Articles | Volume 10, issue 1
https://doi.org/10.5194/soil-10-407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the Tea Bag Index approach for different management practices in agroecosystems using long-term field experiments in Austria and Sweden
Maria Regina Gmach
CORRESPONDING AUTHOR
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Martin Anders Bolinder
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Lorenzo Menichetti
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Thomas Kätterer
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Heide Spiegel
Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
Olle Åkesson
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Lantmännen Lantbruk, Mariestadsvägen 104, 54139 Skövde, Sweden
Jürgen Kurt Friedel
Institute of Organic Farming (IFÖL), Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
deceased
Andreas Surböck
Institute of Organic Farming (IFÖL), Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
Agnes Schweinzer
EASY-CERT services GmbH, Königsbrunner Straße 8, 2202 Enzersfeld, Austria
Taru Sandén
Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
Related authors
No articles found.
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and
III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Short summary
In this citizen science project, we combined a standardised litter bag method (Tea Bag Index) with microbiome analysis of bacteria and fungi colonising the teabags to gain a holistic understanding of the carbon degradation dynamics in temperate European soils. Our method focuses only on the active part of the soil microbiome. The results show that about one-third of the prokaryotes and one-fifth of the fungal species (ASVs) in the soil were enriched in response to the presence of fresh OM.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Cited articles
Aichberger, K. and Söllinger, J.: Use of biocompost in agriculture – results of a long-term field trial, in: Realising the ETAP in the management of waste from farms, edited by: Spiegel, H. and Zonno, V., Proceedings of the second AQUAGRIS workshop Vienna, 19 June 2009, Vienna, AGES, 6–8, 2009.
Althuizen, I. H. J., Lee, H., Sarneel, J. M., and Vandvik, V.: Long-term climate regime modulates the impact of short-term climate variability on decomposition in Alpine grassland soils, Ecosystems, 21, 1580–1592, https://doi.org/10.1007/s10021-018-0241-5, 2018.
Andrén, O. and Kätterer, T.: ICBM: The introductory carbon balance model for exploration of soil carbon balances, Ecol. Appl., 7, 1226–1236, https://doi.org/10.2307/2641210, 1997.
Andrén, O., Kätterer, T., and Karlsson, T.: ICBM regional model for estimations of dynamics of agricultural soil carbon pools, Nutr. Cycl. Agroecosys., 70, 231–239, https://doi.org/10.1023/B:FRES.0000048471.59164.ff, 2004.
Andrén, O., Kihara, J., Bationo, A., Vanlauwe, B., and Kätterer, T.: Soil climate and decomposer activity in Sub-Saharan Afrika estimated from standard weather station data: A simple climate index for soil carbon balance calculations, Ambio, 36, 379–386, https://doi.org/10.1579/0044-7447(2007)36[379:scadai]2.0.co;2, 2007.
Arvidsson, J. and Håkansson, I.: Response of different crops to soil compaction–Short-term effects in Swedish field experiments, Soil Till. Res., 138, 56–63, https://doi.org/10.1016/j.still.2013.12.006, 2014.
Barel, J. M., Kuyper, T. W., Paul, J., de Boer, W., Cornelissen, J. H. C., and De Dein, G. B.: Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes, J. Appl. Ecol., 56, 132–143, https://doi.org/10.1111/1365-2664.13261, 2019.
Bergkvist, G. and Öborn, I.: Long-term field experiments in Sweden–what are they designed to study and what could they be used for, Aspects of Applied Biology, 113, 75–85, 2011.
BMLFUW: Richtlinien für die sachgerechte Düngung. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 2017.
Bocock, K. L. and Gilbert, O. J. W.: The disappearance of leaf litter under different woodland conditions, Plant Soil, 9, 179–185, https://doi.org/10.1007/BF01398924, 1957.
Bolinder, M. A., Andrén, O., Kätterer, T., and Parent, L. E.: Soil organic carbon sequestration potential for Canadian Agricultural Ecoregions calculated using the Introductory Carbon Balance Model, Can. J. Soil Sci., 88, 451–460, https://doi.org/10.4141/CJSS07093, 2008.
Bolinder, M. A., Fortin, J. G., Anctil, F., Andrén, O., Kätterer, T., de Jong, R., and Parent, L. E.: Spatial and temporal variability of soil biological activity in the Province of Québec, Canada (45–58 °N, 1960–2009) – calculations based on climate records, Climatic Change, 117, 739–755, https://doi.org/10.1007/s10584-012-0602-6, 2013.
Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., and VandenBygaart, A. J.: An aproach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada, Agr. Ecosyst. Environ., 118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013, 2007.
Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R., and Wood, S. A.: Understanding the dominant controls on litter decomposition, J. Ecol., 104, 229–38, https://doi.org/10.1111/1365-2745.12507, 2016.
Buchholz, J., Querner, P., Paredes, D., Bauer, T., Strauss, P., Guernion, M., Scimia, J., Cluzeau, D., Burel, F., Kratchmer, S., Winter, S., Pothhof, M., and Zaller, J. G.: Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape, Sci. Rep.-UK, 7, 17445, https://doi.org/10.1038/s41598-017-17601-w, 2017.
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R., de Deyn, G. B., Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., and Brussaard, L.: Soil quality – A critical review, Soil Biol. Biochem., 120, 105–125, https://doi.org/10.1016/j.soilbio.2018.01.030, 2018.
Burgess, M. S., Mehuys, G. R., and Madramootoo, C. A.: Decomposition of grain-corn residues (Zea mays L.): A litterbag study under three tillage systems, Can. J. Soil Sci., 82, 127–138, https://doi.org/10.4141/S01-013, 2002.
Carlgren, K. and Mattsson, L.: Swedish soil fertility experiments, Acta Agr. Scand., 51, 49–76, https://doi.org/10.1080/090647101753483787, 2001.
Ceccanti, B., Masciandaro, G., and Macci, C.: Pyrolysis-gas chromatography to evaluate the organic matter quality of a mulched soil, Soil Till. Res., 97, 71–78, https://doi.org/10.1016/j.still.2007.08.011, 2007.
Cleveland, C. C., Reed, S. C., Keller, A. B., Nemergut, D. R., O'Neill, S. P., Ostertag, R., and Vitousek, P. M.: Litter quality versus soil microbial community controls over decomposition: a quantative analysis, Oecologia, 174, 283–294, https://doi.org/10.1007/s00442-013-2758-9, 2014.
Costantini, E. A. C., Castaldini, M., and Diago, M. P.: Effects of soil erosion on agroecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards, J. Environ. Manage., 223, 614–624, https://doi.org/10.1016/j.jenvman.2018.06.065, 2018.
Daebeler, A., Petrová, E., Kinz, E., Grausenburger, S., Berthold, H., Sandén, T., Angel, R., and the high-school students of biology project groups I, II, and III from 2018–2019: Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI), SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, 2022.
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the variability of respiration in terrestrial ecosystems: moving beyond Q10, Glob. Change Biol., 12, 154–164, https://doi.org/10.1111/j.1365-2486.2005.01065.x, 2006.
Djukic, I., Kopfer-Rojas, S., Schmidt, I. K., Larsen, K. S., Beier, C., Berg, B., and Verheyen, K.: Early stage litter decomposition across biomes, Sci. Total Environ., 628–629, 1369–1394, https://doi.org/10.1016/j.scitotenv.2018.01.012, 2018.
Dossou-Yovo, W., Parent, S. E., Ziadi, N., Parent, E., and Parent, L. E.: Tea Bag Index to assess carbon decomposition rate in cranberry agroecosystems, Soil Syst., 5, 44, https://doi.org/10.3390/soilsystems5030044, 2022.
Eshetu, B., Baum, C., and Leinweber, P.: Compost of different stability affects the molecular composition and mineralization of soil organic matter, Open J. Soil Sci., 3, 58–69, https://doi.org/10.4236/ojss.2013.31007, 2013.
Fanin, N., Bezaud, S., Sarneel, J. M., Cecchini, S., Nicolas, M., and Augusto, L.: Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter, Ecosystems, 23, 1004–1018, https://doi.org/10.1007/s10021-019-00452-z, 2020.
Fortin, J. G., Bolinder, M. A., Anctil, F., Kätterer, T., Andrén, O., and Parent, L. E.: Effects of climatic data low-pass filtering on the ICBM temperature- and moisture-based soil biological activity factors in a cool and humid temperate climate, Ecol. Model., 222, 3050–3060, https://doi.org/10.1016/j.ecolmodel.2011.06.011, 2011.
Fu, Y., Jonge, L. W., Greve, M. H., Arthur, E., Moldrup, P., Norgaard, T., Paradelo, M.: Linking litter decomposition to soil physicochemical properties, gas transport, and land use, Soil physics and hydrology, Soil Sci. Soc. Am. J., 86, 34–46, https://doi.org/10.1002/saj2.20356, 2021.
García Palacios, P., Shaw, E. A., Wall, D. H., and Hättenschwiler, S.: Temporal dynamics of biotic and abiotic drivers of litter decomposition, Ecol. Lett., 19, 554–563, https://doi.org/10.1111/ele.12590, 2016.
Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E., and Parton, W. J.: Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition, Glob. Change Biol., 6, 751–765, https://doi.org/10.1046/j.1365-2486.2000.00349.x, 2000.
IPCC: Agriculture, forestry and other land use, IPCC guidelines for national greenhouse gas inventories, edited by:: Eggelston, S., Buendia, L., Miwa, K., Ngara, T., and Tanebe, K., Institute for Global Environmental Strategies, prepared by the National Greenhouse Gas Inventories Programme, Hayama, Kanagawa, Japan, ISBN 4-88788-032-4, 2006.
Janzen, H. H.: Beyond carbon sequestration: soil as conduit of solar energy, Eur. J. Soil Sci., 66, 19–32, https://doi.org/10.1111/ejss.12194, 2015.
Jiao, F., Shi, X. R., Han, F. P., and Yuan Z. Y.: Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands, Sci. Rep.-UK, 6, 19601, https://doi.org/10.1038/srep19601, 2016.
Kainiemi, V., Arvidsson, J., and Kätterer, T.: Effects of autumn tillage and residue management on soil respiration in a long-term field experiment in Sweden, J. Plant Nutr. Soil Sci., 178, 189–198, https://doi.org/10.1002/jpln.201400080, 2015.
Kampichler, C. and Bruckner, A.: The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies, Biol. Rev., 84, 375–89, https://doi.org/10.1111/j.1469-185X.2009.00078.x, 2009.
Kätterer, T. and Andrén, O.: Predicting daily soil temperature profiles in arable soils in cold temperate regions from air temperature and leaf area index, Acta Agr. Scand., 59, 77–86, https://doi.org/10.1080/09064710801920321, 2009.
Kätterer, T. and Bolinder, M. A.: Chapter 15: Agriculture practices to improve soil carbon sequestration in upland soil, in: Understanding and fostering soil carbon sequestration, edited by: Rumpel Dr., C., https://doi.org/10.19103/AS.2022.0106.15, 2022.
Kätterer, T., Bolinder, M. A., Berglund, K., and Kirchmann, H. J.: Strategies for carbon sequestration in agricultural soils in northern Europe, Acta Agr. Scand., 62, 181–198, https://doi.org/10.1080/09064702.2013.779316, 2012.
Kerr, D. D. and Ochsner, T. E.: Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grassland, Soil Sci. Soc. Am. J., 84, 587–596, https://doi.org/10.1002/saj2.20018, 2020.
Keuskamp, J. A., Dingemans, B. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M.: Tea bag index: a novel approach to collect uniform decomposition data across ecosystems, Methods Ecol. Evol., 4, 1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Kuhn, M., Wing J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., and Candan, C.: Classification and Regression Training, R package version 6.0-71, https://CRAN.R-project.org/package=caret (last access: 20 June 2022), 2016.
Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lehtinen, T., Dersch, G., Söllinger, J., Baumgarten, A., Schlatter, N., Aichberger, K., and Spiegel, H.: Long-term amendment of four different compost types on a loamy silt Cambisol: impact on soil organic matter, nutrients and yields, Arch. Agron. Soil Sci., 63, 663–673, https://doi.org/10.1080/03650340.2016.1235264, 2017.
Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Krüger, J., Grignani, C., Zavattaro, L., Costamagna, C., and Spiegel, H.: Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils, Soil Use Manage., 30, 524–538, https://doi.org/10.1111/sum.12151, 2014.
Liao, K., Wu, S., and Zhu, Q.: Can Soil pH Be Used to Help Explain Soil Organic Carbon Stocks?, Clean Soil Air Water, 44, 1685–1689, https://doi.org/10.1002/clen.201600229, 2016.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18–22, https://CRAN.R-project.org/doc/Rnews/Liaw and Wiener (last access: 20 June 2022), 2002.
Lupwayi, N. Z., Clayton, G. W., O'Donovan, J. T., Harker, K. N., Turkington, T. K., and Rice, W. A.: Decomposition of crop residues under conventional and zero tillage, Can. J. Soil Sci., 84, 403–410, https://doi.org/10.4141/S03-082, 2004.
Mekki, A., Aloui, F., and Sayadi, S.: Influence of biowaste compost amendment on soil organic carbon storage under arid climate, Japca J Air Waste Ma, 69, 867–877, https://doi.org/10.1080/10962247.2017.1374311, 2019.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandak, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Mori, T.: Validation of the Tea Bag Index as a standard approach for assessing organic matter decomposition: A laboratory incubation experiment, Ecol. Indic., 141, 109077, https://doi.org/10.1016/j.ecolind.2022.109077, 2022.
Mori, T., Ono, K., and Sakai, Y.: Testing the Tea Bag Index as a potential indicator for assessing litter decomposition in aquatic ecosystems, Ecol. Indic., 152, 110358, https://doi.org/10.1016/j.ecolind.2023.110358, 2023.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models, Soil Biol. Biochem., 59, 72–85, https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Ontl, T. A. and Schulte, L. A.: Soil carbon storage, Nature Education Knowledge, 3, 35, 2012.
Paradelo, R., Virto, I., and Chenu, C.: Net effect of liming on soil organic carbon stocks: A review, Agr. Ecosyst. Environ., 202, 98–107, https://doi.org/10.1016/j.agee.2015.01.005, 2015.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P.: Climate-smart soils, Nature, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Pimentel, L. G., Cherubin, M. R., Oliveira, D. M., Cerri, C. E., and Cerri, C. C.: Decomposition of sugarcane straw: Basis for management decisions for bioenergy production, Biomass Bioenerg., 122, 133–144, https://doi.org/10.1016/j.biombioe.2019.01.027, 2019.
Poeplau, C., Kätterer, T., Bolinder, M. A., Börjesson, G., Berti, A., and Lugato, E.: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments, Geoderma, 237, 246–255, https://doi.org/10.1016/j.geoderma.2014.09.010, 2015.
Poeplau, C., Zopf, D., Greiner, B., Geerts, R., Korvaar, H., Thumm, U., Don, A., Heidkamp, A., and Flessa, H.: Why does mineral fertilization increase soil carbon stocks in temperate grasslands?, Agr. Ecosyst. Environ., 265, 144–155, https://doi.org/10.1016/j.agee.2018.06.003, 2018.
Raiesi, F.: Soil properties and N application effects on microbial activities in two winter wheat cropping systems, Biol. Fert. Soils, 40, 88–92, https://doi.org/10.1007/s00374-004-0741-7, 2004.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Battendury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernández, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., and Walker, B.: Global desertification: Building a science for dryland development, Science, 316, 847–851, https://doi.org/10.1126/science.1131634, 2007.
Saint-Laurent, D. and Arsenault-Boucher, L.: Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol, Geoderma, 358, 113976, https://doi.org/10.1016/j.geoderma.2019.113976, 2020.
Sandén, T., Spiegel H., Stüger, H. P., Schlatter, N., Haslmayr, H. P., Zavattaro, L., Grignani, C., Bechini, L., D'Hose, T., Molendijk, L., Pecio, A., Jarosz, Z., Guzmán, G., Vanderlinden, K., Giráldez, J. V., Mallast, J., and ten Berge, H.: European long-term field experiments: knowledge gained about alternative management practices, Soil Use Manage., 34, 167–176, https://doi.org/10.1111/sum.12421, 2018.
Sandén, T., Spiegel, H., Wenng, H., Schwarz, M., and Sarneel, J. M.: Learning science during teatime: Using a citizen science approach to collect data on litter decomposition in Sweden and Austria, Sustainability, 12, 29–39, https://doi.org/10.3390/su12187745, 2020.
Sandén, T., Wawra, A., Berthold, H., Miloczki, J., Schweinzer, A., Gschmeidler, B., Spiegel, H., Debeljak, M., and Trajanov, A.: TeaTime4Schools: Using Data Mining Techniques to Model Litter Decomposition in Austrian Urban School Soils, Front. Ecol. Evolut., 9, 432, https://doi.org/10.3389/fevo.2021.703794, 2021.
Sievers, T. and Cook, R. L.: Aboveground and root decomposition of cereal rye and hairy vetch cover crops, Soil Sci. Soc. Am. J., 82, 147–155, https://doi.org/10.2136/sssaj2017.05.0139, 2018.
Spiegel, H., Dersch, G., Hösch, J., and Baumgarten, A.: Tillage effects on soil organic carbon and nutrient availability in a long-term field experiment in Austria, Bodenkultur, 58, 1–4, 2007.
Spiegel, H., Mosleitner, T., Sandén, T., and Zaller, J. G.: Effects of two decades of organic and mineral fertilization of arable crops on earthworms and standardized litter decomposition, Die Bodenkultur: Journal of Land Management, Food and Environment, 69, 17–28, https://doi.org/10.2478/boku-2018-0003, 2018.
Stark, C., Condron, L. M., Stewart, A., Di, H. J., and O'Callaghan, M.: Influence of organic and mineral amendments on microbial soil properties and processes, Appl. Soil Ecol., 35, 79–93, https://doi.org/10.1016/j.apsoil.2006.05.001, 2007.
Struijk, M., Whitmore, A. P., Mortimer, S., Shu, X., and Sizmur, T.: Absence of a home-field advantage within a short-rotation arable cropping system, Plant Soil, 26, 1–7, https://doi.org/10.1007/s11104-022-05419-z, 2022.
Tatzber, M., Schlatter, N., Baumgarten, A., Dersch, G., Körner, R., Lehtinen, T., Unger, G., Mifek, E., and Spiegel, H.: KMnO4 determination of active carbon for laboratory routines: three long-term field experiments in Austria, Soil Res., 53, 190–204, https://doi.org/10.1071/SR14200, 2015.
Tiefenbacher, A., Sandén, T., Haslmayr, H-P., Miloczki, J., Wenzel, W., and Spiegel, H.: Optimizing carbon sequestration in croplands: a synthesis, Agronomy, 11, 882, https://doi.org/10.3390/agronomy11050882, 2021.
Tóth, Z., Táncsics, A., Kriszt, B., Kröel-Dulay, G., Ónodi, G., and Hornung, E.: Extreme effects of drought on decomposition of the soil bacterial community and decomposition of plant tissue, Eur. J. Soil Sci., 68, 504–513, https://doi.org/10.1111/ejss.12429, 2017.
Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L., and Phoenix, G. K.: Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes, Glob. Change Biol., 25, 489–503, https://doi.org/10.1111/gcb.14500, 2019.
Tresch, S., Moretti, M., Le-Bayon, R. C., Mäder, P., Zanetta, A., Frey, D., Stehle, B., Kuhn, A., Munyangabe, A., and Fliessbach, A.: Urban soil quality assessment – A comprehensive case study dataset of urban garden soils, Front Environ. Sci., 6, 136, https://doi.org/10.3389/fenvs.2018.00136, 2018.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, Springer-Verlag, 2002.
Werth, M. and Kuzyakov, Y.: 13C Fractionation at the Root-Microorganisms-Soil Interface: A Review and Outlook for Partitioning Studies, Soil Biol. Biochem., 42, 1372–1384, https://doi.org/10.1016/j.soilbio.2010.04.009, 2010.
Zaller, J. G., König, N., Tiefenbacher, A., Muraoka, Y., Querner, P., Ratzenböch, A., Bonkowski, M., and Koller, R.: Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material, BMC Ecol., 16, 37, https://doi.org/10.1186/s12898-016-0092-x, 2016.
Short summary
We evaluated the effect of soil management practices on decomposition at 29 sites (13 in Sweden and 16 in Austria) using long-term field experiments with the Tea Bag Index (TBI) approach. We found that the decomposition rate (k) and stabilization factor (S) were mainly governed by climatic conditions. In general, organic and mineral fertilization increased k and S, and reduced tillage increased S. Edaphic factors also affected k and S.
We evaluated the effect of soil management practices on decomposition at 29 sites (13 in Sweden...