Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-451-2024
https://doi.org/10.5194/soil-10-451-2024
Original research article
 | 
04 Jul 2024
Original research article |  | 04 Jul 2024

The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol

Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng

Related authors

Soil is a major contributor to global greenhouse gas emissions and climate change
Peter Martin Kopittke, Ram C. Dalal, Brigid A. McKenna, Pete Smith, Peng Wang, Zhe Weng, Frederik J. T. van der Bom, and Neal W. Menzies
EGUsphere, https://doi.org/10.5194/egusphere-2024-1782,https://doi.org/10.5194/egusphere-2024-1782, 2024
Short summary
Wetting and drying cycles, organic amendments, and gypsum play a key role in structure formation and stability of sodic Vertisols
Sara Niaz, J. Bernhard Wehr, Ram C. Dalal, Peter M. Kopittke, and Neal W. Menzies
SOIL, 9, 141–154, https://doi.org/10.5194/soil-9-141-2023,https://doi.org/10.5194/soil-9-141-2023, 2023
Short summary

Related subject area

Soils and biogeochemical cycling
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024,https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024,https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024,https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Freeze-thaw processes correspond to the protection-loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Ruizhe Wang and Xia Hu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1833,https://doi.org/10.5194/egusphere-2024-1833, 2024
Short summary
Dissolved carbon flow to particulate organic carbon enhances soil carbon sequestration
Qintana Si, Kangli Chen, Bin Wei, Yaowen Zhang, Xun Sun, and Junyi Liang
SOIL, 10, 441–450, https://doi.org/10.5194/soil-10-441-2024,https://doi.org/10.5194/soil-10-441-2024, 2024
Short summary

Cited articles

Adhikari, D. and Yang, Y.: Selective stabilization of aliphatic organic carbon by iron oxide, Scientific Reports, 5, 11214, https://doi.org/10.1038/srep11214, 2015. 
Angst, G., Mueller, K. E., Nierop, K. G. J., and Simpson, M. J.: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter, Soil Biol. Biochem., 156, 108189, https://doi.org/10.1016/j.soilbio.2021.108189, 2021. 
Asano, M. and Wagai, R.: Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol, Geoderma, 216, 62–74, https://doi.org/10.1016/j.geoderma.2013.10.005, 2014. 
Ashagrie, Y., Zech, W., Guggenberger, G., and Mamo, T.: Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia, Soil Till. Res., 94, 101–108, https://doi.org/10.1016/j.still.2006.07.005, 2007. 
Besnard, E., Chenu, C., Balesdent, J., Puget, P., and Arrouays, D.: Fate of particulate organic matter in soil aggregates during cultivation, Eur. J. Soil Sci., 47, 495–503, https://doi.org/10.1111/j.1365-2389.1996.tb01849.x, 1996. 
Download
Short summary
Land use change to cropping is known to greatly reduced organic carbon and nitrogen concentrations, but much remains unknown about the mechanisms influencing their persistence in soil. In a soil from a subtropical Australian cropping system, we demonstrate that organic carbon is protected by mineral associations but not particulate forms. Importantly, we also show that reversion from cropping to pasture or plantation can partially restore this organic carbon.