Australian data. Both types
of data were left-skewed for the surface layer and had a
peak concentration of around 0.2 m3 m−3. Nevertheless, the
Tasmanian data were slightly shifted to the right with a
mean value of 0.26 m3 m−3 higher than the Australian one
(mean= 0.17m3 m−3). The Tasmanian data ranged from
0.07 to 0.54 m3 m−3, while the Australian data ranged 0.02–
0.50 m3 m−3. The Tasmanian data showed a lower density
value for soil moisture below 0.2 m3 m−3 compared to the
Australian data but exhibited higher concentrations above
0.25 m3 m−3.

Meanwhile, for subsurface soil moisture data, both re-
gions showed two peaks of data concentration (about 0.20
and 0.35 m3 m−3) yet different types of distribution. The
Australian data were relatively skewed to the right (skew-
ness −0.32), while the Tasmanian data were skewed to the
left (skewness 0.23). The Australian data for this layer had
a wider range (0.01–0.60 m3 m−3) compared to the Tasma-
nian data (0.06–0.54 m3 m−3). The Tasmanian data had more
concentrations around 0.10–0.35 m3 m−3, while the Aus-
tralian data had a fair distribution of moisture levels below
0.30 m3 m−3. Despite these differences, both types of sub-
surface data had a similar mean value of about 0.26 m3 m−3.

We also plotted the distribution of data of each covari-
ate for Australia and Tasmania (Fig. 4). The Australian soil
data generally had lower values of available water and car-
bon content than the Tasmanian data. Soil moisture values
extracted from the global SMAP dataset for Australia had
lower mean values for both the surface and subsurface soil
layers, yet they had a wider range of moisture levels. For the
rest of the covariates (weather data and elevation), the Aus-
tralian data covered a larger range of values than in Tasmania.
The maximum rainfall data in Australia reached 160 mmd−1,
while in Tasmania it was up to 131 mmd−1. The distribution
of air temperature data also followed the same trend, with
Tasmania having lower mean values for both the daily maxi-
mum and minimum.

3.2 SMAP prediction of soil moisture in Tasmania

Soil moisture content from the SMAP dataset was used as the
primary covariate in our models. We first investigated the re-
lationship between SMAP and field-observed soil moisture
in Tasmania. Surface soil moisture of SMAP (0–5 cm) was
directly compared to the first level of measurement (10 cm
depth), while the SMAP root zone (0–100 cm) was against
the average moisture values of all level measurements (10–
80 cm depths). The overall correlation coefficient between
SMAP and measured data was 0.37 for the surface and 0.49
for the root zone layer. SMAP SM data had a moderately
high correlation coefficient with the measured data across
different stations in Tasmania, with median values of 0.77
and 0.76 for the surface and root zone layer, respectively. The
difference between SMAP and ground measurements for the
root zone (MAE= 0.08m3 m−3 and RMSE= 0.10m3 m−3)
was slightly lower than for the surface (MAE= 0.09m3 m−3

and RMSE= 0.11m3 m−3). According to the distribution of
errors and correlation coefficients across the measuring sta-
tions, SMAP of the root zone layer had a wider range of
errors and correlation coefficients compared to the surface
layer (Fig. 5). In addition, there were more stations with neg-
ative correlation values for the root zone SMAP.

3.3 Model selection and performances

We evaluated the performance of deep learning models, cal-
ibrated with Australian data (referred to as Australian mod-
els), in predicting soil moisture levels in Tasmania. The mod-
els’ predictions were compared to measurements of each sta-
tion. In general, models with the MLP approach performed
better than LSTM for both the surface and subsurface lay-
ers, with the MLP having an average MAE of 0.1m3 m−3,
RMSE of 0.12 m3 m−3, and correlation of 0.49 compared
to LSTM with an average MAE of 0.12 m3 m−3, RMSE
of 0.15 m3 m−3, and correlation of 0.48 (Fig. 6). The MLP
model resulted in predictions that were closer to the 45°
line with the observed data. Furthermore, according to the
distribution of performance across Tasmanian stations, the
MLP model predictions had lower errors and less variation,
as shown by the box plot. The LSTM model had good cor-
relation coefficients (> 0.6) in most stations. However, de-
spite the promising performance of the MLP algorithm, the
models did not demonstrate any improvement in prediction
accuracy over using just the SMAP dataset alone (Fig. 5).

Thus, the second set of models was trained on Tasmanian
data using the leave-one-station-out cross-validation scheme.
The results show that the predicted soil moisture varied from
0 to 0.8 m3 m−3, giving a larger range than the observed
data (Fig. 7). The scatter plots of predictions and observa-
tions show a large dispersion, with some zero-value predic-
tions regardless of the variation of the observed data. Both
DL approaches had similar results in performance valua-
tion. The MLP models were slightly better than LSTM, with
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Figure 3. Distribution plot of the Australian (AU) and Tasmanian (TAS) soil moisture data.

Figure 4. Comparison of the box plot from the Australian (AU) and Tasmanian (TAS) covariates used in this study, including available water
content (AWC), clay content (CLY), soil organic carbon (SOC), soil moisture (in volumetric water content, m3 m−3) from SMAP, rainfall,
air temperature, and elevation. The number next to soil properties refers to the soil layer of 0–5, 5–15, 15–30, and 30–60 cm depths.

average MAE of 0.12 m3 m−3, RMSE of 0.15 m3 m−3, and
correlation of 0.43, while the LSTM models had MAE of
0.13 m3 m−3, RMSE of 0.17 m3 m−3, and correlation of 0.26.
Model evaluation for each station showed that the error val-
ues and correlation of both DL models for subsurface soil
moisture prediction (0.01–0.48 m3 m−3 for MAE and RMSE;
−0.63 to 0.96 for correlation) were more varied compared
to surface moisture predictions (0.02–0.35 m3 m−3 for MAE
and RMSE; −0.07 to 0.94 for correlation).

Finally, the transfer learning approach was deployed by
transferring knowledge from the trained Australian models

to Tasmania. Visually, data points resulting from TL mod-
els against the observed data were closer to the 45° line for
both MLP and LSTM (Fig. 8). The predicted data for MLP
were in the range of 0 up to 0.7 m3 m−3, which is larger than
that of LSTM (0.03–0.63 m3 m−3). The overall performance
of LSTM models showed MAE of 0.07 m3 m−3, RMSE of
0.08 m3 m−3, and correlation of 0.73. This was slightly bet-
ter than the performance of the MLP models, with average
MAE, RMSE, and correlation of 0.08 m3 m−3, 0.09 m3 m−3,
and 0.62. The distribution of model performance for both DL
algorithms on predicting soil moisture across all stations in
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Figure 5. Performance of soil moisture derived from the SMAP dataset compared to measured data in Tasmania during the period of January
2022–April 2023: (a) the distribution of mean absolute error (MAE), root mean square error (RMSE), and correlation value at each probe
location. (b) Overall performance on the scatter plot between predicted and measured soil moisture data compared to the 1 : 1 line (dashed
line).

Figure 6. Performance of Australian models for soil moisture prediction in Tasmania based on multilayer perceptron (MLP) and long-short
term memory (LSTM) approaches: (a) overall comparison between predicted and observed soil moisture data and the (b) distribution of
mean absolute error (MAE), root mean square error (RMSE), and correlation value across 39 stations in Tasmania.

Tasmania was quite similar. However, the LSTM model with
transfer learning had a more consistent performance for the
surface and subsurface layer, as shown by the upper quartile
of the box plot for errors. The results indicate that most sta-
tions had error values less than 0.08 m3 m−3 for surface and
subsurface predictions.

Comparing the performance of the six models for predict-
ing SM in Tasmania, it becomes evident that the LSTM with
the transfer learning approach (LSTM-TL) was optimal. We
further analyzed its performance according to station loca-
tions, time series, land cover types, and seasonal time.
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Figure 7. Performance of Tasmanian models for soil moisture prediction in Tasmania based on multilayer perceptron (MLP) and long-short
term memory (LSTM) approaches: (a) overall comparison between predicted and observed soil moisture data and the (b) distribution of
mean absolute error (MAE), root mean square error (RMSE), and correlation value across 39 stations in Tasmania based on a leave-one-out
cross-validation scheme.

Figure 8. Performance of transfer learning models for soil moisture prediction in Tasmania based on multilayer perceptron (MLP) and long-
short term memory (LSTM) approaches: (a) overall comparison between predicted and observed soil moisture data and the (b) distribution of
mean absolute error (MAE), root mean square error (RMSE), and correlation value across 39 stations in Tasmania based on a leave-one-out
cross-validation scheme.

The spatial distribution of the performance of the LSTM-
TL model using different stations is shown in Fig. 9. Stations
with high correlation values (> 0.74) mostly corresponded
to lower error, with RMSE lower than 0.087 m3 m−3. Mean-
while, stations with large errors (RMSE> 0.106m3 m−3)
had moderate to high correlation coefficients (> 0.55). In ad-
dition, the stations with the lowest correlations had RMSE
ranging from 0.068 to 0.106 m3 m−3.

Time series predictions for six typical stations compared
to SMAP and observed data are plotted in Fig. 10. These

cases show that our model predictions follow the dynamics of
the observed data, with correlation coefficients varying from
0.43–0.84 for the surface layer and 0.35–0.85 for the sub-
surface layer. Our moisture predictions were relatively lower
than the value from SMAP, yet the predictions better matched
the observed data.

Table 3 highlights our model performance based on
seasonal variations. The most accurate performance was
achieved during summer, with an average correlation coeffi-
cient up to 0.72 and RMSE values around 0.06 m3 m−3. In

https://doi.org/10.5194/soil-11-287-2025 SOIL, 11, 287–307, 2025



298 M. T. Widyastuti et al.: Mapping near-real-time soil moisture dynamics over Tasmania

Figure 9. Spatial distribution of the performance of the long short-term memory (LSTM) model with transfer learning for predicting soil
moisture at each station in Tasmania. The evaluations are an average of (a) root mean square error (RMSE) and (b) Pearson’s correlation
coefficient across the surface (0–30 cm) and subsurface (30–60 cm) soil layers.

Figure 10. Performance of model results from the leave-one-station-out validation scheme for six stations with the longest observation
periods: op55447, op55450, op55457, op57641, op57644, and op59622. The right panel shows the prediction of the entire series (red dots)
compared to SMAP predictions (blue dots) and the observed data (black line). Note that SMAP predictions in the surface panel represent
0–5 cm, while the subsurface panel refers to 0–100 cm.
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Table 3. Model performance during four seasons in Tasmania. The
values were aggregated from all stations. MAE: mean absolute er-
ror, RMSE: root mean square error.

Season Soil layer MAE RMSE Correlation
(m3 m−3) (m3 m−3) coefficient

mean SD mean SD mean SD

Autumn 0–30 cm 0.060 0.033 0.071 0.034 0.302 0.296
30–60 cm 0.077 0.039 0.084 0.039 0.242 0.351

Spring 0–30 cm 0.079 0.036 0.082 0.035 0.095 0.227
30–60 cm 0.045 0.040 0.052 0.038 0.098 0.300

Summer 0–30 cm 0.058 0.021 0.065 0.023 0.674 0.322
30–60 cm 0.066 0.032 0.075 0.031 0.723 0.211

Winter 0–30 cm 0.067 0.037 0.072 0.037 0.368 0.294
30–60 cm 0.070 0.044 0.075 0.043 0.275 0.393

other seasons, our model performed at MAE values rang-
ing from 0.045 to 0.079 m3 m−3, with RMSE at 0.052 to
0.082 m3 m−3. Spring was identified as having a low correla-
tion in both soil layers.

We also checked how our selected model performs in
different land use categories (Table 4). Overall, the pre-
diction consistently resulted in error values of 0.06 up to
0.09 m3 m−3 and correlation coefficients between 0.51 and
0.76 for both soil layers. Soil moisture prediction on the
pasture area performed best, with the lowest error values
(RMSE= 0.07m3 m−3) and a high correlation coefficient
(0.62). Forested area (with fewer stations) had the lowest
correlation (0.550 and 0.623 for the surface and subsurface),
followed by savannah (0.598 and 0.511 for the surface and
subsurface).

3.4 Spatial pattern of predicted soil moisture

We then applied our calibrated models to predict soil mois-
ture for the whole area of Tasmania at a daily time step and
aggregated the values for each season (Fig. 11). High soil
moisture occurred in the western part of Tasmania and small
forested areas in the northeast. However, the western part
was predicted as the driest area at the subsurface layer in
all seasons. Our models estimated subsurface soil moisture
at 0.01 to 0.55 m3 m−3 during the summer–autumn and up
to 0.62 m3 m−3during the winter–spring. The average on the
standard deviation maps varied up to 0.08 m3 m−3 for both
soil layer predictions. In most of the high-moisture-level ar-
eas (near 1 m3 m−3), the deviation maps show the lowest
value for surface moisture prediction. Higher deviation was
identified in the central highland areas and hilly regions in
the east and northeast. Meanwhile, the deviation map for sub-
surface soil moisture prediction depicts a higher uncertainty
model over the western part of the state.

An example of the 80 m resolution soil moisture maps for
each soil layer and their uncertainty values over an area in the
eastern part of Tasmania is given in Fig. 12. The Fingal Val-

ley region encompasses agricultural lands with irrigation sys-
tems, including identifiable center pivot systems, distributed
along the river between mountainous areas. The surface soil
moisture map effectively captured topographical variations,
as indicated by distinct color differences between the moun-
tainous areas and their surroundings. Agricultural areas had
lower moisture values (orange color), whereas higher values
were predicted in mountainous areas. The uncertainty val-
ues were mostly less than 0.025 m3 m−3, except for the high-
elevation area. Similarly, subsurface predictions can repre-
sent the spatial variation of the area of interest, particularly
in irrigation areas and rivers. The uncertainty was more var-
ied than the surface prediction, with no clear spatial pattern.

3.5 Feature contribution

The importance of each input variable for the LSTM transfer
learning model outputs was analyzed using the SHAP value.
The violin plot (Fig. 13) summarizes three pieces of informa-
tion: (1) overall comparisons in feature importance, (2) the
distribution and variability of the SHAP value of each fea-
ture, and (3) the value of the feature shown by color scaling
from low to high. Based on the testing dataset (n= 884), it
indicates that the SMAP dataset was the most important fea-
ture in predicting both surface and subsurface soil moisture.
These were followed by LU/LC (land use and land cover)
and soil properties (SOC and clay content). Elevation and
weather data, including temperature and rainfall, were the
least important covariates in our models. The SMAP surface
had the widest range of SHAP values varying from −0.25
to 0.35. A high density of SMAP SM surface occurred in
negative SHAP values, implying a reduction of the model
output. High soil moisture in the SMAP surface gave addi-
tional value to the output prediction. However, the SMAP
root zone had a reverse pattern, with a fair distribution of
SHAP values ranging from −0.2 to 0.2; high soil moisture
in the SMAP root zone negatively impacted the model out-
put, and vice versa. Other covariates had less impact on the
model output with SHAP values within −0.1 to 0.1. Land
use and daily minimum air temperature predominantly gave
a positive impact on the output.

4 Discussion

4.1 MLP and LSTM approaches

We compared the MLP and LSTM as modeling algorithms to
predict surface and subsurface soil moisture simultaneously.
Our results revealed that MLP outperformed LSTM when di-
rectly applied to the Australian models to predict Tasmania
soil moisture, yet contradictory results were found when us-
ing TL models. Nevertheless, both algorithms with the TL
approach were equally good in predicting SM (Fig. 8). In
the case of Australian models, the LSTM only records the
“memory” of how the previous moisture and rainfall change
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Table 4. Performance of the selected model for predicting soil moisture in both soil layers aggregated by land use and land cover class (mean
and standard deviation). MAE: mean absolute error, RMSE: root mean square error, n: number of stations.

Land use Soil layer MAE RMSE Correlation n

category (m3 m−3) (m3 m−3)

mean SD mean SD mean SD

Forest 0–30 cm 0.087 0.035 0.093 0.031 0.550 0.234 3
30–60 cm 0.080 0.010 0.083 0.012 0.623 0.176 3

Irrigation 0–30 cm 0.063 0.039 0.072 0.038 0.769 0.151 11
30–60 cm 0.077 0.049 0.085 0.050 0.736 0.149 11

Pasture 0–30 cm 0.059 0.023 0.069 0.027 0.657 0.244 13
30–60 cm 0.060 0.030 0.072 0.032 0.576 0.317 13

Savannah 0–30 cm 0.065 0.033 0.074 0.029 0.598 0.206 12
30–60 cm 0.071 0.023 0.079 0.025 0.511 0.399 12

Figure 11. Spatial pattern of seasonal average predicted soil moisture along with its averaged standard deviation in Tasmania for (a) surface
(0–30 cm) and (b) subsurface (30–60 cm) layers using LSTM models with the transfer learning approach. Soil moisture values are in m3 m−3.

daily soil moisture in Australia. When the LSTM is directly
used to process SMAP in Tasmania, the memory of the Aus-
tralian data might not apply in Tasmania, causing a larger
error. In transfer learning, we let the weight of each cell in
LSTM change during a fine-tuning process. This means that
the model can update its memory of daily SMAP according
to the Tasmanian dataset.

We chose the LSTM approach as our final model as it
provides consistent results in predicting surface and subsur-
face soil moisture. Fuentes et al. (2022) compared the perfor-
mance of LSTM and MLP in Australia. Their MLP models
resulted in a slightly lower error compared to the LSTM, yet
they chose the concatenated LSTM over stand-alone MLP
as the recurrent neural networks could capture the delayed

effect of soil moisture change occurring between soil lay-
ers. Another research study comparing LSTM and MLP to
forecast soil moisture up to 6 d ahead in multilayers of soil
showed that the LSTM model consistently resulted in a lower
RMSE value (less than 0.09) (Han et al., 2021). However,
we noted that their study used one output value for each
soil layer, not implementing simultaneous predictions. Ad-
ditionally, the LSTM approach has been widely investigated
to model soil moisture with reliable performances in terms
of spatial, time series, and forecast analysis (Li et al., 2022a;
Park et al., 2023; Fang and Shen, 2020; Datta and Faroughi,
2023).
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Figure 12. Soil moisture predictions and its standard deviation for surface and subsurface layers on 10 September 2023 as an example of an
80 m resolution map. The zoomed panel represents an area of the Fingal Valley.

Figure 13. Aggregated SHAP value for each input dataset representing its impact on surface (left) and subsurface (right) soil moisture
prediction based on the LSTM with the transfer learning model.
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4.2 Comparing Australia, Tasmania, and transfer
learning models

Based on our three scenarios, Australian models (AU) per-
formed the worst regardless of the type of deep learning ap-
proach. High error in AU predictions was likely due to the
differing value distributions between the Australian and Tas-
manian datasets. These results further indicate that the direct
application of deep learning models to other local areas ne-
cessitates careful consideration of data similarity. Compar-
ing the performance of the Tasmanian (TAS) and the transfer
learning (TL) models, TL models resolved the drawback of
the TAS model, which could not fully capture the variations
across Tasmania. As illustrated in Fig. 7, the TAS models
exhibited shortcomings in predicting soil moisture, notably
yielding zero values in some conditions. This outcome sug-
gests that based on data from 39 stations, the model’s training
was inadequate in encompassing the full range of variability
within the testing dataset. Consequently, this limitation hin-
dered the TAS model’s capacity to estimate soil moisture val-
ues when confronted with input values that extend beyond
the scope of the training dataset. The small sample size in
the training dataset may have limited the model’s ability to
generalize over Tasmania’s major landscapes, topographical
features, and soil properties.

To address this issue, the TL models effectively assimi-
lated knowledge from the more extensive Australian dataset,
resulting in a substantial enhancement in the performance
of the TAS model. This approach significantly enhanced the
training of the TL model, as it only required adjustments to
the previously learned weight values to align them with the
characteristics of the Tasmanian dataset. In contrast, the TAS
model required a complete training process from scratch,
with random values assigned to the weights of the DL lay-
ers as the initial conditions.

Adopting a transfer learning approach has shown signifi-
cant potential for enhancing both training effectiveness and
model performance. Our TL models, in particular, exhibited
remarkable performance improvements, surpassing the TAS
models by a factor of 2. This translated to error reductions
of up to 45 % and a 50 % increase in correlation coefficients.
Furthermore, these enhancements were consistently reflected
in the accurate prediction of both surface and subsurface soil
moisture levels.

The efficacy of transfer learning has been explored for sev-
eral applications; for example, Li et al. (2021) demonstrate
that employing transferred DL models based on ERA5-land
data led to a substantial increase in the explained variation
of observed data, exceeding 20 % in some areas of China.
Padarian et al. (2019a) also reported that the transferred lo-
cal model, designed for predicting soil properties from in-
frared spectra, outperformed both individually trained global
and local models.

4.3 Spatiotemporal variation of predicted soil moisture

Soil moisture maps for Tasmania were generated using the
LSTM with transfer learning models (Fig. 12). At an 80 m
resolution, the model’s performance is on par with the orig-
inal models designed for 90 m soil moisture predictions in
Australia (Fuentes et al., 2022). Nevertheless, there were still
some limitations of the spatiotemporal coverage. Some sta-
tions with less than 1 year of observational data could give
strange results when evaluating models’ performance. This
is shown by some stations, mainly with observational data
for less than 3 months, that also have high correlation yet
high error (Fig. 9).

While the map effectively captured the SM variation of the
eastern part of Tasmania, our predictions struggled to capture
the variability of SM in the rocky, mountainous areas in the
western part of Tasmania (Fig. 1). This limitation is due to
the absence of observational data in these remote regions,
meaning that our model lacked the necessary information to
learn and make accurate predictions. The western part of Tas-
mania has soil organic carbon (SOC) content exceeding 20 %
(Kidd et al., 2015a). These peatlands with high SOC levels
surpassed the maximum value of SOC present in our training
dataset, which had a maximum of 15 %. As a consequence,
our models produced very high moisture values (near 1) for
surface predictions and small values (near 0) for subsurface
predictions. The SHAP value indicated that SOC contributed
significantly to the soil moisture prediction in this area, over-
shadowing the contribution of the SMAP dataset (refer to
Fig. 14). Those results align with the low predicted soil thick-
ness (< 50cm) across western Tasmania (Kidd et al., 2015a),
which certainly contributed to the low moisture level in the
subsurface layer.

4.4 Assumptions and limitations

While we demonstrated the ability of the transfer learning
model to accurately predict soil moisture using a leave-one-
station-out testing protocol, we recognize some assumptions
and limitations of the study. We assumed that our reference
data represent actual moisture level values in each soil layer,
but there are possible biases from the interpolation and cal-
ibration procedure on recorded data from the probes. More-
over, the limited number of stations (6 out of 39) that cover
soil moisture dynamics for more than 1 year of records may
not sufficiently capture the overall temporal and spatial varia-
tion of moisture in Tasmania. In addition, we believe that our
cross-validation scheme has not sufficiently covered all the
spatial and temporal dimensions of soil moisture prediction.

4.5 Future work

In this research, we only tested two algorithms, namely
LSTM and MLP, which are combined with transfer learning
techniques. Other DL algorithms could improve soil mois-
ture map accuracy at fine resolutions in Tasmania. For ex-
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Figure 14. An illustration of feature contributions in generating soil moisture prediction in remote areas. The base value represents the
average of model output over the training set specifically for SHAP analysis, while f (x) is the final prediction of the soil moisture value.

ample, the input covariates could include spatial context
represented as images using convolutional neural networks
(Padarian et al., 2019b). Our models could further consider
remote sensing data which are commonly used as covariates
in soil moisture mapping, such as vegetation index and sur-
face temperature (Xu et al., 2022, 2021; Zhao et al., 2022).
Feature selection as the input for models can be explored fur-
ther to derive better model performance.

However, a major consideration in this study lies in the
need to incorporate a greater number of field-measured sta-
tions covering unrepresented regions, thereby enhancing the
spatiotemporal representation of the data. As additional data
become available from the existing soil moisture stations, the
opportunity exists to refine the model even further, enabling
it to capture a more comprehensive range of temporal varia-
tions. In addition, the incorporation of process-based models
would enhance the prediction and also allow for soil moisture
forecasting (Liu et al., 2022; Minasny et al., 2024).

5 Conclusions

This study addresses the issue of using DL for mapping
soil moisture in Tasmania given limited training datasets.
Transfer learning within the deep learning framework has
become a prevalent technique for enhancing model perfor-
mance. This approach was successfully applied to estimate
daily soil moisture levels in Tasmania. In this context, a
pre-trained soil moisture model, derived from the Australian
dataset, serves as the reference.

The transferred models tailored for Tasmania had a supe-
rior performance in predicting soil moisture from the surface
to a depth of 60 cm, all at an 80 m resolution. When com-

bined with the LSTM algorithm, transfer learning effectively
doubles the performance compared to non-transferred mod-
els. These enhancements signified that the transferred LSTM
models can be effectively employed for daily monitoring of
soil moisture levels throughout Tasmania.

The model is now available live at https:
//sdi.tas-hires-weather.cloud.edu.au/shiny/ (last access:
4 April 2025), predicting soil moisture at a daily interval
along with weather information (rainfall, temperature),
enabling land managers and farmers to make informed
decisions on managing soil water for crop production and
environmental monitoring.

Code and data availability. Code for integrating the optimal
model into near-real-time monitoring is available via a GitHub
repository (https://doi.org/10.5281/zenodo.15134144, Widyastuti,
2025, and https://github.com/marliana-widyastuti/sm-map-tas.git).
Data will be made available upon request.
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