Articles | Volume 10, issue 1
https://doi.org/10.5194/soil-10-407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the Tea Bag Index approach for different management practices in agroecosystems using long-term field experiments in Austria and Sweden
Maria Regina Gmach
CORRESPONDING AUTHOR
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Martin Anders Bolinder
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Lorenzo Menichetti
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Thomas Kätterer
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Heide Spiegel
Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
Olle Åkesson
Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, 75007 Uppsala, Sweden
Lantmännen Lantbruk, Mariestadsvägen 104, 54139 Skövde, Sweden
Jürgen Kurt Friedel
Institute of Organic Farming (IFÖL), Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
deceased
Andreas Surböck
Institute of Organic Farming (IFÖL), Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
Agnes Schweinzer
EASY-CERT services GmbH, Königsbrunner Straße 8, 2202 Enzersfeld, Austria
Taru Sandén
Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
Related authors
No articles found.
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and
III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Short summary
In this citizen science project, we combined a standardised litter bag method (Tea Bag Index) with microbiome analysis of bacteria and fungi colonising the teabags to gain a holistic understanding of the carbon degradation dynamics in temperate European soils. Our method focuses only on the active part of the soil microbiome. The results show that about one-third of the prokaryotes and one-fifth of the fungal species (ASVs) in the soil were enriched in response to the presence of fresh OM.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Short summary
Soils are heterogeneous, which results in a nonuniform spatial distribution of substrates and the microorganisms feeding on them. Our results show that the variability in the spatial distribution of substrates and microorganisms at the pore scale is crucial because it affects how fast substrates are used by microorganisms and thus the decomposition rate observed at the soil core scale. This work provides a methodology to include microscale heterogeneity in soil carbon cycling models.
Moritz Laub, Michael Scott Demyan, Yvonne Funkuin Nkwain, Sergey Blagodatsky, Thomas Kätterer, Hans-Peter Piepho, and Georg Cadisch
Biogeosciences, 17, 1393–1413, https://doi.org/10.5194/bg-17-1393-2020, https://doi.org/10.5194/bg-17-1393-2020, 2020
Short summary
Short summary
Loss of soil carbon to the atmosphere represents a global challenge. We tested an innovative way to reduce the high uncertainty related to turnover of carbon stored in soils. With the use of infrared spectra of soils from model bare fallow systems, we were able to better assess the current state of soil carbon and predict its behavior in overdecadal time spans. In agreement with recent studies, carbon turnover seems faster than earlier assumed, with potential for high loss under mismanagement.
Fernando Esteban Moyano, Nadezda Vasilyeva, and Lorenzo Menichetti
Biogeosciences, 15, 5031–5045, https://doi.org/10.5194/bg-15-5031-2018, https://doi.org/10.5194/bg-15-5031-2018, 2018
Short summary
Short summary
Soils are complex systems storing large quantities of carbon in the form of organic matter. Understanding how climatic drivers such as temperature and moisture influence the decomposition and thus the turnover of this carbon is crucial for predicting feedbacks between climate and soils. This study aims at improving our mechanistic understanding of how these factors interact to drive decomposition and thus modify the capacity of soils to emit or capture atmospheric CO2.
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018, https://doi.org/10.5194/bg-15-2835-2018, 2018
Lorenzo Menichetti, Thomas Kätterer, and Jens Leifeld
Biogeosciences, 13, 3003–3019, https://doi.org/10.5194/bg-13-3003-2016, https://doi.org/10.5194/bg-13-3003-2016, 2016
Short summary
Short summary
Soil organic carbon dynamics are crucial for the global greenhouse gas balance, but their complexity is difficult to model and understand. We therefore often rely on radiocarbon measurements for calibrating models, but their effect on our understanding of the processes is still unclear. We calibrated five model structures on data from a long-term Swiss field experiment in a Bayesian framework to assess the effect of radiocarbon on the parameter and structural uncertainty of a soil carbon model.
C. Poeplau, H. Marstorp, K. Thored, and T. Kätterer
SOIL, 2, 175–184, https://doi.org/10.5194/soil-2-175-2016, https://doi.org/10.5194/soil-2-175-2016, 2016
Short summary
Short summary
We compared two long-term contrasting systems of urban lawn management (frequently cut utility lawn vs. seldomly cut meadow-like lawn) regarding their effect on soil carbon in three Swedish cities. Biomass production was also measured during 1 year. The utility lawns had a significantly higher biomass production, which resulted in a higher soil carbon storage, since clippings were not removed. Soil carbon sequestration outweighed the higher management-related CO2 emissions of the utility lawns.
Christopher Poeplau, Martin A. Bolinder, Holger Kirchmann, and Thomas Kätterer
Biogeosciences, 13, 1119–1127, https://doi.org/10.5194/bg-13-1119-2016, https://doi.org/10.5194/bg-13-1119-2016, 2016
Short summary
Short summary
Nutrients determine the balance between inputs and outputs to and from the soil and thus exert a strong impact on the total soil organic carbon stock. However, for phosphorus, this impact has not been comprehensively addressed. Here we show in 10 different long-term experiments that phosphorus fertilisation can significantly deplete soil carbon stocks, despite a positive impact on plant growth and thus carbon inputs. Thus, soil carbon decay is most likely stimulated even more strongly.
C. Poeplau, M. A. Bolinder, J. Eriksson, M. Lundblad, and T. Kätterer
Biogeosciences, 12, 3241–3251, https://doi.org/10.5194/bg-12-3241-2015, https://doi.org/10.5194/bg-12-3241-2015, 2015
Short summary
Short summary
Soil carbon dynamics of the past 2 decades in Swedish agricultural soils were assessed using three consecutive soil inventories. We found a significant increase in country-wide soil carbon concentrations, which is in contrast to trends reported in neighbouring countries. We explained this by a significant rise of the proportion of leys in Swedish agriculture, which was found to be strongly related to the increase in horse population. Human lifestyle can affect soil carbon.
J. P. van Leeuwen, T. Lehtinen, G. J. Lair, J. Bloem, L. Hemerik, K. V. Ragnarsdóttir, G. Gísladóttir, J. S. Newton, and P. C. de Ruiter
SOIL, 1, 83–101, https://doi.org/10.5194/soil-1-83-2015, https://doi.org/10.5194/soil-1-83-2015, 2015
Related subject area
Soils and managed ecosystems
Luminescence dating approaches to reconstruct the formation of plaggic anthrosols
High capacity of integrated crop–pasture systems to preserve old soil carbon evaluated in a 60-year-old experiment
Soil respiration across a variety of tree-covered urban green spaces in Helsinki, Finland
The limited effect of deforestation on stabilized subsoil organic carbon in a subtropical catchment
The impact of agriculture on tropical mountain soils in the western Peruvian Andes: a pedo-geoarchaeological study of terrace agricultural systems in the Laramate region (14.5° S)
Mulch application as the overarching factor explaining increase in soil organic carbon stocks under conservation agriculture in two 8-year-old experiments in Zimbabwe
The QuantiSlakeTest, measuring soil structural stability by dynamic weighing of undisturbed samples immersed in water
Managing soil organic carbon in tropical agroecosystems: evidence from four long-term experiments in Kenya
Impact of contrasting fertilizer technologies on N dynamics from subsurface bands of “pure” or blended fertilizer applications
Wetting and drying cycles, organic amendments, and gypsum play a key role in structure formation and stability of sodic Vertisols
Quality assessment of meta-analyses on soil organic carbon
The role of long-term mineral and manure fertilization on P species accumulation and phosphate-solubilizing microorganisms in paddy red soils
Soil depth as a driver of microbial and carbon dynamics in a planted forest (Pinus radiata) pumice soil
Transforming living labs into lighthouses: a promising policy to achieve land-related sustainable development
What comes after the Sun? On the integration of soil biogeochemical pre-weathering into microplastic experiments
Transition to conservation agriculture: how tillage intensity and covering affect soil physical parameters
Combining colour parameters and geochemical tracers to improve sediment source discrimination in a mining catchment (New Caledonia, South Pacific Islands)
The effects of sealing on urban soil carbon and nutrients
Application of the governance disruptions framework to German agricultural soil policy
Middle Bronze Age land use practices in the northwestern Alpine foreland – a multi-proxy study of colluvial deposits, archaeological features and peat bogs
Spatial variability in heavy metal concentration in urban pavement joints – a case study
Global concentrations of microplastics in soils – a review
Using constructed soils for green infrastructure – challenges and limitations
Effects of microplastic and microglass particles on soil microbial community structure in an arable soil (Chernozem)
Women's agricultural practices and their effects on soil nutrient content in the Nyalenda urban gardens of Kisumu, Kenya
Effects of golf course management on subsurface soil properties in Iowa
Local soil quality assessment of north-central Namibia: integrating farmers' and technical knowledge
How Alexander von Humboldt's life story can inspire innovative soil research in developing countries
Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands
An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands
The impact of ancestral heath management on soils and landscapes: a reconstruction based on paleoecological analyses of soil records in the central and southeastern Netherlands
Soil archives of a Fluvisol: subsurface analysis and soil history of the medieval city centre of Vlaardingen, the Netherlands – an integral approach
Effect of grassland cutting frequency on soil carbon storage – a case study on public lawns in three Swedish cities
Facing policy challenges with inter- and transdisciplinary soil research focused on the UN Sustainable Development Goals
The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals
Case studies of soil in art
Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils
Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon
An ecosystem approach to assess soil quality in organically and conventionally managed farms in Iceland and Austria
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024, https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary
Short summary
This research applies luminescence dating methods to a plaggic anthrosol in the eastern Netherlands to understand the formation history of the soil. To achieve this, we combined both quartz and feldspar luminescence dating methods. We developed a new method for feldspar to largely avoid the problem occurring from poorly bleached grains by examining two different signals from a single grain. Through our research, we were able to reconstruct the timing and processes of plaggic anthrosol formation.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Esko Karvinen, Leif Backman, Leena Järvi, and Liisa Kulmala
SOIL, 10, 381–406, https://doi.org/10.5194/soil-10-381-2024, https://doi.org/10.5194/soil-10-381-2024, 2024
Short summary
Short summary
We measured and modelled soil respiration, a key part of the biogenic carbon cycle, in different urban green space types to assess its dynamics in urban areas. We discovered surprisingly similar soil respiration across the green space types despite differences in some of its drivers and that irrigation of green spaces notably elevates soil respiration. Our results encourage further research on the topic and especially on the role of irrigation in controlling urban soil respiration.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Fernando Leceta, Christoph Binder, Christian Mader, Bertil Mächtle, Erik Marsh, Laura Dietrich, Markus Reindel, Bernhard Eitel, and Julia Meister
EGUsphere, https://doi.org/10.5194/egusphere-2024-637, https://doi.org/10.5194/egusphere-2024-637, 2024
Short summary
Short summary
This study explores prehispanic terrace agriculture in the southern Peruvian Andes, focusing on soil development and agricultural impacts. It examines soil types and properties, as well as agricultural practices, and traces the region's agricultural development over four phases, highlighting the resilience of ancient communities. The abandonment of terraces wasn't due to soil degradation, emphasizing the sustainability of prehispanic practices and the adaptation to environmental change.
Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, and Rémi Cardinael
SOIL, 10, 151–165, https://doi.org/10.5194/soil-10-151-2024, https://doi.org/10.5194/soil-10-151-2024, 2024
Short summary
Short summary
Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our knowledge of the impact of CA on top- and subsoil soil organic carbon (SOC) stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. Using two long-term experimental sites with different soil types, we found that mulch could increase top SOC stocks, but no tillage alone had a slightly negative impact.
Frédéric Marie Vanwindekens and Brieuc François Hardy
SOIL, 9, 573–591, https://doi.org/10.5194/soil-9-573-2023, https://doi.org/10.5194/soil-9-573-2023, 2023
Short summary
Short summary
Structural stability is critical for sustainable agricultural soil management. We invented a simple test to measure soil structural stability. The QuantiSlakeTest consists of a dynamic weighting of a dried soil sample in water. The test is rapid, does not require expensive equipment and provides a high density of information on soil structural properties. With an open-access programme for data management under development, the test has strong potential for adoption by a large community of users.
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, https://doi.org/10.5194/soil-9-301-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Chelsea K. Janke and Michael J. Bell
SOIL, 9, 243–259, https://doi.org/10.5194/soil-9-243-2023, https://doi.org/10.5194/soil-9-243-2023, 2023
Short summary
Short summary
Fertilizer blends of controlled release and stabilized nitrogen (N) demonstrated temporal N dynamics intermediate of unblended fertilizers. Soil characteristics had a significant impact on N dynamics and the efficacy of the differing enhanced efficiency fertilizer mechanisms to minimize potential N losses. Insights can improve N supply predictability, offering opportunities to improve N use efficiency in cropping systems.
Sara Niaz, J. Bernhard Wehr, Ram C. Dalal, Peter M. Kopittke, and Neal W. Menzies
SOIL, 9, 141–154, https://doi.org/10.5194/soil-9-141-2023, https://doi.org/10.5194/soil-9-141-2023, 2023
Short summary
Short summary
Sodic soils affect ~580 Mha in semi-arid and arid regions of the world. These soils have a weak structure. This laboratory study evaluated treatments to overcome the weak aggregate structure in two sodic Vertisols by applying organic amendments, gypsum, and wetting–drying cycles. We conclude that sodic soils need to be treated with gypsum to flocculate clay and organic amendments (lucerne or chicken manure) to form aggregates, whereas drying cycles aid in small macroaggregates formation.
Julia Fohrafellner, Sophie Zechmeister-Boltenstern, Rajasekaran Murugan, and Elena Valkama
SOIL, 9, 117–140, https://doi.org/10.5194/soil-9-117-2023, https://doi.org/10.5194/soil-9-117-2023, 2023
Short summary
Short summary
The number of meta-analyses in agriculture and soil sciences is continuously rising, but they are often of poor quality. We quantitatively analyzed the quality of 31 meta-analyses studying the effects of different management practices on soil organic carbon (SOC). We found that only one meta-analysis on no tillage/reduced tillage obtained a high score. New or improved meta-analyses on the effects of organic agriculture, biochar, fertilization, and crop diversification on SOC are urgently needed.
Shuiqing Chen, Jusheng Gao, Huaihai Chen, Zeyuan Zhang, Jing Huang, Lefu Lv, Jinfang Tan, and Xiaoqian Jiang
SOIL, 9, 101–116, https://doi.org/10.5194/soil-9-101-2023, https://doi.org/10.5194/soil-9-101-2023, 2023
Short summary
Short summary
Long-term inorganic P (IP) fertilization increased total P (TP), available P (AP) and IP, but manure fertilization accelerated the accumulation of organic P (OP). Long-term mineral fertilization had a negative impact on bacterial communities, while manure fertilization and rhizosphere soil provided more nutrients that improved the separation of bacterial communities. Correspondingly, P indicators such as IP and TP were related to the variation in a phosphate-solubilizing bacterial community.
Alexa K. Byers, Loretta G. Garrett, Charlotte Armstrong, Fiona Dean, and Steve A. Wakelin
SOIL, 9, 55–70, https://doi.org/10.5194/soil-9-55-2023, https://doi.org/10.5194/soil-9-55-2023, 2023
Short summary
Short summary
Forest soils store large amounts of carbon (C), but research has remained focused on C storage in topsoil layers. We investigated changes in forest soil C storage and microbial ecology to 1 m depth. Though absolute soil C content, microbial diversity and microbial biomass declined sharply with depth, 35 % of total soil C was cumulatively stored in subsoil layers. Our findings highlight the importance of including subsoils when calculating the C storage capacity of forest systems.
Johan Bouma
SOIL, 8, 751–759, https://doi.org/10.5194/soil-8-751-2022, https://doi.org/10.5194/soil-8-751-2022, 2022
Short summary
Short summary
In the new
Soil Deal for Europe, land users, mostly farmers, and scientists are required to work jointly in
living labsto develop sustainable land use systems. We propose that threshold values for different ecosystem services in line with the UN Sustainable Development Goals (SDGs) and the EU Green Deal (GD) have to be met to define
lighthousesthat demonstrate successful sustainable land use systems, functioning as inspiring examples. A case study illustrates the important role of soils.
Frederick Büks and Martin Kaupenjohann
SOIL, 8, 373–380, https://doi.org/10.5194/soil-8-373-2022, https://doi.org/10.5194/soil-8-373-2022, 2022
Short summary
Short summary
The adverse effect of microplastic (MP) on soil biota and soil structure depends on MP particle size and surface characteristics. Since weathering plays a major role in the genesis of these, it must be considered in both the analysis of environmental MP and the production of artificial MP for laboratory experiments. This work integrates recent findings on adverse effects and the genesis of its surface characteristics and discusses how to reproduce them to obtain closer-to-nature designer MP.
Felice Sartori, Ilaria Piccoli, Riccardo Polese, and Antonio Berti
SOIL, 8, 213–222, https://doi.org/10.5194/soil-8-213-2022, https://doi.org/10.5194/soil-8-213-2022, 2022
Short summary
Short summary
This study aimed to evaluate the short-term effects of the transition from conventional to conservation agriculture on soil physical properties, by determining the best soil tillage and covering combination, to exploit the benefits of conservation agriculture from the first conversion years. The results proved that, despite an increase in bulk density and penetration resistance, soil under reduced tillage systems with a cover crop improved its hydraulic properties.
Virginie Sellier, Oldrich Navratil, John Patrick Laceby, Cédric Legout, Anthony Foucher, Michel Allenbach, Irène Lefèvre, and Olivier Evrard
SOIL, 7, 743–766, https://doi.org/10.5194/soil-7-743-2021, https://doi.org/10.5194/soil-7-743-2021, 2021
Short summary
Short summary
Open-cast mining increases soil erosion and transfer of sediment in river systems. Providing a methodology to better understand the sediment dynamic of these catchments is essential to manage this pollution. In this study, different tracers such as elemental geochemistry or colour properties were tested to trace and quantify the mining source contributions to the sediment inputs in the Thio River catchment, one of the first areas exploited for nickel mining in New Caledonia (i.e. since 1880).
Roisin O'Riordan, Jess Davies, Carly Stevens, and John N. Quinton
SOIL, 7, 661–675, https://doi.org/10.5194/soil-7-661-2021, https://doi.org/10.5194/soil-7-661-2021, 2021
Short summary
Short summary
As urban populations grow, soil sealing with impermeable surfaces will increase. At present there is limited knowledge on the effect of sealing on soil carbon and nutrients. We found that, in general, sealing reduced soil carbon and nutrients; however, where there were additions due to human activity, soil carbon and nutrients were increased. This suggests that there is a legacy soil carbon store in areas with an industrial past and highlights the influence of artefacts in urban soil.
Bartosz Bartkowski, Stephan Bartke, Nina Hagemann, Bernd Hansjürgens, and Christoph Schröter-Schlaack
SOIL, 7, 495–509, https://doi.org/10.5194/soil-7-495-2021, https://doi.org/10.5194/soil-7-495-2021, 2021
Short summary
Short summary
We use a holistic framework to analyze how agricultural policy in Germany affects the sustainability of soil management. We look at the adequacy of policy targets, objects (i.e. drivers of soil degradation), instruments, assumptions about farmers' behaviour, and the coherence among these four dimensions. We find deficits in each dimension, particularly object and instrument adequacy. Agricultural soil policy in Germany lacks depth and coherence, and the role of biomass demand is neglected.
Sascha Scherer, Benjamin Höpfer, Katleen Deckers, Elske Fischer, Markus Fuchs, Ellen Kandeler, Jutta Lechterbeck, Eva Lehndorff, Johanna Lomax, Sven Marhan, Elena Marinova, Julia Meister, Christian Poll, Humay Rahimova, Manfred Rösch, Kristen Wroth, Julia Zastrow, Thomas Knopf, Thomas Scholten, and Peter Kühn
SOIL, 7, 269–304, https://doi.org/10.5194/soil-7-269-2021, https://doi.org/10.5194/soil-7-269-2021, 2021
Short summary
Short summary
This paper aims to reconstruct Middle Bronze Age (MBA) land use practices in the northwestern Alpine foreland (SW Germany, Hegau). We used a multi-proxy approach including biogeochemical proxies from colluvial deposits in the surroundings of a MBA settlement, on-site archaeobotanical and zooarchaeological data and off-site pollen data. From our data we infer land use practices such as plowing, cereal growth, forest farming and use of fire that marked the beginning of major colluvial deposition.
Collin J. Weber, Alexander Santowski, and Peter Chifflard
SOIL, 7, 15–31, https://doi.org/10.5194/soil-7-15-2021, https://doi.org/10.5194/soil-7-15-2021, 2021
Short summary
Short summary
Pavement joints, defined as the joint between paving stones and filled with different materials, in the inner city area of Marburg (Hesse, Germany) show moderate to high pollution with different heavy metals. Enrichment of heavy metals in pavement joints is related to surface run-off accumulation. As the pollution of pavement joints poses direct risks to the environment and humans in urban areas, the inconspicuous joints should be considered in urban water management strategies.
Frederick Büks and Martin Kaupenjohann
SOIL, 6, 649–662, https://doi.org/10.5194/soil-6-649-2020, https://doi.org/10.5194/soil-6-649-2020, 2020
Short summary
Short summary
Laboratory experiments that assess microplastic (MP) impact on the terrestrial environment require information on common soil MP concentrations. We reviewed item numbers and mass concentrations recorded in 23 studies, with 223 sampling sites in total with respect to the underlying entry pathways, land uses and vicinities. Common values included amounts of up to 13 000 items kg−1 and 4.5 mg kg−1 dry soil. Based on the collected data, we identified problems in past field studies.
Maha Deeb, Peter M. Groffman, Manuel Blouin, Sara Perl Egendorf, Alan Vergnes, Viacheslav Vasenev, Donna L. Cao, Daniel Walsh, Tatiana Morin, and Geoffroy Séré
SOIL, 6, 413–434, https://doi.org/10.5194/soil-6-413-2020, https://doi.org/10.5194/soil-6-413-2020, 2020
Short summary
Short summary
The goal of this study was to discuss current methods to create soils adapted for various green infrastructure (GI) designs. Investigating these new soils for several design categories of GI will provide technical information for management and design agencies. Moreover, these studies can serve as pioneer experiments to prevent recurring errors and, thus, provide improved plant growth practices. Results show that these constructed soils have a high potential to provide multiple soil functions.
Katja Wiedner and Steven Polifka
SOIL, 6, 315–324, https://doi.org/10.5194/soil-6-315-2020, https://doi.org/10.5194/soil-6-315-2020, 2020
Short summary
Short summary
Microplastics and microglass are used in a wide range of everyday and industrial applications acting as abrasives, filler and binding agents, which could enter aquatic and terrestrial environments with unexpected consequences for ecosystems. Our study suggests that different types of microparticles seem to have contrary effects on soil microorganisms, depending on the origin and properties of microparticles. This study should be seen as basis for further research, which is urgently needed.
Nicolette Tamara Regina Johanna Maria Jonkman, Esmee Daniëlle Kooijman, Karsten Kalbitz, Nicky Rosa Maria Pouw, and Boris Jansen
SOIL, 5, 303–313, https://doi.org/10.5194/soil-5-303-2019, https://doi.org/10.5194/soil-5-303-2019, 2019
Short summary
Short summary
In the urban gardens of Kisumu we interviewed female farmers to determine the sources and scope of their agricultural knowledge. We assessed the impact of the knowledge by comparing the influence of two types of management on soil nutrients. While one type of management was more effective in terms of preserving soil nutrients, the other management type had socioeconomic benefits. Both environmental and socioeconomic effects have to be considered in agricultural training to increase their impact.
Matthew T. Streeter and Keith E. Schilling
SOIL, 4, 93–100, https://doi.org/10.5194/soil-4-93-2018, https://doi.org/10.5194/soil-4-93-2018, 2018
Short summary
Short summary
Iowa golf courses provide an ideal location to evaluate whether golf course management is affecting the quality of soils at depth. Our study evaluated how soil properties relating to soil health and resiliency varied with depth at golf courses across Iowa and interpreted relationships of these properties to current golf course management and inherent soil properties. Systematic variation in soil properties including sand content, NO3, and SOM was observed with depth.
Brice Prudat, Lena Bloemertz, and Nikolaus J. Kuhn
SOIL, 4, 47–62, https://doi.org/10.5194/soil-4-47-2018, https://doi.org/10.5194/soil-4-47-2018, 2018
Short summary
Short summary
Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Having tools to assess soil quality is important to evaluate soil conditions and helps targeting important issues. We developed a soil evaluation toolbox that integrates farmers' field experiences and technical knowledge. The combination of local soil descriptions, field soil texture evaluation and soil colour provides locally meaningful information that reveals soil quality improvement potentials.
Johan Bouma
SOIL, 3, 153–159, https://doi.org/10.5194/soil-3-153-2017, https://doi.org/10.5194/soil-3-153-2017, 2017
Short summary
Short summary
Alexander von Humboldt was an inspiring scientist in the early 1800s, traveling widely, making many measurements, and linking different scientific disciplines while keeping an eye open to the needs of society. This is particularly relevant today in our information society, and researchers in developing countries are advised to follow the von Humboldt example when planning their future research.
Martina I. Gocke, Fabian Kessler, Jan M. van Mourik, Boris Jansen, and Guido L. B. Wiesenberg
SOIL, 2, 537–549, https://doi.org/10.5194/soil-2-537-2016, https://doi.org/10.5194/soil-2-537-2016, 2016
Short summary
Short summary
Investigation of a Dutch sandy profile demonstrated that buried soils provide beneficial growth conditions for plant roots in terms of nutrients. The intense exploitation of deep parts of the soil profile, including subsoil and soil parent material, by roots of the modern vegetation is often underestimated by traditional approaches. Potential consequences of deep rooting for terrestrial carbon stocks, located to a relevant part in buried soils, remain largely unknown and require further studies.
Leonor Rodrigues, Umberto Lombardo, Mareike Trauerstein, Perrine Huber, Sandra Mohr, and Heinz Veit
SOIL, 2, 367–389, https://doi.org/10.5194/soil-2-367-2016, https://doi.org/10.5194/soil-2-367-2016, 2016
Short summary
Short summary
Our study examines pre-Columbian agricultural raised fields in the Bolivian Amazon.
It provides a new interpretation for pre-Columbian management of raised fields.
The results show that differences in field size and height are the result of an adaptation to a site where soil properties vary significantly on a scale of tens to hundreds of meters. The analysis and dating of the raised fields sediments point towards an extensive and rather brief use of the raised fields, for about 100–200 years.
Marieke Doorenbosch and Jan M. van Mourik
SOIL, 2, 311–324, https://doi.org/10.5194/soil-2-311-2016, https://doi.org/10.5194/soil-2-311-2016, 2016
Short summary
Short summary
Soil records provide information about 5 millennia of heath management in cultural landscapes on sandy soils. Deforestations and the introduction of the deep, stable economy in the 18th century resulted in sand drifting and heath degradation. After the introduction of chemical fertilizers more than 90 % of the heaths were transformed into productive arable field or forests. Currently the last heaths are preserved as part of the cultural heritage.
Sjoerd Kluiving, Tim de Ridder, Marcel van Dasselaar, Stan Roozen, and Maarten Prins
SOIL, 2, 271–285, https://doi.org/10.5194/soil-2-271-2016, https://doi.org/10.5194/soil-2-271-2016, 2016
Short summary
Short summary
In medieval times the city of Vlaardingen (the Netherlands) was strategically located on the confluence of three rivers, the Maas, the Merwede, and the Vlaarding. Combined research on the history and soil of this city was initiated by an archaeological research question, following Dutch legislation. The start of fluvial system 2 in AD 600 correlates with evidence of the church that was present at least in AD 726/727. Results record the period before and after the flooding in AD 1170.
C. Poeplau, H. Marstorp, K. Thored, and T. Kätterer
SOIL, 2, 175–184, https://doi.org/10.5194/soil-2-175-2016, https://doi.org/10.5194/soil-2-175-2016, 2016
Short summary
Short summary
We compared two long-term contrasting systems of urban lawn management (frequently cut utility lawn vs. seldomly cut meadow-like lawn) regarding their effect on soil carbon in three Swedish cities. Biomass production was also measured during 1 year. The utility lawns had a significantly higher biomass production, which resulted in a higher soil carbon storage, since clippings were not removed. Soil carbon sequestration outweighed the higher management-related CO2 emissions of the utility lawns.
Johan Bouma and Luca Montanarella
SOIL, 2, 135–145, https://doi.org/10.5194/soil-2-135-2016, https://doi.org/10.5194/soil-2-135-2016, 2016
Short summary
Short summary
The recently accepted UN Sustainable Development Goals (SDGs) provide a major challenge to the research community, including soil science. SDGs require a interdisciplinary research approach that forces every discipline to critically evaluate its core messages. Effective communication with the policy arena requires use of common policy concepts such as policy phases and distinction of drivers, pressures, and responses to change. To accomodate such needs, research practices will have to change.
Saskia D. Keesstra, Johan Bouma, Jakob Wallinga, Pablo Tittonell, Pete Smith, Artemi Cerdà, Luca Montanarella, John N. Quinton, Yakov Pachepsky, Wim H. van der Putten, Richard D. Bardgett, Simon Moolenaar, Gerben Mol, Boris Jansen, and Louise O. Fresco
SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, https://doi.org/10.5194/soil-2-111-2016, 2016
Short summary
Short summary
Soil science, as a land-related discipline, has links to several of the UN Sustainable Development Goals which are demonstrated through the functions of soils and related ecosystem services. We discuss how soil scientists can rise to the challenge both internally and externally in terms of our relations with colleagues in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the set of steps to be taken by the soil science community as a whole.
C. Feller, E. R. Landa, A. Toland, and G. Wessolek
SOIL, 1, 543–559, https://doi.org/10.5194/soil-1-543-2015, https://doi.org/10.5194/soil-1-543-2015, 2015
Short summary
Short summary
Case studies of artworks focused on painting, installation, and film are presented, with the view of encouraging further exploration of art about, in, and with soil, as a contribution to raising soil awareness.
M. Gronwald, A. Don, B. Tiemeyer, and M. Helfrich
SOIL, 1, 475–489, https://doi.org/10.5194/soil-1-475-2015, https://doi.org/10.5194/soil-1-475-2015, 2015
U. Lombardo, S. Denier, and H. Veit
SOIL, 1, 65–81, https://doi.org/10.5194/soil-1-65-2015, https://doi.org/10.5194/soil-1-65-2015, 2015
Short summary
Short summary
In the present paper we explore to what degree soil properties might have influenced pre-Columbian settlement patterns in the Monumental Mounds Region (MMR) of the Llanos de Moxos (LM), Bolivian Amazon. This study provides new data on the soil properties of the south-eastern Bolivian Amazon and reinforces the hypothesis that environmental constraints and opportunities exerted an important role on pre-Columbian occupation patterns and the population density reached in the Bolivian Amazon.
J. P. van Leeuwen, T. Lehtinen, G. J. Lair, J. Bloem, L. Hemerik, K. V. Ragnarsdóttir, G. Gísladóttir, J. S. Newton, and P. C. de Ruiter
SOIL, 1, 83–101, https://doi.org/10.5194/soil-1-83-2015, https://doi.org/10.5194/soil-1-83-2015, 2015
Cited articles
Aichberger, K. and Söllinger, J.: Use of biocompost in agriculture – results of a long-term field trial, in: Realising the ETAP in the management of waste from farms, edited by: Spiegel, H. and Zonno, V., Proceedings of the second AQUAGRIS workshop Vienna, 19 June 2009, Vienna, AGES, 6–8, 2009.
Althuizen, I. H. J., Lee, H., Sarneel, J. M., and Vandvik, V.: Long-term climate regime modulates the impact of short-term climate variability on decomposition in Alpine grassland soils, Ecosystems, 21, 1580–1592, https://doi.org/10.1007/s10021-018-0241-5, 2018.
Andrén, O. and Kätterer, T.: ICBM: The introductory carbon balance model for exploration of soil carbon balances, Ecol. Appl., 7, 1226–1236, https://doi.org/10.2307/2641210, 1997.
Andrén, O., Kätterer, T., and Karlsson, T.: ICBM regional model for estimations of dynamics of agricultural soil carbon pools, Nutr. Cycl. Agroecosys., 70, 231–239, https://doi.org/10.1023/B:FRES.0000048471.59164.ff, 2004.
Andrén, O., Kihara, J., Bationo, A., Vanlauwe, B., and Kätterer, T.: Soil climate and decomposer activity in Sub-Saharan Afrika estimated from standard weather station data: A simple climate index for soil carbon balance calculations, Ambio, 36, 379–386, https://doi.org/10.1579/0044-7447(2007)36[379:scadai]2.0.co;2, 2007.
Arvidsson, J. and Håkansson, I.: Response of different crops to soil compaction–Short-term effects in Swedish field experiments, Soil Till. Res., 138, 56–63, https://doi.org/10.1016/j.still.2013.12.006, 2014.
Barel, J. M., Kuyper, T. W., Paul, J., de Boer, W., Cornelissen, J. H. C., and De Dein, G. B.: Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes, J. Appl. Ecol., 56, 132–143, https://doi.org/10.1111/1365-2664.13261, 2019.
Bergkvist, G. and Öborn, I.: Long-term field experiments in Sweden–what are they designed to study and what could they be used for, Aspects of Applied Biology, 113, 75–85, 2011.
BMLFUW: Richtlinien für die sachgerechte Düngung. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 2017.
Bocock, K. L. and Gilbert, O. J. W.: The disappearance of leaf litter under different woodland conditions, Plant Soil, 9, 179–185, https://doi.org/10.1007/BF01398924, 1957.
Bolinder, M. A., Andrén, O., Kätterer, T., and Parent, L. E.: Soil organic carbon sequestration potential for Canadian Agricultural Ecoregions calculated using the Introductory Carbon Balance Model, Can. J. Soil Sci., 88, 451–460, https://doi.org/10.4141/CJSS07093, 2008.
Bolinder, M. A., Fortin, J. G., Anctil, F., Andrén, O., Kätterer, T., de Jong, R., and Parent, L. E.: Spatial and temporal variability of soil biological activity in the Province of Québec, Canada (45–58 °N, 1960–2009) – calculations based on climate records, Climatic Change, 117, 739–755, https://doi.org/10.1007/s10584-012-0602-6, 2013.
Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., and VandenBygaart, A. J.: An aproach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada, Agr. Ecosyst. Environ., 118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013, 2007.
Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R., and Wood, S. A.: Understanding the dominant controls on litter decomposition, J. Ecol., 104, 229–38, https://doi.org/10.1111/1365-2745.12507, 2016.
Buchholz, J., Querner, P., Paredes, D., Bauer, T., Strauss, P., Guernion, M., Scimia, J., Cluzeau, D., Burel, F., Kratchmer, S., Winter, S., Pothhof, M., and Zaller, J. G.: Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape, Sci. Rep.-UK, 7, 17445, https://doi.org/10.1038/s41598-017-17601-w, 2017.
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R., de Deyn, G. B., Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., and Brussaard, L.: Soil quality – A critical review, Soil Biol. Biochem., 120, 105–125, https://doi.org/10.1016/j.soilbio.2018.01.030, 2018.
Burgess, M. S., Mehuys, G. R., and Madramootoo, C. A.: Decomposition of grain-corn residues (Zea mays L.): A litterbag study under three tillage systems, Can. J. Soil Sci., 82, 127–138, https://doi.org/10.4141/S01-013, 2002.
Carlgren, K. and Mattsson, L.: Swedish soil fertility experiments, Acta Agr. Scand., 51, 49–76, https://doi.org/10.1080/090647101753483787, 2001.
Ceccanti, B., Masciandaro, G., and Macci, C.: Pyrolysis-gas chromatography to evaluate the organic matter quality of a mulched soil, Soil Till. Res., 97, 71–78, https://doi.org/10.1016/j.still.2007.08.011, 2007.
Cleveland, C. C., Reed, S. C., Keller, A. B., Nemergut, D. R., O'Neill, S. P., Ostertag, R., and Vitousek, P. M.: Litter quality versus soil microbial community controls over decomposition: a quantative analysis, Oecologia, 174, 283–294, https://doi.org/10.1007/s00442-013-2758-9, 2014.
Costantini, E. A. C., Castaldini, M., and Diago, M. P.: Effects of soil erosion on agroecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards, J. Environ. Manage., 223, 614–624, https://doi.org/10.1016/j.jenvman.2018.06.065, 2018.
Daebeler, A., Petrová, E., Kinz, E., Grausenburger, S., Berthold, H., Sandén, T., Angel, R., and the high-school students of biology project groups I, II, and III from 2018–2019: Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI), SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, 2022.
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the variability of respiration in terrestrial ecosystems: moving beyond Q10, Glob. Change Biol., 12, 154–164, https://doi.org/10.1111/j.1365-2486.2005.01065.x, 2006.
Djukic, I., Kopfer-Rojas, S., Schmidt, I. K., Larsen, K. S., Beier, C., Berg, B., and Verheyen, K.: Early stage litter decomposition across biomes, Sci. Total Environ., 628–629, 1369–1394, https://doi.org/10.1016/j.scitotenv.2018.01.012, 2018.
Dossou-Yovo, W., Parent, S. E., Ziadi, N., Parent, E., and Parent, L. E.: Tea Bag Index to assess carbon decomposition rate in cranberry agroecosystems, Soil Syst., 5, 44, https://doi.org/10.3390/soilsystems5030044, 2022.
Eshetu, B., Baum, C., and Leinweber, P.: Compost of different stability affects the molecular composition and mineralization of soil organic matter, Open J. Soil Sci., 3, 58–69, https://doi.org/10.4236/ojss.2013.31007, 2013.
Fanin, N., Bezaud, S., Sarneel, J. M., Cecchini, S., Nicolas, M., and Augusto, L.: Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter, Ecosystems, 23, 1004–1018, https://doi.org/10.1007/s10021-019-00452-z, 2020.
Fortin, J. G., Bolinder, M. A., Anctil, F., Kätterer, T., Andrén, O., and Parent, L. E.: Effects of climatic data low-pass filtering on the ICBM temperature- and moisture-based soil biological activity factors in a cool and humid temperate climate, Ecol. Model., 222, 3050–3060, https://doi.org/10.1016/j.ecolmodel.2011.06.011, 2011.
Fu, Y., Jonge, L. W., Greve, M. H., Arthur, E., Moldrup, P., Norgaard, T., Paradelo, M.: Linking litter decomposition to soil physicochemical properties, gas transport, and land use, Soil physics and hydrology, Soil Sci. Soc. Am. J., 86, 34–46, https://doi.org/10.1002/saj2.20356, 2021.
García Palacios, P., Shaw, E. A., Wall, D. H., and Hättenschwiler, S.: Temporal dynamics of biotic and abiotic drivers of litter decomposition, Ecol. Lett., 19, 554–563, https://doi.org/10.1111/ele.12590, 2016.
Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E., and Parton, W. J.: Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition, Glob. Change Biol., 6, 751–765, https://doi.org/10.1046/j.1365-2486.2000.00349.x, 2000.
IPCC: Agriculture, forestry and other land use, IPCC guidelines for national greenhouse gas inventories, edited by:: Eggelston, S., Buendia, L., Miwa, K., Ngara, T., and Tanebe, K., Institute for Global Environmental Strategies, prepared by the National Greenhouse Gas Inventories Programme, Hayama, Kanagawa, Japan, ISBN 4-88788-032-4, 2006.
Janzen, H. H.: Beyond carbon sequestration: soil as conduit of solar energy, Eur. J. Soil Sci., 66, 19–32, https://doi.org/10.1111/ejss.12194, 2015.
Jiao, F., Shi, X. R., Han, F. P., and Yuan Z. Y.: Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands, Sci. Rep.-UK, 6, 19601, https://doi.org/10.1038/srep19601, 2016.
Kainiemi, V., Arvidsson, J., and Kätterer, T.: Effects of autumn tillage and residue management on soil respiration in a long-term field experiment in Sweden, J. Plant Nutr. Soil Sci., 178, 189–198, https://doi.org/10.1002/jpln.201400080, 2015.
Kampichler, C. and Bruckner, A.: The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies, Biol. Rev., 84, 375–89, https://doi.org/10.1111/j.1469-185X.2009.00078.x, 2009.
Kätterer, T. and Andrén, O.: Predicting daily soil temperature profiles in arable soils in cold temperate regions from air temperature and leaf area index, Acta Agr. Scand., 59, 77–86, https://doi.org/10.1080/09064710801920321, 2009.
Kätterer, T. and Bolinder, M. A.: Chapter 15: Agriculture practices to improve soil carbon sequestration in upland soil, in: Understanding and fostering soil carbon sequestration, edited by: Rumpel Dr., C., https://doi.org/10.19103/AS.2022.0106.15, 2022.
Kätterer, T., Bolinder, M. A., Berglund, K., and Kirchmann, H. J.: Strategies for carbon sequestration in agricultural soils in northern Europe, Acta Agr. Scand., 62, 181–198, https://doi.org/10.1080/09064702.2013.779316, 2012.
Kerr, D. D. and Ochsner, T. E.: Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grassland, Soil Sci. Soc. Am. J., 84, 587–596, https://doi.org/10.1002/saj2.20018, 2020.
Keuskamp, J. A., Dingemans, B. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M.: Tea bag index: a novel approach to collect uniform decomposition data across ecosystems, Methods Ecol. Evol., 4, 1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Kuhn, M., Wing J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., and Candan, C.: Classification and Regression Training, R package version 6.0-71, https://CRAN.R-project.org/package=caret (last access: 20 June 2022), 2016.
Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lehtinen, T., Dersch, G., Söllinger, J., Baumgarten, A., Schlatter, N., Aichberger, K., and Spiegel, H.: Long-term amendment of four different compost types on a loamy silt Cambisol: impact on soil organic matter, nutrients and yields, Arch. Agron. Soil Sci., 63, 663–673, https://doi.org/10.1080/03650340.2016.1235264, 2017.
Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Krüger, J., Grignani, C., Zavattaro, L., Costamagna, C., and Spiegel, H.: Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils, Soil Use Manage., 30, 524–538, https://doi.org/10.1111/sum.12151, 2014.
Liao, K., Wu, S., and Zhu, Q.: Can Soil pH Be Used to Help Explain Soil Organic Carbon Stocks?, Clean Soil Air Water, 44, 1685–1689, https://doi.org/10.1002/clen.201600229, 2016.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18–22, https://CRAN.R-project.org/doc/Rnews/Liaw and Wiener (last access: 20 June 2022), 2002.
Lupwayi, N. Z., Clayton, G. W., O'Donovan, J. T., Harker, K. N., Turkington, T. K., and Rice, W. A.: Decomposition of crop residues under conventional and zero tillage, Can. J. Soil Sci., 84, 403–410, https://doi.org/10.4141/S03-082, 2004.
Mekki, A., Aloui, F., and Sayadi, S.: Influence of biowaste compost amendment on soil organic carbon storage under arid climate, Japca J Air Waste Ma, 69, 867–877, https://doi.org/10.1080/10962247.2017.1374311, 2019.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandak, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Mori, T.: Validation of the Tea Bag Index as a standard approach for assessing organic matter decomposition: A laboratory incubation experiment, Ecol. Indic., 141, 109077, https://doi.org/10.1016/j.ecolind.2022.109077, 2022.
Mori, T., Ono, K., and Sakai, Y.: Testing the Tea Bag Index as a potential indicator for assessing litter decomposition in aquatic ecosystems, Ecol. Indic., 152, 110358, https://doi.org/10.1016/j.ecolind.2023.110358, 2023.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models, Soil Biol. Biochem., 59, 72–85, https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Ontl, T. A. and Schulte, L. A.: Soil carbon storage, Nature Education Knowledge, 3, 35, 2012.
Paradelo, R., Virto, I., and Chenu, C.: Net effect of liming on soil organic carbon stocks: A review, Agr. Ecosyst. Environ., 202, 98–107, https://doi.org/10.1016/j.agee.2015.01.005, 2015.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P.: Climate-smart soils, Nature, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Pimentel, L. G., Cherubin, M. R., Oliveira, D. M., Cerri, C. E., and Cerri, C. C.: Decomposition of sugarcane straw: Basis for management decisions for bioenergy production, Biomass Bioenerg., 122, 133–144, https://doi.org/10.1016/j.biombioe.2019.01.027, 2019.
Poeplau, C., Kätterer, T., Bolinder, M. A., Börjesson, G., Berti, A., and Lugato, E.: Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments, Geoderma, 237, 246–255, https://doi.org/10.1016/j.geoderma.2014.09.010, 2015.
Poeplau, C., Zopf, D., Greiner, B., Geerts, R., Korvaar, H., Thumm, U., Don, A., Heidkamp, A., and Flessa, H.: Why does mineral fertilization increase soil carbon stocks in temperate grasslands?, Agr. Ecosyst. Environ., 265, 144–155, https://doi.org/10.1016/j.agee.2018.06.003, 2018.
Raiesi, F.: Soil properties and N application effects on microbial activities in two winter wheat cropping systems, Biol. Fert. Soils, 40, 88–92, https://doi.org/10.1007/s00374-004-0741-7, 2004.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Battendury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernández, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., and Walker, B.: Global desertification: Building a science for dryland development, Science, 316, 847–851, https://doi.org/10.1126/science.1131634, 2007.
Saint-Laurent, D. and Arsenault-Boucher, L.: Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol, Geoderma, 358, 113976, https://doi.org/10.1016/j.geoderma.2019.113976, 2020.
Sandén, T., Spiegel H., Stüger, H. P., Schlatter, N., Haslmayr, H. P., Zavattaro, L., Grignani, C., Bechini, L., D'Hose, T., Molendijk, L., Pecio, A., Jarosz, Z., Guzmán, G., Vanderlinden, K., Giráldez, J. V., Mallast, J., and ten Berge, H.: European long-term field experiments: knowledge gained about alternative management practices, Soil Use Manage., 34, 167–176, https://doi.org/10.1111/sum.12421, 2018.
Sandén, T., Spiegel, H., Wenng, H., Schwarz, M., and Sarneel, J. M.: Learning science during teatime: Using a citizen science approach to collect data on litter decomposition in Sweden and Austria, Sustainability, 12, 29–39, https://doi.org/10.3390/su12187745, 2020.
Sandén, T., Wawra, A., Berthold, H., Miloczki, J., Schweinzer, A., Gschmeidler, B., Spiegel, H., Debeljak, M., and Trajanov, A.: TeaTime4Schools: Using Data Mining Techniques to Model Litter Decomposition in Austrian Urban School Soils, Front. Ecol. Evolut., 9, 432, https://doi.org/10.3389/fevo.2021.703794, 2021.
Sievers, T. and Cook, R. L.: Aboveground and root decomposition of cereal rye and hairy vetch cover crops, Soil Sci. Soc. Am. J., 82, 147–155, https://doi.org/10.2136/sssaj2017.05.0139, 2018.
Spiegel, H., Dersch, G., Hösch, J., and Baumgarten, A.: Tillage effects on soil organic carbon and nutrient availability in a long-term field experiment in Austria, Bodenkultur, 58, 1–4, 2007.
Spiegel, H., Mosleitner, T., Sandén, T., and Zaller, J. G.: Effects of two decades of organic and mineral fertilization of arable crops on earthworms and standardized litter decomposition, Die Bodenkultur: Journal of Land Management, Food and Environment, 69, 17–28, https://doi.org/10.2478/boku-2018-0003, 2018.
Stark, C., Condron, L. M., Stewart, A., Di, H. J., and O'Callaghan, M.: Influence of organic and mineral amendments on microbial soil properties and processes, Appl. Soil Ecol., 35, 79–93, https://doi.org/10.1016/j.apsoil.2006.05.001, 2007.
Struijk, M., Whitmore, A. P., Mortimer, S., Shu, X., and Sizmur, T.: Absence of a home-field advantage within a short-rotation arable cropping system, Plant Soil, 26, 1–7, https://doi.org/10.1007/s11104-022-05419-z, 2022.
Tatzber, M., Schlatter, N., Baumgarten, A., Dersch, G., Körner, R., Lehtinen, T., Unger, G., Mifek, E., and Spiegel, H.: KMnO4 determination of active carbon for laboratory routines: three long-term field experiments in Austria, Soil Res., 53, 190–204, https://doi.org/10.1071/SR14200, 2015.
Tiefenbacher, A., Sandén, T., Haslmayr, H-P., Miloczki, J., Wenzel, W., and Spiegel, H.: Optimizing carbon sequestration in croplands: a synthesis, Agronomy, 11, 882, https://doi.org/10.3390/agronomy11050882, 2021.
Tóth, Z., Táncsics, A., Kriszt, B., Kröel-Dulay, G., Ónodi, G., and Hornung, E.: Extreme effects of drought on decomposition of the soil bacterial community and decomposition of plant tissue, Eur. J. Soil Sci., 68, 504–513, https://doi.org/10.1111/ejss.12429, 2017.
Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L., and Phoenix, G. K.: Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes, Glob. Change Biol., 25, 489–503, https://doi.org/10.1111/gcb.14500, 2019.
Tresch, S., Moretti, M., Le-Bayon, R. C., Mäder, P., Zanetta, A., Frey, D., Stehle, B., Kuhn, A., Munyangabe, A., and Fliessbach, A.: Urban soil quality assessment – A comprehensive case study dataset of urban garden soils, Front Environ. Sci., 6, 136, https://doi.org/10.3389/fenvs.2018.00136, 2018.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, Springer-Verlag, 2002.
Werth, M. and Kuzyakov, Y.: 13C Fractionation at the Root-Microorganisms-Soil Interface: A Review and Outlook for Partitioning Studies, Soil Biol. Biochem., 42, 1372–1384, https://doi.org/10.1016/j.soilbio.2010.04.009, 2010.
Zaller, J. G., König, N., Tiefenbacher, A., Muraoka, Y., Querner, P., Ratzenböch, A., Bonkowski, M., and Koller, R.: Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material, BMC Ecol., 16, 37, https://doi.org/10.1186/s12898-016-0092-x, 2016.
Short summary
We evaluated the effect of soil management practices on decomposition at 29 sites (13 in Sweden and 16 in Austria) using long-term field experiments with the Tea Bag Index (TBI) approach. We found that the decomposition rate (k) and stabilization factor (S) were mainly governed by climatic conditions. In general, organic and mineral fertilization increased k and S, and reduced tillage increased S. Edaphic factors also affected k and S.
We evaluated the effect of soil management practices on decomposition at 29 sites (13 in Sweden...