Articles | Volume 1, issue 1
https://doi.org/10.5194/soil-1-257-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/soil-1-257-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A meta-analysis of soil biodiversity impacts on the carbon cycle
M.-A. de Graaff
CORRESPONDING AUTHOR
Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
J. Adkins
Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
P. Kardol
Department of Forest Ecol. Manag., Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
H. L. Throop
Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
Related authors
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
D. L. Kong, J. J. Wang, P. Kardol, H. F. Wu, H. Zeng, X. B. Deng, and Y. Deng
Biogeosciences, 13, 415–424, https://doi.org/10.5194/bg-13-415-2016, https://doi.org/10.5194/bg-13-415-2016, 2016
Short summary
Short summary
Our study showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. The findings support our hypothesis that root economic strategies differ with increasing root diameter. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.
D. L. Kong, X. T. Lü, L. L. Jiang, H. F. Wu, Y. Miao, and P. Kardol
Biogeosciences, 10, 8129–8138, https://doi.org/10.5194/bg-10-8129-2013, https://doi.org/10.5194/bg-10-8129-2013, 2013
Related subject area
Soil biodiversity and soil health
Moderate N fertilizer reduction with straw return modulates cropland functions and microbial traits in a meadow soil
Ectomycorrhizal fungal network complexity determines soil multi-enzymatic activity
Unraveling biogeographical patterns and environmental drivers of soil fungal diversity at the French national scale
Impacts of soil storage on microbial parameters
Biochar promotes soil aggregate stability and associated organic carbon sequestration and regulates microbial community structures in Mollisols from northeast China
Only a minority of bacteria grow after wetting in both natural and post-mining biocrusts in a hyperarid phosphate mine
Lower functional redundancy in “narrow” than “broad” functions in global soil metagenomics
Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI)
Network complexity of rubber plantations is lower than tropical forests for soil bacteria but not for fungi
Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system
Microbial communities and their predictive functional profiles in the arid soil of Saudi Arabia
Development of a soil biological quality index for soils of semi-arid tropics
What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?
Soil microbial biomass and function are altered by 12 years of crop rotation
Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems
Knowledge needs, available practices, and future challenges in agricultural soils
Technological advancements and their importance for nematode identification
Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie
Case study of microarthropod communities to assess soil quality in different managed vineyards
Yan Duan, Minghui Cao, Wenling Zhong, Yuming Wang, Zheng Ni, Mengxia Zhang, Jiangye Li, Yumei Li, Xianghai Meng, and Lifang Wu
SOIL, 10, 779–794, https://doi.org/10.5194/soil-10-779-2024, https://doi.org/10.5194/soil-10-779-2024, 2024
Short summary
Short summary
Nitrogen (N) fertilization has received worldwide attention due to its effects on soil functions. However, soil multifunctionality and the underlying microbial mechanisms remain unclear. Therefore, we carried out in situ field and incubation experiments. We propose that straw return with 25 % N fertilizer reduction may achieve high soil multifunctionality by regulating the soil C:N ratio and N input level and specific keystone taxa-driven community contributions to soil functions.
Jorge Prieto-Rubio, José L. Garrido, Julio M. Alcántara, Concepción Azcón-Aguilar, Ana Rincón, and Álvaro López-García
SOIL, 10, 425–439, https://doi.org/10.5194/soil-10-425-2024, https://doi.org/10.5194/soil-10-425-2024, 2024
Short summary
Short summary
Changes in soil biological activity when microbial taxa interact remain little understood. To address this, we approach network analyses of ectomycorrhizal fungal communities. The study highlights how distinct fungi contribute to explaining community structure, whilst others mainly do for soil enzymatic activity. This differentiation between structural and functional roles of ectomycorrhizal fungi adds new insights to understand soil fungal community complexity and its functionality in soils.
Christophe Djemiel, Samuel Dequiedt, Walid Horrigue, Arthur Bailly, Mélanie Lelièvre, Julie Tripied, Charles Guilland, Solène Perrin, Gwendoline Comment, Nicolas P. A. Saby, Claudy Jolivet, Antonio Bispo, Line Boulonne, Antoine Pierart, Patrick Wincker, Corinne Cruaud, Pierre-Alain Maron, Sébastien Terrat, and Lionel Ranjard
SOIL, 10, 251–273, https://doi.org/10.5194/soil-10-251-2024, https://doi.org/10.5194/soil-10-251-2024, 2024
Short summary
Short summary
The fungal kingdom has been diversifying for more than 800 million years by colonizing a large number of habitats on Earth. Based on a unique dataset (18S rDNA meta-barcoding), we described the spatial distribution of fungal diversity at the scale of France and the environmental drivers by tackling biogeographical patterns. We also explored the fungal network interactions across land uses and climate types.
Nathalie Fromin
EGUsphere, https://doi.org/10.5194/egusphere-2024-411, https://doi.org/10.5194/egusphere-2024-411, 2024
Short summary
Short summary
Despite massive use, the impact of storage on soil microbial parameters has been assessed in a very scattered way. I analysed 73 research articles dealing with the impact of storage practices on various soil microbial parameters. The results show significant effects of all storage practices on soil microbial parameters in a vast majority of cases. Storage practices should be carefully selected according to conditions that prevail in the native soil environment and to microbial parameters.
Jing Sun, Xinrui Lu, Guoshuang Chen, Nana Luo, Qilin Zhang, and Xiujun Li
SOIL, 9, 261–275, https://doi.org/10.5194/soil-9-261-2023, https://doi.org/10.5194/soil-9-261-2023, 2023
Short summary
Short summary
A field experiment was conducted to compare and analyze the effects of combined application of biochar and nitrogen fertilizer on soil aggregate stability mechanism, the dynamic characteristics of aggregate organic carbon, and the microbial community structure in northeast black soil. We provide a scientific basis for formulating effective strategies to slow down soil quality degradation and ensure the sustainable development of the agroecosystem.
Talia Gabay, Eva Petrova, Osnat Gillor, Yaron Ziv, and Roey Angel
SOIL, 9, 231–242, https://doi.org/10.5194/soil-9-231-2023, https://doi.org/10.5194/soil-9-231-2023, 2023
Short summary
Short summary
This paper evaluates bacterial growth in biocrusts after a large-scale mining disturbance in a hyperarid desert, using a stable isotope probing assay.
We discovered that biocrust bacteria from both natural and post-mining plots resumed photosynthetic activity but did not grow following hydration. Our paper provides insights into the effects of a large-scale disturbance (mining) on biocrusts and their response to hydration, with implications for biocrust restoration practices in Zin mines.
Huaihai Chen, Kayan Ma, Yu Huang, Qi Fu, Yingbo Qiu, Jiajiang Lin, Christopher W. Schadt, and Hao Chen
SOIL, 8, 297–308, https://doi.org/10.5194/soil-8-297-2022, https://doi.org/10.5194/soil-8-297-2022, 2022
Short summary
Short summary
By analyzing and generalizing microbial taxonomic and functional profiles, we provide strong evidence that the degree of soil microbial functional redundancy differs significantly between “broad” and “narrow” functions across the globe. Future sequencing efforts will likely increase our confidence in comparative metagenomes and provide time-series information to further identify to what extent microbial functional redundancy regulates dynamic ecological fluxes across space and time.
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and
III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Short summary
In this citizen science project, we combined a standardised litter bag method (Tea Bag Index) with microbiome analysis of bacteria and fungi colonising the teabags to gain a holistic understanding of the carbon degradation dynamics in temperate European soils. Our method focuses only on the active part of the soil microbiome. The results show that about one-third of the prokaryotes and one-fifth of the fungal species (ASVs) in the soil were enriched in response to the presence of fresh OM.
Guoyu Lan, Chuan Yang, Zhixiang Wu, Rui Sun, Bangqian Chen, and Xicai Zhang
SOIL, 8, 149–161, https://doi.org/10.5194/soil-8-149-2022, https://doi.org/10.5194/soil-8-149-2022, 2022
Short summary
Short summary
Forest conversion alters both bacterial and fungal soil networks: it reduces bacterial network complexity and enhances fungal network complexity. This is because forest conversion changes the soil pH and other soil properties, which alters the bacterial composition and subsequent network structure. Our study demonstrates the impact of forest conversion on soil network structure, which has important implications for ecosystem functions and the health of soil ecosystems in tropical regions.
Zijun Zhou, Zengqiang Li, Kun Chen, Zhaoming Chen, Xiangzhong Zeng, Hua Yu, Song Guo, Yuxian Shangguan, Qingrui Chen, Hongzhu Fan, Shihua Tu, Mingjiang He, and Yusheng Qin
SOIL, 7, 595–609, https://doi.org/10.5194/soil-7-595-2021, https://doi.org/10.5194/soil-7-595-2021, 2021
Short summary
Short summary
Straw mulching is not always combined with no-till systems during conservation tillage. We explored the effects of long-term straw mulching on soil attributes with soil depths under a no-till system. Compared to straw removal, straw mulching had various effects on soil properties at different depths, the biggest difference occurring at the topsoil depth. Overall, straw mulch is highly recommended for use under the no-till system because of its benefits to soil fertility and bacterial abundance.
Munawwar A. Khan and Shams T. Khan
SOIL, 6, 513–521, https://doi.org/10.5194/soil-6-513-2020, https://doi.org/10.5194/soil-6-513-2020, 2020
Short summary
Short summary
Soil is a renewable resource for purposes ranging from agriculture to mineralization. Soil microbiome plays vital roles in facilitating process like providing nutrients to plants, or their mobilization for plant uptake, consequently improving plant growth and productivity. Therefore, understanding of these microbial communities and their role in soil is crucial for exploring the possibility of using microbial community inoculants for improving desert soil fertility and agricultural potential.
Selvaraj Aravindh, Chinnappan Chinnadurai, and Dananjeyan Balachandar
SOIL, 6, 483–497, https://doi.org/10.5194/soil-6-483-2020, https://doi.org/10.5194/soil-6-483-2020, 2020
Short summary
Short summary
Soil quality is important for functioning of the agricultural ecosystem to sustain productivity. It is combination of several physical, chemical, and biological attributes. In the present work, we developed a soil biological quality index, a sub-set of the soil quality index (SBQI) using six important biological variables. These variables were computed from long-term manurial experimental soils and transformed into a unitless 10-scaled SBQI. This will provide constraints of soil processes.
Frederick Büks, Nicolette Loes van Schaik, and Martin Kaupenjohann
SOIL, 6, 245–267, https://doi.org/10.5194/soil-6-245-2020, https://doi.org/10.5194/soil-6-245-2020, 2020
Short summary
Short summary
Via anthropogenic input, microplastics (MPs) today represent a part of the soil organic matter. We analyzed studies on passive translocation, active ingestion, bioaccumulation and adverse effects of MPs on multicellular soil faunal life. These studies on a wide range of soil organisms found a recurring pattern of adverse effects on motility, growth, metabolism, reproduction, mortality and gut microbiome. However, the shape and type of the experimental MP often did not match natural conditions.
Marshall D. McDaniel and A. Stuart Grandy
SOIL, 2, 583–599, https://doi.org/10.5194/soil-2-583-2016, https://doi.org/10.5194/soil-2-583-2016, 2016
Short summary
Short summary
Modern agriculture is dominated by monoculture crop production, having negative effects on soil biology. We used a 12-year crop rotation experiment to examine the effects of increasing crop diversity on soil microorganisms and their activity. Crop rotations increased microbial biomass by up to 112 %, and increased potential ability to supply nitrogen as much as 58 %, compared to monoculture corn. Collectively, our findings show that soil health is increased when crop diversity is increased.
Karen A. Thompson, Bill Deen, and Kari E. Dunfield
SOIL, 2, 523–535, https://doi.org/10.5194/soil-2-523-2016, https://doi.org/10.5194/soil-2-523-2016, 2016
Short summary
Short summary
Dedicated bioenergy crops are required for future energy production; however the effects of land use change from traditional crops to biofuel crops on soil microbial communities, which drive greenhouse gas production, are largely unknown. We used quantitative PCR to enumerate these microbial communities to assess the sustainability of different bioenergy crops, including miscanthus and corn. We found that miscanthus may be a suitable crop for bioenergy production in variable Ontario conditions.
Georgina Key, Mike G. Whitfield, Julia Cooper, Franciska T. De Vries, Martin Collison, Thanasis Dedousis, Richard Heathcote, Brendan Roth, Shamal Mohammed, Andrew Molyneux, Wim H. Van der Putten, Lynn V. Dicks, William J. Sutherland, and Richard D. Bardgett
SOIL, 2, 511–521, https://doi.org/10.5194/soil-2-511-2016, https://doi.org/10.5194/soil-2-511-2016, 2016
Short summary
Short summary
Enhancing soil health is key to providing ecosystem services and food security. There are often trade-offs to using a particular practice, or it is not fully understood. This work aimed to identify practices beneficial to soil health and gaps in our knowledge. We reviewed existing research on agricultural practices and an expert panel assessed their effectiveness. The three most beneficial practices used a mix of organic or inorganic material, cover crops, or crop rotations.
Mohammed Ahmed, Melanie Sapp, Thomas Prior, Gerrit Karssen, and Matthew Alan Back
SOIL, 2, 257–270, https://doi.org/10.5194/soil-2-257-2016, https://doi.org/10.5194/soil-2-257-2016, 2016
Short summary
Short summary
This review covers the history and advances made in the area of nematode taxonomy. It highlights the success and limitations of the classical approach to nematode taxonomy and provides reader with a bit of background to the applications of protein and DNA-based methods for identification nematodes. The review also outlines the pros and cons of the use of DNA barcoding in nematology and explains how DNA metabarcoding has been applied in nematology through next-generation sequencing.
E. Ashley Shaw, Karolien Denef, Cecilia Milano de Tomasel, M. Francesca Cotrufo, and Diana H. Wall
SOIL, 2, 199–210, https://doi.org/10.5194/soil-2-199-2016, https://doi.org/10.5194/soil-2-199-2016, 2016
Short summary
Short summary
We investigated fire's effects on root decomposition and carbon (C) flow to the soil food web. We used 13C-labeled dead roots buried in microcosms constructed from two burn treatment soils (annual and infrequent burn). Our results showed greater root decomposition and C flow to the soil food web for the annual burn compared to infrequent burn treatment. Thus, roots are a more important C source for decomposers in annually burned areas where surface plant litter is frequently removed by fire.
E. Gagnarli, D. Goggioli, F. Tarchi, S. Guidi, R. Nannelli, N. Vignozzi, G. Valboa, M. R. Lottero, L. Corino, and S. Simoni
SOIL, 1, 527–536, https://doi.org/10.5194/soil-1-527-2015, https://doi.org/10.5194/soil-1-527-2015, 2015
Cited articles
Adams, D. C., Gurevitch, J., and Rosenberg, M. S.: Resampling tests for meta-analysis of ecological data, Ecology, 78, 1277–1283, 1997.
Andrén, O. and Balandreau, J.: Biodiversity and soil functioning – from black box to can of worms?, Appl. Soil Ecol., 13, 105–108, 1999.
Araujo, P. I., Yahdjian, L., and Austin, A. T.: Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?, Oecologia, 168, 221–230, 2012.
Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., and Schmid, B.: Quantifying the evidence for biodiversity effects on ecosystem functioning and services, Ecol. Lett., 9, 1146–1156, 2006.
Bardgett, R.: The Biology of Soil, Oxford University Press, New York, USA, 2005.
Bardgett, R., Freeman, C., and Ostle, N. J.: Microbial contributions to climate change though carbon cycle feedbacks, Int. Soc. Micro. Ecol. J., 2, 805–814, 2008.
Baxter, J. W. and Dighton, J.: Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions, New Phytol., 152, 139–149, 2001.
Bell, T., Newman, A. J., Silverman, B. W., Turner, S. L., and Lilley, A. K.: The contribution of species richness and composition to bacterial services, Nature, 436, 1157–1160, 2005.
Bengtsson, J.: Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relationships between biodiversity and ecosystem functioning, Appl. Soil Ecol., 10, 191–199, 1998.
Berg, B. and Laskowski, R.: Advances in ecological research, in: Litter decomposition: A guide to carbon and nutrient turnover, Elsevier Academic Press, San Diego, California, USA, 2006.
Bezemer, T. M., De Deyn, G. B., Bossinga, T. M., van Dam, N. M., Harvey, J. A., and Van der Putten, W. H.: Soil community composition drives aboveground plant-herbivore-parasitoid interactions, Ecol. Lett., 8, 652–661, 2005.
Bignell, D. E. and Eggleton, P.: Termites in ecosystems, in: Termites: Evolution, Sociality, Symbiosis, Ecology, edited by: Abe, T., Bignell, D. E., and Higashi, M., Kluwer Academic, Dordrecht, Netherlands, 363–387, 2000.
Bonkowski, M. and Roy, J.: Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms, Oecologia, 143, 232–240, 2005.
Borer, E. T., Seabloom, E. W., Mitchell, C. E., and Cronin, J. P.: Multiple nutrient and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland, Oikos, 123, 214–224, 2014.
Bradford, M. A., Jones, T. H., Bardgett, R. D., Black, H. I. J., Boag, B., Bonkowski, M., Cook, R., Eggers, T., Gange, A. C., Grayston, S. J., Kandeler, E., McCaig, A. E., Newington, J. E., Prosser, J. I., Setälä, H., Staddon, P. L., Tordoff, G. M., Tscherko, D., and Lawton, J. H.: Impacts of soil faunal community composition on model grassland ecosystems, Science, 298, 615–618, 2002.
Bradford, M. A., Tordoff, G. M., Black, H. I. J, Cook, R., Eggers, T., Garnett, M. H., Grayston, S. J., Hutcheson, K. A., Ineson, P., Newington, J. E., Ostle, N., Sleep, D., Stott, A., and Jones, T. H.: Carbon dynamics in a model grassland with functionally different soil communities, Funct. Ecol., 21, 690–697, 2007.
Briones, M. J. I.: Soil fauna and soil functions: a jigsaw puzzle, Front. Environ. Sci., 2, 1–22, 2014.
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., and Naeem, S.: Biodiversity loss and its impact on humanity, Nature, 486, 59–67, 2012.
Carrillo, Y., Ball, B. A., Bradford, M. A., Jordan, C. F., and Molina, M.: Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil, Soil Biol. Biochem., 43, 1440–1449, 2011.
Casper, B. B. and Jackson, R. B.: Plant competition underground, Annu. Rev. Ecol. Syst., 28, 545–570, 1997.
Clark, C. M. and Tilman, D.: Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands, Nature, 451, 712–715, 2008.
Cole, L., Dromph, K. M., Boaglio, V., and Bardgett, R. D.: Effect of density and species richness of soil mesofauna on nutrient mineralisation and plant growth, Biol. Fert. Soils, 39, 337–343, 2004.
Collison, E. J., Riutta, T., and Slade, E. M.: Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions, Acta Oecol., 47, 30–36, 2013.
Conen, F., Yakutin, M., and Sambuu, A.: Potential for detecting changes in soil organic carbon concentrations resulting from climate change, Glob. Change Biol., 9, 1515–1520, 2003.
Cong, W. F., van Ruijven, J., Mommer, L., De Deyn, G. B., Berendse, F., and Hoffland, E.: Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes, J. Ecol., 102, 1163–1170, 2014.
Cortet, J., Joffre, R., Elmholt, S., and Krogh, P. H.: Increasing species and trophic diversity of mesofauna affects fungal biomass, mesofauna community structure and organic matter decomposition processes, Biol. Fert. Soils, 37, 302–312, 2003.
Cox, P., Wilkinson, S. P., and Anderson, J. M.: Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter, Biol. Fert. Soils, 33, 246–251, 2001.
Cragg, R. G. and Bardgett, R. D.: How changes in soil faunal diversity and composition within a trophic group influence decomposition processes, Soil Biol. Biochem., 33, 2073–2081, 2001.
Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models, Glob. Change Biol., 7, 357–373, 2001.
Curtis, P. S. and Wang, X. Z.: A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology, Oecologia, 113, 299–313, 1998.
de Deyn, G. B. and Van der Putten, W. H.: Linking aboveground and belowground diversity, Trends Ecol. Evol., 20, 625–633, 2005.
de Graaff, M.-A., van Groenigen, K. J., Six, J., Hungate, B., and van Kessel, C.: Interactions between plant growth and soil nutrient cycling under elevated CO2: a Meta-Analysis, Glob. Change Biol., 12, 1–15, 2006.
De Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., Bracht H., Jørgensen, Brady, M. V., Christensen, S., de Ruiter, P. C., d'Hertefeldt, T., Frouzk, J., Hedlund, K., Hemerik, L., Hol, W. H. G., Hotes, S., Mortimer, S. R., Setälä, H., Sgardelis, S. P., Uteseny, K., van der Putten W. H., Wolters, V., and Bardgett, R. D.: Soil food web properties explain ecosystem services across European land use systems, Proc. Natl. Acad. Sci. USA, 110, 14296–14301, 2013.
Dilly, O., Bloem, J., Vos, A., and Munch, J. C.: Bacterial diversity in agricultural soils during litter decomposition, Appl. Environ. Microbiol., 70, 468–474, 2004.
Edsberg, E.: The quantitative influence of enchytraeids (Oligochaeta) and microarthropods on decomposition of coniferous raw humus in microcosms, Pedobiologia, 44, 132–147, 2000.
Edwards, C. A.: Soil invertebrate controls and microbial interactions in nutrient and organic matter dynamics in natural and agroecosystems, in: Invertebrates as Webmasters in Ecosystems, edited by: Coleman, D. and Hendrix, P., CAB International, Wallingford, UK, 141–159, 2000.
Eisenhauer, N. and Schädler, M.: Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions, Oecologia, 165, 403–415, 2011.
Eisenhauer, N., Horsch, V., Moeser, J., and Scheu, S.: Synergistic effects of microbial and animal decomposers on plant and herbivore performance, Basic Appl. Ecol., 11, 23–34, 2010.
Eisenhauer, N., Milcu, A., Sabais, A. C. W., Bessler, H., Brenner, J., Engels, C., Klarner, B., Maraun, M., Partsch, S., Roscher, C., Schonert, F., Temperton, V. M., Thomisch, K., Weigelt, A., Weisser, W. W., and Scheu, S.: Plant Diversity Surpasses Plant Functional Groups and Plant Productivity as Driver of Soil Biota in the Long Term, PLoS One. 2011 Jan 7, e16055, https://doi.org/10.1371/journal.pone.0016055.5, 2011a.
Eisenhauer, N., Sabais, A. C. W., and Scheu, S.: Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity, Soil Biol. Biochem., 43, 1697–1704, 2011b.
Fischer J. and Lindenmayer, D. B.: Landscape modification and habitat fragmentation: A synthesis, Global Ecol. Biogeogr., 16, 265–280, 2007.
Fitter, A. H., Gilligan, C. A., Hollingworth, K., Kleczkowski, A., Twyman, R. M., Pitchford, J. W., and Programme, N. S. B.: Biodiversity and ecosystem function in soil, Funct. Ecol., 19, 369–377, 2005.
Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F., Sorensen, S. J., Baath, E., Bloem, J., de Ruiter, P. C., Dolfing, J., and Nicolardot, B.: Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship, Oikos, 90, 279–294, 2000.
Griffiths, B. S., Ritz, K., Wheatley, R., Kuan, H. L., Boag, B., Christensen, S., Ekelund, F., Sorensen, S. J., Muller, S., and Bloem, J.: An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities, Soil Biol. Biochem., 33, 1713–1722, 2001.
Griffiths, B. S., Kuan, H. L., Ritz, K., Glover, L. A., McCaig, A. E., and Fenwick, C.: The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil, Microb. Ecol., 47, 104–113, 2004.
Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J., Makkonen, M., McKie, B. G., Malmqvist, B., Peeters, E. T. H. M., Scheu, S., Schmid, B., van Ruijven, J., Vos, V. C. A., and Hättenschwiler, S.: Consequences of biodiversity loss for litter decomposition across biomes, Nature, 509, 218–221, 2014.
Hanson, C. A., Allison, S. D., Bradford, M. A., Wallenstein, M. D., and Treseder, K. K.: Fungal taxa target different carbon sources in forest soil, Ecosystems, 11, 1157–1167, 2008.
Harmon, M. E., Nadelhoffer, K. J., and Blair, J. M.: Measuring decomposition, nutrient turnover, and stores in plant litter, in: Standard Soil Methods for Long-Term Ecol. Res., edited by: Robertson, G. P., Coleman, D. C., Bledsoe, C. S., and Sollins, P., Oxford University Press, New York, USA, 202–240, 1999.
Heal, O. W., Anderson, J. M., and Swift, M. J.: Plant litter quality and decomposition: an historical overview, in: Driven by Nature: plant Litter Quality and Decomposition, edited by: Cadisch, G. and Giller, K. E., CAB International, Wallingford, England, 3–30, 1997.
Hedges, L. V. and Olkin, I.: Statistical Methods for Meta-Analysis, Academic Press, San Diego, California, USA, 1985.
Hedlund, K. and Ohrn, M. S.: Tritrophic interactions in a soil community enhance decomposition rates, Oikos, 88, 585–591, 2000.
Heemsbergen, D. A., Berg, M. P., Loreau, M., van Haj, J. R., Faber, J. H., and Verhoef, H. A.: Biodiversity effects on soil processes explained by interspecific functional dissimilarity, Science, 306, 1019–1020, 2004.
Heneghan, L., Coleman, D. C., Zou, X., Crossley, D. A., and Haines, B. L.: Soil microarthropod contributions to decomposition dynamics: Tropical-temperate comparisons of a single substrate, Ecology, 80, 1873–1882, 1999.
Hol, W. H., De Boer, W., Termorshuizen, A. J., Meyer, K. M., Schneider, J. H. M., van Dam, N. M., van Veen, J. A., and Van Der Putten, W. H.: Reduction of rare soil microbes modifies plant–herbivore interactions, Ecol. Lett., 13, 292–301, 2010.
Holland, E. A., Robertson, G. P., Greenberg, J., Groffman, P. M., Boone, R. D., and Gosz, J. R.: Soil CO2, N2O, and CH4 exchange, in: Standard Soil Methods for Long-term Ecol. Res., edited by: Robertson, G. P., Bleddsoe, C. S., Coleman, D. C., and Sollins, P., Oxford University Press, New York, USA, 185–201,1999.
Hooper, D. U., Bignell, D. E., Brown, V. K., Brussaard, L., Dangerfield, J. M., Wall, D. H., Wardle, D. A., Coleman, D. C., Giller, K. E., Lavelle, P., Van der Putten, W. H., De Ruiter, P. C., Rusek, J., Silver, W. L., Tiedje, J. M., and Wolters, V.: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks, Bioscience, 50, 1049–1061, 2000.
Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L., and O'Connor, M. I.: A global synthesis reveals biodiversity loss as a major driver of ecosystem change, Nature, 486, 105–129, 2012.
Huang, C. Y., Hendrix, P. F., Fahey, T. J., Bohlen, P. J., and Groffman, P. M.: A simulation model to evaluate the impacts of invasive earthworms on soil carbon dynamics, Ecol. Model, 221, 2447–2457, https://doi.org/10.1016/j.ecolmodel.2010.06.023, 2010.
Hungate, B. A., Jackson, R. B., Field, C. B., and Chapin, F. S.: Detecting changes in soil carbon in CO2 enrichment experiments, Plant Soil, 187, 135–145, 1996.
Hungate, B. A., van Groenigen, K. J., Six, J., Jastrow, J. D., Luo, Y. Q., de Graaff, M. A., van Kessel, C., and Osenberg, C. W.: Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses, Glob. Change Biol., 15, 2020–2034, 2009.
Ingham, R. E., Trofymow, J. A., Ingham, E. R., and Coleman, D. C.: Interactions of bacteria, fungi and their nemotode grazers: effects on nutrient cycling and plant growth, Ecol. Monogr., 2055, 119–140, 1985.
Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., Reich, P. B., Scherer-Lorenzen, M., Schmid, B., Tilman, D., van Ruijven, J., Weigelt, A., Wilsey, B. J., Zavaleta, E. S., and Loreau, M.: High plant diversity is needed to maintain ecosystem services, Nature, 477, 199–U196, 2011.
Jastrow, J. D., Amonette, J. E., and Bailey, V. L.: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration, Climatic Change, 80, 5–23, 2007.
Johnson, D. W. and Curtis, P. S.: Effects of forest management on soil C and N storage: meta analysis, Forest Ecol. Manag., 140, 227–238, 2001.
Laakso, J. and Setälä, H.: Sensitivity of primary production to changes in the architecture of belowground food webs, Oikos, 87, 57–64, 1999.
Ladygina, N., Henry, F., Kant, M. R., Koller, R., Reidinger, S., Rodriguez, A., Saj, S., Sonnemann, I., Witt, C., and Wurst, S.: Additive and interactive effects of functionally dissimilar soil organisms on a grassland plant community, Soil Biol. Biochem., 42, 2266–2275, 2010.
Lal, R.: Soil carbon sequestration to mitigate climate change, Geoderma, 123, 1–22, 2004.
LeBauer, D. S.: Litter degradation rate and beta-glucosidase activity increase with fungal diversity, Can. J. Forest Res., 40, 1076–1085, 2010.
Liebich, J., Schloter, M., Schaffer, A., Vereecken, H., and Burauel, P.: Degradation and humification of maize straw in soil microcosms inoculated with simple and complex microbial communities, Eur. J. Soil Sci., 58, 141–151, 2007.
Liiri, M., Setälä, H., Haimi, J., Pennanen, T., and Fritze, H.: Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed, Oikos, 96, 137–149, 2002.
Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R., and Chapin III, F. S.: Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization, Nature, 431, 440–443, 2004.
Magurran, A. E.: Species abundance distributions: pattern or process? Funct. Ecol., 19, 177–181, 2005.
Maherali, H. and Klironomos, J. N.: Influence of phylogeny on fungal community assembly and ecosystem functioning, Science, 316, 1746–1748, 2007.
Maron, J. L., Marlet, M., Klironomos, J. N., and Cleveland, C. C.: Soil fungal pathogens and the relationship between plant diversity and productivity, Ecol. Lett., 14, 36–41, 2011.
McKane, R. B., Grigal, D. F., and Russelle, M. P.: Spatiotemporal differences in N-15 uptake and the organization of an old-field plant community, Ecology, 71, 1126–1132, 1990.
Mikola, J. and Setälä, H.: Productivity and trophic-level biomasses in a microbial-based soil food web, Oikos, 82, 158–168, 1998a.
Mikola, J. and Setälä, H.: Relating species diversity to ecosystem functioning: mechanistic backgrounds and experimental approach with a decomposer food web, Oikos, 83, 180–194, 1998b.
Milcu, A. and Manning, P.: All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment, Oikos, 120, 1366–1370, 2011.
Milcu, A., Partsch, S., Scherber, C., Weisser, W. W., and Scheu, S.: Earthworms and legumes control litter decomposition in a plant diversity gradient, Ecology, 89, 1872–1882, 2008.
Millennium Ecosystem Assessment (MEA), Ecosystems and Human Well-being: Synthesis, available at: www.millenniumassessment.org/documents/document.356.aspx.pdf (last access: 25 June 2014), 2006.
Nielsen, U. N., Ayres, E., Wall, D. H., and Bardgett, R. D.: Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships, Eur. J. Soil Sci., 62, 105–116, 2011.
Orwin, K. H., Wardle, D. A., and Greenfield, L. G.: Ecological consequences of carbon substrate identity and diversity in a laboratory study, Ecology, 87, 580–593, 2006.
Peters, R. H.: The Ecological Implications of Body Size, Cambridge University Press, Cambridge, UK, 1983.
Petersen, H. and Luxton, M.: A comparative-analysis of soil fauna populations and their role in decomposition processes, Oikos, 39, 287–388, 1982.
Phoenix, G. K., Hicks W. K., Cinderby, S., Kuylenstierna, J. C. I. Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D. B., Gimeno, B. S., Ashmore, M. R., and Ineson, P.: Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts, Glob. Change Biol., 12, 470–476, 2006.
Progar, R. A., Schowalter, T. D., Freitag, C. M., and Morrell, J. J.: Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon, Oecologia, 124, 426–431, 2000.
Prosser, J. I. and Nicol, G. W.: Archaeal and bacterial ammonia oxidisers in soil: the quest for niche specialisation and differentiation, Trends Microbiol., 20, 523–531, 2012.
Reich, P. B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S. E., Flynn, D. F. B., and Eisenhauer, N.: Impacts of biodiversity loss escalate through time as redundancy fades, Science, 336, 589–592, 2012.
Risch, A. C., Haynes, A. G., Busse, M. D., Filli, F., and Schutz, M.: The Response of Soil CO2 Fluxes to Progressively Excluding Vertebrate and Invertebrate Herbivores Depends on Ecosystem Type, Ecosystems, 16, 1192–1202, 2013.
Roesch, L. F., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G., and Triplett, E. W.: Pyrosequencing enumerates and contrasts soil microbial diversity, Int. Soc. Micro. Ecol. J., 1, 283–290, 2007.
Rosenberg, M. S., Adams, D. C., and Gurevitch, J.: MetaWin: Statistical Software for Meta-Analysis, Version 2.0, Sinauer Associates, Sunderland, Massachussettes, USA, 2000.
Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., and Woolmer, G.: The human footprint and the last of the wild, Bioscience, 52, 891–904, 2002.
Schenk, H. J., Callaway, R. M., and Mahall, B. E.: Spatial root segregation: Are plants territorial?, Adv. Ecol. Res., 28, 145–180, 1999.
Scherber, C., Eisenhauer, N., Weisser, W. W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.D., Roscher, C., Weigelt, A., Allan, E., Bessler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, L. W., Ebeling, A., Engels, C., Halle, S., Kertscher, I., Klein, A. M., Koller, R., Konig, S., Kowalski, E., Kummer, V., Kuu, A., Lange, M., Lauterbach, D., Middelhoff, C., Migunova, V. D., Milcu, A., Muller, R., Partsch, S., Petermann, J. S., Renker, C., Rottstock, T., Sabais, A., Sechi, V., D'Annibale, A., Ambus, P., Sárossy, Z., Krogh, P. H., Eriksen, J., and Holmstrup, M.: Collembola feeding habits and niche specialization in agricultural grasslands of different composition, Soil Biol. Biochem., 74, 3138, https://doi.org/10.1016/j.soilbio.2014.02.019, 2014.
Scheu, S., Schlitt, N., Tiunov, A. V., Newington, J. E., and Jones, T. H.: Effects of the presence and community composition of earthworms on microbial community functioning, Oecologia, 133, 254–260, 2002.
Setälä, H.: Sensitivity of ecosystem functioning to changes in trophic structure, functional group composition and species diversity in belowground food webs, Ecol. Res., 17, 207–215, 2002.
Setälä, H. and Huhta, V.: Soil fauna increase Betula pendula growth: laboratory experiments with coniferous forest floor, Ecology, 72, 665–671, 1991.
Setälä, H. and McLean, M. A.: Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi, Oecologia, 139, 98–107, 2004.
Setälä, H., Berg, M. P., and Jones, T. H.: Trophic structure and functional redundancy in soil communities, in: Biological diversity and function in soils, edited by: Bardgett, R. D., Hopkins, D. W., and Usher, M. B., Cambridge University Press, 236–249, 2005.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant Soil, 241, 155–176, 2002.
Slade, E. M. and Riutta, T.: Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments, Basic Appl. Ecol., 13, 423–431, 2012.
Smith, P.: How long before a change in soil organic carbon can be detected? Glob. Change Biol., 10, 1878–1883, 2004.
Steinbeiss, S., Bessler, H., Engels, C., Temperton, V. M., Buchmann, N., Roscher, C., Kreutziger, Y., Baade, J., Habekost, M., and Gleixner, G.: Plant diversity positively affects short-term soil carbon storage in experimental grasslands, Glob. Change Biol., 14, 2937–2949, 2008.
Stevens, C. J.: Impact of nitrogen deposition on the species richness of grasslands, Science, 303, 1876–1879, 2004.
Sulkava, P., Huhta, V., Laakso, J., and Gylen, E. R.: Influence of soil fauna and habitat patchiness on plant (Betula pendula) growth and carbon dynamics in a microcosm experiment, Oecologia, 129, 133–138, 2001.
Szlavecz, K., McCormick, M., Xia, L. J., Saunders, J., Morcol, T., Whigham, Filley, D. T., and Csuzdi, C.: Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests, Biol. Invasions, 13, 1165–1182, 2011.
Tilman, D., Wedin, D., and Knops, J.: Productivity and sustainability influenced by biodiversity in grassland ecosystems, Nature, 379, 718–720, 1996.
Tilman, D., Hill, J., and Lehman, C.: Carbon-negative biofuels from low-input high-diversity grassland biomass, Science, 314, 1598–1600, 2006.
Tiunov, A. V. and Scheu, S.: Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities, Ecol. Lett., 8, 618–625, 2005.
Toljander, Y. K., Lindahl, B. D., Holmer, L., and Hogberg, N. O. S.: Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi, Oecologia, 148, 625–631, 2006.
van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I. R.: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature, 396, 69–72, 1998.
van der Heijden, M. G. A., Wiemken, A., and Sanders, I. R.: Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant, New Phytol., 157, 569–578, 2003.
van der Heijden, M. G. A., Bardgett, R. D., and van Straalen, N. M.: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems, Ecol. Lett., 11, 296–310, 2008.
van Groenigen, K. J., Six, J., Hungate, B., de Graaff, M.-A., van Breemen, N., and van Kessel, C.: Element interactions limit soil carbon storage, Pro. Natl. Aca. Sci., 103, 6571–6574, 2006.
van Ruijven, J. and Berendse, F.: Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms, Proc. Natl. Acad. Sci. USA, 102, 695–700, 2005.
Vitousek, P. M. and Mooney, H. A.: Human domination of earth's ecosystems, Science, 277, 494–499, https://doi.org/10.1126/science.277.5325.494, 1997.
Wagg, C., Bender, S. F., Widmer, F., and van der Heijden, M. G. A.: Soil biodiversity and soil community composition determine ecosystem multifunctionalityl, Proc. Natl. Acad. Sci. USA, 111, 5266–5270, 2014.
Wall, D. H., Bradford, M. A., St John, M. G., Trofymow, J. A., Behan-Pelletier, V., Bignell, D. D. E., Dangerfield, J. M., Parton, W. J., Rusek, J., Voigt, W., Wolters, V., Gardel, H. Z., Ayuke, F. O., Bashford, R., Beljakova, O. I., Bohlen, P. J., Brauman, A., Flemming, S., Henschel, J. R., Johnson, D. L., Jones, T. H., Kovarova, M., Kranabetter, J. M., Kutny, L., Lin, K. C., Maryati, M., Masse, D., Pokarzhevskii, A., Rahman, H., Sabara, M. G., Salamon, J. A., Swift, M. J., Varela, A., Vasconcelos, H. L., White, D., and Zou, X. M.: Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent, Glob. Change Biol., 14, 2661–2677, 2008.
Wall, D. H., Bardgett, R. D., and Kelly, E. F.: Biodiversity in the dark, Nat. Geosci., 3, 297–298, 2010.
Wardle, D. A.: Is "sampling effect" a problem for experiments investigating biodiversity-ecosystem function relationships?, Oikos, 87, 403–407, 1999.
Wardle, D. A., Bonner, K. I., Barker, G. M., Yeates, G. W., Nicholson, K. S., Bardgett, R. D., Watson, R. N., and Ghani, A.: Plant removals in perennial grassland: Vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties, Ecol. Monogr., 69, 535–568, 1999.
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., and Wall, D. H.: Ecological linkages between aboveground and belowground biota, Science, 304, 1629–1633, 2004.
Wardle, D. A., Bardgett, R. D., Callaway, R. M., and Van der Putten, W. H.: Terrestrial Ecosystem Responses to Species Gains and Losses, Science, 332, 1273–1277, 2011.
Warren, R. J. and Bradford, M. A.: Ant colonization and coarse woody debris decomposition in temperate forests, Insect. Soc., 59, 215–221, 2012.
Wertz, S., Degrange, V., Prosser, J. I., Poly, F., Commeaux, C., Freitag, T., Guillaumaud, N., and Le Roux, X.: Maintenance of soil functioning following erosion of microbial diversity, Environ. Microbiol., 8, 2162–2169, 2006.
Wilkinson, A., Solan, M., Taylor, A. F. S., Alexander, I. J., and Johnson, D.: Intraspecific Diversity Regulates Fungal Productivity and Respiration, Plos One, 5, https://doi.org/10.1371/journal.pone.0012604, 2010.
Wilkinson, A., Alexander, I. J., and Johnson, D.: Species richness of ectomycorrhizal hyphal necromass increases soil CO2 efflux under laboratory conditions, Soil Biol. Biochem., 43, 1350–1355, 2011.
Wilkinson, A., Solan, M., Alexander, I., and Johnson, D.: Species richness and nitrogen supply regulate the productivity and respiration of ectomycorrhizal fungi in pure culture, Fungal Ecol., 5, 211–222, 2012.
Yang, X. D. and Chen, J.: Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China, Soil Biol. Biochem., 41, 910–918, 2009.
Zimmer, M., Kautz, G., and Topp, W.: Do woodlice and earthworms interact synergistically in leaf litter decomposition?, Funct. Ecol., 19, 7–16, 2005.