Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/soil-11-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions
Laura Kuusemets
CORRESPONDING AUTHOR
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Ülo Mander
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Jordi Escuer-Gatius
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
Alar Astover
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
Karin Kauer
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
Kaido Soosaar
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Mikk Espenberg
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Related authors
No articles found.
Arta Bārdule, Raija Laiho, Jyrki Jauhiainen, Kaido Soosaar, Andis Lazdiņš, Kęstutis Armolaitis, Aldis Butlers, Dovilė Čiuldienė, Andreas Haberl, Ain Kull, Milda Muraškienė, Ivika Ostonen, Gristin Rohula-Okunev, Muhammad Kamil-Sardar, Thomas Schindler, Hanna Vahter, Egidijus Vigricas, and Ieva Līcīte
Biogeosciences, 22, 4241–4259, https://doi.org/10.5194/bg-22-4241-2025, https://doi.org/10.5194/bg-22-4241-2025, 2025
Short summary
Short summary
Estimates of CO2 fluxes from drained nutrient-rich organic soils in croplands and grasslands in the hemiboreal region of Europe revealed that annual net CO2 fluxes were lower than the latest (2014) IPCC (Intergovernmental Panel on Climate Change ) emission factors provided for the whole temperate zone, including the hemiboreal region. The contribution of CO2 fluxes from shallow highly decomposed organic soils, former peatlands that no longer meet the IPCC criterion for organic soils, to total emissions can be high and should not be underestimated.
Alisa Krasnova, Kaido Soosaar, Svyatoslav Rogozin, Dmitrii Krasnov, and Ülo Mander
EGUsphere, https://doi.org/10.5194/egusphere-2025-1280, https://doi.org/10.5194/egusphere-2025-1280, 2025
Short summary
Short summary
Riparian grey alder forests are important for carbon and water cycling, yet their response to climate extremes is understudied. Using ecosystem flux measurements, we found that a mature alder forest in Estonia remained a strong carbon sink, even during drought. In 2018, carbon uptake peaked due to increased spring productivity and reduced summer respiration, accompanied by enhanced water use efficiency. These results highlight the resilience of alder forests and their role in climate mitigation.
Aldis Butlers, Raija Laiho, Andis Lazdiņš, Thomas Schindler, Kaido Soosaar, Jyrki Jauhiainen, Arta Bārdule, Muhammad Kamil-Sardar, Ieva Līcīte, Valters Samariks, Andreas Haberl, Hanna Vahter, Dovilė Čiuldienė, Jani Anttila, and Kęstutis Armolaitis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1032, https://doi.org/10.5194/egusphere-2025-1032, 2025
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated the carbon balance of drained and undrained nutrient-rich forest organic soils, ranging from highly mineralized soils close to the threshold of organic soil definition to deep peat. The soils varied in pH, macronutrient levels, and C:N ratio, which contributed to the observed behavior of the soils demonstrating carbon sink and source dynamics under both drained and undrained conditions.
Sushmita Deb, Mikk Espenberg, Reinhard Well, Michał Bucha, Marta Jakubiak, Ülo Mander, and Dominika Lewicka-Szczebak
EGUsphere, https://doi.org/10.5194/egusphere-2025-754, https://doi.org/10.5194/egusphere-2025-754, 2025
Short summary
Short summary
This study investigates nitrogen cycling in groundwater from agricultural area using organic fertilizer. Research combines isotope and microbial studies to track transformations. High-nitrate samples were incubated with a low addition of ¹⁵N tracer. Results showed a shift from archaeal nitrification to bacterial denitrification under low oxygen with glucose, confirmed by isotope and microbial analysis. Findings offer insights for improving water quality and pollution management.
Aldis Butlers, Raija Laiho, Kaido Soosaar, Jyrki Jauhiainen, Thomas Schindler, Arta Bārdule, Muhammad Kamil-Sardar, Andreas Haberl, Valters Samariks, Hanna Vahter, Andis Lazdiņš, Dovilė Čiuldienė, Kęstutis Armolaitis, and Ieva Līcīte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1397, https://doi.org/10.5194/egusphere-2024-1397, 2024
Preprint archived
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated forest organic soil carbon balance and the impact of drainage. CO2 emissions from soil did not significantly differ, showing a uniform methodology should be applied in national greenhouse gas inventories. Neither drained or undrained soils lost carbon during the study period. However, it was estimated that the negative impact of drainage on carbon sequestration in hemiboreal forest soils is 0.43±2.69 t C ha−1 year−1.
Jaan Pärn, Mikk Espenberg, Kaido Soosaar, Kuno Kasak, Sandeep Thayamkottu, Thomas Schindler, Reti Ranniku, Kristina Sohar, Lizardo Fachín Malaverri, Lulie Melling, and Ülo Mander
EGUsphere, https://doi.org/10.5194/egusphere-2024-24, https://doi.org/10.5194/egusphere-2024-24, 2024
Preprint archived
Short summary
Short summary
Earth’s climate largely depends on greenhouse gas exchange in tropical peatland ecosystems. Its relationships with tropical peatland conditions are poorly understood. We analysed natural peat swamp forests and fens, moderately drained and dry peatlands under a wide variety of land uses. The tropical peat swamp forests were large greenhouse gas sinks while tropical peatlands under moderate and low soil moisture levels emitted carbon dioxide and nitrous oxide.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jaan Pärn, Kaido Soosaar, Thomas Schindler, Katerina Machacova, Waldemar Alegría Muñoz, Lizardo Fachín, José Luis Jibaja Aspajo, Robinson I. Negron-Juarez, Martin Maddison, Jhon Rengifo, Danika Journeth Garay Dinis, Adriana Gabriela Arista Oversluijs, Manuel Calixto Ávila Fucos, Rafael Chávez Vásquez, Ronal Huaje Wampuch, Edgar Peas García, Kristina Sohar, Segundo Cordova Horna, Tedi Pacheco Gómez, Jose David Urquiza Muñoz, Rodil Tello Espinoza, and Ülo Mander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-46, https://doi.org/10.5194/bg-2021-46, 2021
Manuscript not accepted for further review
Short summary
Short summary
Despite alarming forecasts for the Amazonian peat swamp forests, greenhouse gas emissions from the different peat environments have rarely been compared. We measured CO2, CH4 and N2O emissions from the soil in 3 sites around Iquitos, Peru: a pristine swamp forest, a young forest and a slash-and-burn manioc field. We saw a devastating effect on global climate from a slight water-table drawdown in the peat swamp forests, while the manioc field emitted moderate amounts of the greenhouse gases.
Alexander Kmoch, Arno Kanal, Alar Astover, Ain Kull, Holger Virro, Aveliina Helm, Meelis Pärtel, Ivika Ostonen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 83–97, https://doi.org/10.5194/essd-13-83-2021, https://doi.org/10.5194/essd-13-83-2021, 2021
Short summary
Short summary
The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We derived parameters including soil layering, soil texture (clay, silt, and sand content), coarse fragments, and rock content and aggregated and predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic carbon content, available water capacity).
Cited articles
Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., Truu, J., Rees, R. M., and Smith, P.: A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity, Glob. Change Biol., 25, 2530–2543, https://doi.org/10.1111/gcb.14644, 2019.
Abdalla, M., Shang, Z., Espenberg, M., Cui, X., Mander, Ü., and Smith, P.: Impacts of crop type, management and soil quality indicators on background nitrous oxide emissions (BNE) from Chinese croplands: A quantitative review and analysis, Environmental Science: Atmospheres, 2, 563–573, https://doi.org/10.1039/D2EA00033D, 2022.
Akiyama, H. and Tsuruta, H.: Effect of organic matter application on N2O, NO, and NO2 fluxes from an Andisol field, Global Biogeochem. Cy., 17, 1100, https://doi.org/10.1029/2002GB002016, 2003.
Anderson, R., Bayer, P. E., and Edwards, D.: Climate change and the need for agricultural adaptation, Curr. Opin. Plant Biol., 56, 197–202, https://doi.org/10.1016/j.pbi.2019.12.006, 2020.
Astover, A., Szajdak, L. W., and Kõlli, R.: Impact of Long-Term Agricultural Management and Native Forest Ecosystem on the Chemical and Biochemical Properties of Retisols' Organic Matter, in: Bioactive Compounds in Agricultural Soils, edited by: Szajdak, L. W., 149–171, Springer International Publishing, https://doi.org/10.1007/978-3-319-43107-9_7, 2016.
Ayiti, O. E. and Babalola, O. O.: Factors Influencing Soil Nitrification Process and the Effect on Environment and Health, Frontiers in Sustainable Food Systems, 6, 821994, https://doi.org/10.3389/fsufs.2022.821994, 2022.
Bai, R., Fang, Y.-T., Mo, L.-Y., Shen, J.-P., Song, L.-L., Wang, Y.-Q., Zhang, L.-M., and He, J.-Z.: Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils, Soil Ecol. Lett., 2, 255–267, https://doi.org/10.1007/s42832-020-0050-6, 2020.
Beeckman, F., Motte, H., and Beeckman, T.: Nitrification in agricultural soils: Impact, actors and mitigation, Curr. Opin. Biotech., 50, 166–173, https://doi.org/10.1016/j.copbio.2018.01.014, 2018.
Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: Modeling global annual N2O and NO emissions from fertilized fields, Global Biogeochem. Cy., 16, 28-1–28-9, https://doi.org/10.1029/2001GB001812, 2002.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: How well do we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Cameron, K. C., Di, H. J., and Moir, J. L.: Nitrogen losses from the soil/plant system: A review, Ann. Appl. Biol., 162, 145–173, https://doi.org/10.1111/aab.12014, 2013.
Castellano-Hinojosa, A., Correa-Galeote, D., González-López, J., and Bedmar, E. J.: Effect of nitrogen fertilisers on nitrous oxide emission, nitrifier and denitrifier abundance and bacterial diversity in closed ecological systems, Appl. Soil Ecol., 145, 103380, https://doi.org/10.1016/j.apsoil.2019.103380, 2020.
Chadwick, D. R., Pain, B. F., and Brookman, S. K. E.: Nitrous Oxide and Methane Emissions following Application of Animal Manures to Grassland, J. Environ. Qual., 29, 277–287, https://doi.org/10.2134/jeq2000.00472425002900010035x, 2000.
Chaturvedi, I.: Effects of different nitrogen levels on growth, yield and nutrient uptake of wheat (Triticum aestivum L.), Int. J. Agr. Sci., 2, 372–374, 2006.
Clark, I. M., Buchkina, N., Jhurreea, D., Goulding, K. W. T., and Hirsch, P. R.: Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment, Philos. T. R. Soc. B, 367, 1235–1244, https://doi.org/10.1098/rstb.2011.0314, 2012.
Coskun, D., Britto, D. T., Shi, W., and Kronzucker, H. J.: Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition, Nat. Plants, 3, 17074, https://doi.org/10.1038/nplants.2017.74, 2017.
Csitári, G., Tóth, Z., and Kökény, M.: Effects of Organic Amendments on Soil Aggregate Stability and Microbial Biomass in a Long-Term Fertilization Experiment (IOSDV), Sustainability, 13, 9769, https://doi.org/10.3390/su13179769, 2021.
Cui, P., Fan, F., Yin, C., Song, A., Huang, P., Tang, Y., Zhu, P., Peng, C., Li, T., Wakelin, S. A., and Liang, Y.: Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes, Soil Biol. Biochem., 93, 131–141, https://doi.org/10.1016/j.soilbio.2015.11.005, 2016.
Cvetkov, M. and Tajnšek, A.: Soil organic matter changes according to the application of organic and mineral fertilizers within long-term experiments, Acta Agriculturae Slovenica, 93, 311–320, https://doi.org/10.14720/aas.2009.93.3.15076, 2009.
Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., Von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., and Wagner, M.: Complete nitrification by Nitrospira bacteria, Nature, 528, 504–509, https://doi.org/10.1038/nature16461, 2015.
Dang, D. M., Macdonald, B., Warneke, S., and White, I.: Available carbon and nitrate increase greenhouse gas emissions from soils affected by salinity, Soil Res., 55, 47–57, https://doi.org/10.1071/SR16010, 2016.
Davidson, E. A. and Kanter, D.: Inventories and scenarios of nitrous oxide emissions, Environ. Res. Lett., 9, 105012, https://doi.org/10.1088/1748-9326/9/10/105012, 2014.
DeForest, J. L. and Otuya, R. K.: Soil nitrification increases with elevated phosphorus or soil pH in an acidic mixed mesophytic deciduous forest, Soil Biol. Biochem., 142, 107716, https://doi.org/10.1016/j.soilbio.2020.107716, 2020.
Del Grosso, S. J., Parton, W. J., Mosier, A. R., Ojima, D. S., Kulmala, A. E., and Phongpan, S.: General model for N2O and N2 gas emissions from soils due to dentrification, Global Biogeochem. Cy., 14, 1045–1060, https://doi.org/10.1029/1999GB001225, 2000.
Ehleringer, J. R.: Photosynthesis and Photorespiration: Biochemistry, Physiology, and Ecological Implications, HortScience, 14, 217–222, https://doi.org/10.21273/HORTSCI.14.3.217, 1979.
Ehleringer, J. R. and Cerling, T. E.: C3 and C4 photosynthesis, edited by: Munn, T., Encyclopedia of Global Environmental Change, John Wiley & Sons, Ltd, Chichester, 186–190, 2002.
Engel, R., Liang, D. L., Wallander, R., and Bembenek, A.: Influence of urea fertiliser placement on nitrous oxide production from a silt loam soil, J. Environ. Qual., 39, 115–125, https://doi.org/10.2134/jeq2009.0130, 2010.
Escuer-Gatius, J., Lõhmus, K., Shanskiy, M., Kauer, K., Vahter, H., Mander, Ü., Astover, A., and Soosaar, K.: Critical points for closing the carbon and nitrogen budgets in a winter rapeseed field, Nutr. Cycl. Agroecosys., 122, 289–311, https://doi.org/10.1007/s10705-022-10202-8, 2022.
Espenberg, M., Truu, M., Mander, Ü., Kasak, K., Nõlvak, H., Ligi, T., Oopkaup, K., Maddison, M., and Truu, J.: Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils, Sci. Rep., 8, 4742, https://doi.org/10.1038/s41598-018-23032-y, 2018.
FAO: The future of food and agriculture: Trends and challenges, Food and Agriculture Organization of the United Nations, FAO, http://www.fao.org/3/a-i6583e.pdf (last access: 9 January 2024), 2017.
Frasier, I., Noellemeyer, E., Fernández, R., and Quiroga, A.: Direct field method for root biomass quantification in agroecosystems, MethodsX, 3, 513–159, https://doi.org/10.1016/j.mex.2016.08.002, 2016.
Graf, D. R. H., Jones, C. M., and Hallin, S.: Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions, PLoS One, 9, e114118, https://doi.org/10.1371/journal.pone.0114118, 2014.
Gu, J., Zheng, X., Wang, Y., Ding, W., Zhu, B., Chen, X., Wang, Y., Zhao, Z., Shi, Y., and Zhu, J.: Regulatory effects of soil properties on background N2O emissions from agricultural soils in China, Plant Soil, 295, 53–65, https://doi.org/10.1007/s11104-007-9260-2, 2007.
Haj-Amor, Z., Araya, T., Kim, D-G, Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., and Lal, R.: Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review, Sci. Total Environ., 843, 156946, https://doi.org/10.1016/j.scitotenv.2022.156946, 2022.
Harter, J., Krause, H.-M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A., and Behrens, S.: Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community, ISME J., 8, 660–674, https://doi.org/10.1038/ismej.2013.160, 2014.
Haynes, R. J. and Francis, G. S.: Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions, J. Soil Sci., 44, 665–675, https://doi.org/10.1111/j.1365-2389.1993.tb02331.x, 1993.
Hibberd, J. M. and Quick, W. P.: Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants, Nature, 415, 451–454, https://doi.org/10.1038/415451a, 2002.
Hijbeek, R., van Ittersum, M. K., ten Berge, H. F. M., Gort, G., Spiegel, H., and Whitmore, A. P.: Do organic inputs matter – a meta-analysis of additional yield effects for arable crops in Europe, Plant Soil, 411, 293–303, https://doi.org/10.1007/s11104-016-3031-x, 2017.
Hu, H.-W., Chen, D., and He, J.-Z.: Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates, FEMS Microbiol. Rev., 39, 729–749, https://doi.org/10.1093/femsre/fuv021, 2015.
Hutchinson, G. L. and Livingston, G. P.: Use of chamber systems to measure trace gas fluxes, Asa. Spec. P., 55, 63–78, https://doi.org/10.2134/asaspecpub55.c4, 1993.
International Organization for Standardization: Determination of total nitrogen content by dry combustion (“elemental analysis”), ISO Standard No. 13878:1998, https://www.iso.org/standard/23117.html (last access: 9 January 2024), 1998.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
IUSS WG WRB: World Reference Base for Soil Resources 2014 (update 2015), IUSS Working Group WRB, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Report No. 106, Rome, Food and Agriculture Organisation of the United Nations, FAO, https://openknowledge.fao.org/server/api/core/ (last access: 18 December 2024), 2015.
Jones, C. M., Spor, A., Brennan, F. P., Breuil, M-C., Bru, D., Lemanceau, P., Griffiths, B., Hallin, S., and Philippot, L.: Recently identified microbial guild mediates soil N2O sink capacity, Nature Climate Change, 4, 801–805, https://doi.org/10.1038/nclimate2301, 2014.
Joshi, J., Stocker, B. D., Hofhansl, F., Zhou, S., Dieckmann, U., and Prentice, I. C.: Towards a unified theory of plant photosynthesis and hydraulics, Nat. Plants, 8, 1304–1316, https://doi.org/10.1038/s41477-022-01244-5, 2022.
Kaiser, E.-A. and Ruser, R.: Nitrous oxide emissions from arable soils in Germany—An evaluation of six long-term field experiments, J. Plant Nutr. Soil Sc., 163, 249–259, https://doi.org/10.1002/1522-2624(200006)163:3<249::AID-JPLN249>3.0.CO;2-Z, 2000.
Káš, M., Haberle, J., and Matějková, S.: Crop productivity under increasing nitrogen rates and different organic fertilization systems in a long-term IOSDV experiment in the Czech Republic, Arch. Agron. Soil Sci., 56, 451–461, https://doi.org/10.1080/03650340903369392, 2010.
Kassambara, A. and Mundt, F.: Factoextra: Extract and Visualise the Results of Multivariate Data Analyses. R Package Version 1.0.7, https://CRAN.R-project.org/package=factoextra (last access: 18 August 2023), 2020.
Kazmi, F. A., Espenberg, M., Pärn, J., Masta, M., Ranniku, R., Thayamkottu, S., and Mander, Ü.: Meltwater of freeze-thaw cycles drives N2O-governing microbial communities in a drained peatland forest soil, Biol. Fert. Soils, https://doi.org/10.1007/s00374-023-01790-w, online first, 2023.
Kim, D.-G., Giltrap, D., and Hernandez-Ramirez, G.: Background nitrous oxide emissions in agricultural and natural lands: A meta-analysis, Plant Soil, 373, 17–30, https://doi.org/10.1007/s11104-013-1762-5, 2013.
Koch, H., van Kessel, M. A. H. J., and Lücker, S.: Complete nitrification: Insights into the ecophysiology of comammox Nitrospira, Appl. Microbiol. Biot., 103, 177–189, https://doi.org/10.1007/s00253-018-9486-3, 2019.
Kursa, M. B. and Rudnicki, W. R.: Feature Selection with the Boruta Package, J. Stat. Softw., 36, 1–13, https://doi.org/10.18637/jss.v036.i11, 2010.
Kuypers, M. M. M., Marchant, H. K., and Kartal, B.: The microbial nitrogen-cycling network, Nat. Rev. Microbiol., 16, 263–276, https://doi.org/10.1038/nrmicro.2018.9, 2018.
Lazcano, C., Zhu-Barker, X., and Decock, C.: Effects of Organic Fertilizers on the Soil Microorganisms Responsible for N2O Emissions: A Review, Microorganisms, 9, 983, https://doi.org/10.3390/microorganisms9050983, 2021.
Lê, S., Josse, J., and Husson, F.: FactoMineR: An R Package for Multivariate Analysis, J. Stat. Softw., 25, 1–18, https://doi.org/10.18637/jss.v025.i01, 2008.
Ledvinka, H. D., Toghyani, M., Tan, D. K. Y., Khoddami, A., Godwin, I. D., and Liu, S. Y.: The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production, Agriculture, 12, 1913, https://doi.org/10.3390/agriculture12111913, 2022.
Li, C., Hu, H.-W., Chen, Q.-L., Chen, D., and He, J.-Z.: Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers, Soil Biol. Biochem., 138, 107609, https://doi.org/10.1016/j.soilbio.2019.107609, 2019.
Liu, S., Wang, J. J., Tian, Z., Wang, X., and Harrison, S.: Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilisation strategies, J. Environ. Sci., 57, 196–210, https://doi.org/10.1016/j.jes.2017.02.014, 2017.
Estonian Land Board: https://xgis.maaamet.ee/xgis2/page/app/maainfo (last access: 9 January 2024), 2023.
Mengel, K. and Kirkby, E. A.: Principles of plant nutrition, 5th edn., Kluwer Academic Publishers, the Netherlands, https://doi.org/10.1007/978-94-010-1009-2, 2001.
Nardi, P., Laanbroek, H. J., Nicol, G. W., Renella, G., Cardinale, M., Pietramellara, G., Weckwerth, W., Trinchera, A., Ghatak, A., and Nannipieri, P.: Biological nitrification inhibition in the rhizosphere: Determining interactions and impact on microbially mediated processes and potential applications, FEMS Microbiol. Rev., 44, 874–908, https://doi.org/10.1093/femsre/fuaa037, 2020.
Pandey, C. B., Kumar, U., Kaviraj, M., Minick, K. J., Mishra, A. K., and Singh, J. S.: DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems, Sci. Total Environ., 738, 139710, https://doi.org/10.1016/j.scitotenv.2020.139710, 2020.
Pandey, R. K., Maranville, J. W., and Bako, Y.: Nitrogen Fertilizer Response and Use Efficiency for Three Cereal Crops in Niger, Commun. Soil Sci. Plan., 32, 1465–1482, https://doi.org/10.1081/CSS-100104206, 2001.
Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R., Ojima, D. S., and Schimel, D. S.: Generalized model for NOx and N2O emissions from soils, J. Geophys. Res.-Atmos., 106, 17403–17419, https://doi.org/10.1029/2001JD900101, 2001.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P.: Climatesmart soils, Nature, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Philippot, L., Hallin, S., and Schloter, M.: Ecology of Denitrifying Prokaryotes in Agricultural Soil, Adv. Agron., 96, 249–305, https://doi.org/10.1016/S0065-2113(07)96003-4, 2007.
Poole, C. F.: Ionization-based detectors for gas chromatography, J. Chromatogr. A, 1421, 137–153, https://doi.org/10.1016/j.chroma.2015.02.061, 2015.
Putz, M., Schleusner, P., Rütting, T., and Hallin, S.: Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil, Soil Biol. Biochem., 123, 97–104, https://doi.org/10.1016/j.soilbio.2018.05.006, 2018.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Rayne, N. and Aula, L.: Livestock Manure and the Impacts on Soil Health: A Review, Soil Syst., 4, 64, https://doi.org/10.3390/soilsystems4040064, 2020.
Republic of Estonia Environment Agency: Meteorological Yearbook of Estonia 2022, https://kaur.maps.arcgis.com/sharing/rest/content/items/1c8b8f59e7184619b4455b2beceacd6a/data (last access: 18 August 2023), 2023.
Robertson, G. P. and Vitousek, P. M.: Nitrogen in Agriculture: Balancing the Cost of an Essential Resource, Annu. Rev. Env. Resour., 34, 97–125, https://doi.org/10.1146/annurev.environ.032108.105046, 2009.
Rütting, T., Boeckx, P., Müller, C., and Klemedtsson, L.: Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle, Biogeosciences, 8, 1779–1791, https://doi.org/10.5194/bg-8-1779-2011, 2011.
Sainju, U. M.: Determination of nitrogen balance in agroecosystems, MethodsX, 4, 199–208, https://doi.org/10.1016/j.mex.2017.06.001, 2017.
Saud, S., Wang, D., and Fahad, S.: Improved Nitrogen Use Efficiency and Greenhouse Gas Emissions in Agricultural Soils as Producers of Biological Nitrification Inhibitors, Front. Plant Sci., 13, 854195, https://doi.org/10.3389/fpls.2022.854195, 2022.
Schaffasz, A., Windpassinger, S., Friedt, W., Snowdon, R., and Wittkop, B.: Sorghum as a Novel Crop for Central Europe: Using a Broad Diversity Set to Dissect Temperate-Adaptation, Agronomy, 9, 535, https://doi.org/10.3390/agronomy9090535, 2019.
Schimel, J. P.: Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes, Annu. Rev. Ecol. Evol. S., 49, 409–432, https://doi.org/10.1146/annurev-ecolsys-110617-062614, 2018.
Serret, M. D., Ortiz-Monasterio, I., Pardo, A., and Araus, J. L.: The effects of urea fertilisation and genotype on yield, nitrogen use efficiency, δ15N and δ13C in wheat, Ann. Appl. Biol., 153, 243–257, https://doi.org/10.1111/j.1744-7348.2008.00259.x, 2008.
Shcherbak, I., Millar, N., and Robertson, G. P.: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen, P. Natl. Acad. Sci. USA, 111, 9199–9204, https://doi.org/10.1073/pnas.1322434111, 2014.
Shen, H., Shiratori, Y., Ohta, S., Masuda, Y., Isobe, K., and Senoo, K.: Mitigating N2O emissions from agricultural soils with fungivorous mites, ISME J., 15, 8, https://doi.org/10.1038/s41396-021-00948-4, 2021.
Sosulski, T., Szara, E., Stępien, W., and Szymańska, M.: Nitrous oxide emissions from the soil under different fertilization systems on a long-term experiment, Plant Soil Environ., 60, 481–488, https://doi.org/10.17221/943/2013-PSE, 2014.
Spiegel, H., Dersch, G., Baumgarten, A., and Hösch, J.: The International Organic Nitrogen Long-term Fertilisation Experiment (IOSDV) at Vienna after 21 years, Arch. Agron. Soil Sci., 56, 405–420, https://doi.org/10.1080/03650341003645624, 2010.
Stevens, N., Bond, W., Feurdean, A., and Lehmann, C. E. R.: Grassy Ecosystems in the Anthropocene, Annu. Rev. Environ. Res., 47, 261–289, https://doi.org/10.1146/annurev-environ-112420-015211, 2022.
Stremińska, M. A., Felgate, H., Rowley, G., Richardson, D. J., and Baggs, E. M.: Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria, Env. Microbiol. Rep., 4, 66–71, https://doi.org/10.1111/j.1758-2229.2011.00302.x, 2012.
Tajnšek, A., Čergan, Z., and Čeh, B.: Results of the long-term field experiment IOSDV Jable at the beginning of the 21st century, Arch. Agron. Soil Sci., 59, 1099–1108, https://doi.org/10.1080/03650340.2012.697996, 2013.
Tang, Y., Yu, G., Zhang, X., Wang, Q., Ge, J., and Liu, S.: Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils, Appl. Soil Ecol., 124, 218–228, https://doi.org/10.1016/j.apsoil.2017.10.029, 2018.
Thapa, R., Chatterjee, A., Wick, A., and Butcher, K.: Carbon Dioxide and Nitrous Oxide Emissions from Naturally Occurring Sulfate-Based Saline Soils at Different Moisture Contents, Pedosphere, 27, 868–876, https://doi.org/10.1016/S1002-0160(17)60453-3, 2017.
Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M., and Richardson, D. J.: Biological sources and sinks of nitrous oxide and strategies to mitigate emissions, Philos. T. R. Soc. B, 367, 1157–1168, https://doi.org/10.1098/rstb.2011.0415, 2012.
Tian, X., Engel, B. A., Qian, H., Hua, E., Sun, S., and Wang, Y.: Will reaching the maximum achievable yield potential meet future global food demand?, J. Clean. Prod., 294, 126285, https://doi.org/10.1016/j.jclepro.2021.126285, 2021.
Tilman, D., Balzer, C., Hill, J., and Befort, B. L.: Global food demand and the sustainable intensification of agriculture, P. Natl. Acad. Sci. USA, 108, 20260–20264, https://doi.org/10.1073/pnas.1116437108, 2011.
Van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op Den Camp, H. J. M., Kartal, B., Jetten, M. S. M., and Lücker, S.: Complete nitrification by a single microorganism, Nature, 528, 555–559, https://doi.org/10.1038/nature16459, 2015.
Van Reeuwijk, L. P.: Procedures for soil analysis, Technical Paper No. 9, 6th Edn., FAO/ISRIC, Wageningen, the Netherlands, 120 pp., 2002.
Wan, Z., Wang, L., Huang, G., Rasul, F., Awan, M. I., Cui, H., Liu, K., Yu, X., Tang, H., Wang, S., and Xu, H.: NirS and nosZII bacterial denitrifiers as well as fungal denitrifiers are coupled with N2O emissions in long-term fertilized soils, Sci. Total Environ., 897, 165426, https://doi.org/10.1016/j.scitotenv.2023.165426, 2023.
Whetton, R. L., Harty, M. A., and Holden, N. M.: Communicating Nitrogen Loss Mechanisms for Improving Nitrogen Use Efficiency Management, Focused on Global Wheat, Nitrogen, 3, 213–246, https://doi.org/10.3390/nitrogen3020016, 2022.
Yamulki, S., Goulding, K. W. T., Webster, C. P., and Harrison, R. M.: Studies on no and N2O fluxes from a wheat field, Atmos. Environ., 29, 1627–1635, https://doi.org/10.1016/1352-2310(95)00059-8, 1995.
Yao, Z., Zhou, Z., Zheng, X., Xie, B., Mei, B., Wang, R., Butterbach-Bahl, K., and Zhu, J.: Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China, Plant Soil, 327, 315–330, https://doi.org/10.1007/s11104-009-0056-4, 2009.
Yuan, J., Yan, L., Li, G., Sadiq, M., Rahim, N., Wu, J., Ma, W., Xu, G., and Du, M.: Effects of conservation tillage strategies on soil physicochemical indicators and N2O emission under spring wheat monocropping system conditions, Sci. Rep., 12, 7066, https://doi.org/10.1038/s41598-022-11391-6, 2022.
Zaman, M., Nguyen, M. L., Šimek, M., Nawaz, S., Khan, M. J., Babar, M. N., and Zaman, S.: Emissions of Nitrous Oxide (N2O) and Di-Nitrogen (N2) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N2O and N2 Ratios, in: Greenhouse Gases-Emission, Measurement and Management, editedby: Liu, G., InTech Europe: Rijeka, Croatia, https://doi.org/10.5772/32781, 2012.
Zhang, Q., Wu, Z., Zhang, X., Duan, P., Shen, H., Gunina, A., Yan, X., and Xiong, Z.: Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season, Environmental Pollution, 281, 117026, https://doi.org/10.1016/j.envpol.2021.117026, 2021.
Zhou, M., Zhu, B., Brüggemann, N., Dannenmann, M., Wang, Y., and Butterbach-Bahl, K.: Sustaining crop productivity while reducing environmental nitrogen losses in the subtropical wheat-maize cropping systems: A comprehensive case study of nitrogen cycling and balance, Agr. Ecosyst. Environ., 231, 1–14, https://doi.org/10.1016/j.agee.2016.06.022, 2016.
Zhu, W., Wang, C., Hill, J., He, Y., Tao, B., Mao, Z., and Wu, Q.: A missing link in the estuarine nitrogen cycle?: Coupled nitrification-denitrification mediated by suspended particulate matter, Sci. Rep., 8, 2282, https://doi.org/10.1038/s41598-018-20688-4, 2018.
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through an analysis of soil environmental characteristics and microbiomes, soil N2O and N2 emissions as well as biomass production. The results show that wheat grew well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climates.
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional...