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Abstract. Loss of biodiversity impacts ecosystem functions, such as carbon (C) cycling. Soils are the largest
terrestrial C reservoir, containing more C globally than the biotic and atmospheric pools together. As such,
soil C cycling, and the processes controlling it, has the potential to affect atmospheric CO2 concentrations and
subsequent climate change. Despite the growing evidence of links between plant diversity and soil C cycling,
there is a dearth of information on whether similar relationships exist between soil biodiversity and C cycling.
This knowledge gap occurs even though there has been increased recognition that soil communities display high
levels of both taxonomic and functional diversity and are key drivers of fluxes of C between the atmosphere
and terrestrial ecosystems. Here, we used meta-analysis and regression analysis to quantitatively assess how soil
biodiversity affects soil C cycling pools and processes (i.e., soil C respiration, litter decomposition, and plant
biomass). We compared the response of process variables to changes in diversity both within and across groups
of soil organisms that differed in body size, a grouping that typically correlates with ecological function. When
studies that manipulated both within- and across-body size group diversity were included in the meta-analysis,
loss of diversity significantly reduced soil C respiration (—27.5 %) and plant tissue decomposition (—18 %) but
did not affect above- or belowground plant biomass. The loss of within-group diversity significantly reduced
soil C respiration, while loss of across-group diversity did not. Decomposition was negatively affected both by
loss of within-group and across-group diversity. Furthermore, loss of microbial diversity strongly reduced soil
C respiration (—41%). In contrast, plant tissue decomposition was negatively affected by loss of soil faunal
diversity but was unaffected by loss of microbial diversity. Taken together, our findings show that loss of soil
biodiversity strongly impacts on soil C cycling processes, and highlight the importance of diversity across groups
of organisms (e.g., primary consumers and secondary decomposers) for maintaining full functionality of C cycle
processes. However, our understanding of the complex relationships between soil biodiversity and C cycling
processes is currently limited by the sheer number of methodological concerns associated with these studies,
which can greatly overestimate or underestimate the impact of soil biodiversity on soil C cycling, challenging
extrapolation to natural field settings. Future studies should attempt to further elucidate the relative importance
of taxonomic diversity (species numbers) versus functional diversity.
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1 Introduction

Reductions in biodiversity have been linked with anthro-
pogenic global change drivers such as climatic change, land
cover change, reduction and fragmentation of natural ar-
eas, and human dependence on synthetic fertilizers (Vitousek
and Mooney, 1997; Sanderson et al., 2002; Stevens, 2004;
Phoenix et al., 2006; Fischer and Lindenmayer, 2007; Clark
and Tilman, 2008). Over the past few hundred years, human
activities have driven the species extinction rate to ca. 1000
times the typical background extinction rate (MEA, 2006).
This global decline in biodiversity impacts important ecosys-
tem functions, such as net primary production (NPP) and bio-
geochemical cycles of carbon (C) and nutrients, threatening
the services that ecosystems provide to the human population
(Wardle et al., 2011; Cardinale et al., 2012).

The C cycle is a particularly important ecosystem service
because the dynamic balance between C stored in ecosys-
tems and in the atmosphere plays a key regulatory role in
the global climate. Although vegetation stores a significant
amount of C, soils are the largest terrestrial C reservoir,
containing more C globally than the biotic and atmospheric
pools combined (Lal, 2004). As such, soil C dynamics, and
the processes that influence them, have the potential to im-
pact atmospheric carbon dioxide (CO2) concentrations and
subsequent global change. Perturbations in terrestrial ecosys-
tems that influence soil C dynamics could help mitigate
the current rise in atmospheric CO, and associated climate
change by promoting soil C storage (e.g., Cramer et al., 2001;
Johnson and Curtis, 2001). Alternatively, they could exac-
erbate climate change by causing increased soil CO, efflux
rates through increased decomposition rates of soil organic
C (SOC) (e.g., Mack et al., 2004; Bardgett et al., 2008).

Loss of biodiversity has the potential to influence climate
change if it alters SOC pools by reducing ecosystem C uptake
or by increasing CO, outputs from terrestrial ecosystems to
the atmosphere (Jastrow et al., 2007). Greater plant species
diversity can increase C uptake by promoting biomass pro-
duction (Tilman et al., 2006; Cardinale et al., 2012), which
can enhance SOC storage (Fornara and Tilman, 2008; Stein-
beiss et al., 2008; Cong et al., 2014). Conversely, declines in
plant species diversity can reduce SOC storage (Hooper et
al., 2012). Despite the growing body of evidence suggesting
strong links between plant species diversity and soil C cy-
cling, there is a dearth of information on whether similar rela-
tionships exist between biodiversity of soil organisms (here-
after “soil biodiversity”) and C cycling (Nielsen et al., 2011).
With ongoing losses in diversity belowground (Hooper et al.,
2000), understanding relationships between soil biodiversity
and C cycling is critical for projecting how loss of diversity
under continued human alteration of the environment will
impact global C cycling processes.

Soil communities typically have high levels of both taxo-
nomic and functional diversity (e.g., De Deyn and Van der
Putten, 2005). High taxonomic diversity, small sizes of or-
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ganisms, and large population sizes make characterization
of soil communities much less straightforward than that of
plant communities. As such, characterization of soil organ-
isms is often based on body size (e.g., Bradford et al., 2002),
grouping organisms into macrofauna (> 2 mm) such as earth-
worms, mesofauna (100 um~2 mm) such as mites and spring-
tails, microfauna (< 100 um) such as nematodes and proto-
zoa, and soil microorganisms including bacteria and sapro-
phytic and mycorrhizal fungi. These body size classes typi-
cally are useful functional groupings as they correlate with
metrics such as metabolic rate, generation time, and food
size (Peters, 1983). Estimates suggest that 1 g of soil can har-
bor tens of thousands of bacterial taxa; up to 200 m of fun-
gal hyphae; and a wide range of micro-, meso-, and macro-
fauna (Roesch et al., 2007; Bardgett, 2005). This complex
soil community plays an important role in determining the
magnitude and direction of C fluxes between the atmosphere
and terrestrial ecosystems, controlling soil C mineralization
and promoting plant growth by regulating soil nutrient avail-
ability (e.g., De Deyn and Van der Putten, 2005; Fitter et
al., 2005; Wall et al., 2010; de Vries et al., 2013). Despite
a general consensus that the soil community is integral to the
global C cycle, the impact of soil community diversity on
ecosystem function is still little understood (Nielsen et al.,
2011; Briones, 2014).

The positive impact of plant species diversity on soil C cy-
cling processes can be mirrored in the soil community, with
reported positive relationships between soil biodiversity and
C cycling processes (e.g., Setéld, 2002; Heemsbergen et al.,
2004). However, evidence suggests that this positive relation-
ship is not universal, as other studies have found no signif-
icant impacts of soil biodiversity on C cycling (e.g., Grif-
fiths et al., 2000). Understanding the relationship between
soil biodiversity and C cycling is thus not so much a ques-
tion of “does diversity matter?” but rather “under which cir-
cumstances does soil diversity affect C cycling?”. One pos-
sibility for addressing this question is to consider the role of
functional similarity among taxa, because relatively small or
no responses of ecosystem processes to loss or gain of soil
biodiversity would be expected in the case of functional re-
dundancy among soil organisms (Bengtsson, 1998; Andrén
and Balandreau, 1999; Setdld et al., 2005).

To date, studies have assessed soil community diversity
impacts on soil C cycling by manipulating diversity within
or across multiple organismal groups (specifics of group-
ing criteria differ among studies, but are often taxonomic,
functional, or body size groups). For example, studies have
manipulated the diversity within groups of microorganisms
(e.g., bacteria (Bonkowski and Roy, 2005; Griffiths et al.,
2000) and mycorrhizal fungi (van der Heijden et al., 1998;
Mabherali and Klironomos, 2007)), soil mesofauna (e.g., mi-
croarthropods; Liiri et al., 2002), and macrofauna (Heems-
bergen et al., 2004; Zimmer et al., 2005). Other studies have
manipulated the diversity across groups of soil organisms
that differ in body size (i.e., microbes, and micro-, meso-, or
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macrofauna) or, alternatively, have manipulated diversity of
trophic or functional groups (Hedlund and Ohrn, 2000; Lady-
gina et al., 2010). Although different taxa within soil micro-
bial (Cox et al., 2001; Hanson et al., 2008; Orwin et al., 2006)
or faunal (Bignell and Eggleton, 2000; Milcu et al., 2008;
Heemsbergen et al., 2004) groups can have unique impacts
on the C cycle, functional redundancy among taxa would be
expected to be reduced when a more complex food web of
organisms is manipulated (e.g., across different size classes
or feeding guilds) (Setald, 2002). Thus, studies assessing
biodiversity impacts on ecosystem processes across multiple
groups of soil organisms may yield very different answers
than studies that probe for biodiversity impacts within single
groups.

Although our knowledge of relationships between soil bio-
diversity and soil C cycling processes has increased with ex-
panding research emphasis in this area, a comprehensive un-
derstanding to date is hampered by a lack of quantitative syn-
thesis of existing studies. Nielsen et al. (2011) performed the
most extensive synthesis on this topic to date, with a quali-
tative analysis. They found that diversity is often positively
correlated with ecosystem function (e.g., soil respiration), al-
though they cautioned that negative relationships between
soil biodiversity and C cycling may be related to experimen-
tal limitations. In particular, Nielsen et al. (2011) found that
strong relationships between soil biodiversity and C cycling
were most common under unrealistically low levels of diver-
sity. Further, their synthesis showed that the soil community
composition, rather than species richness per se, had signif-
icant impacts on C cycling processes. This indicates high
levels of functional redundancy among soil organisms and
suggests that a loss of soil biodiversity may not necessarily
impact the C cycle.

We aimed to quantitatively assess how soil biodiversity af-
fects soil C cycling pools and processes using meta-analysis.
We tested the general hypothesis that soil biodiversity posi-
tively impacts the soil C cycle, where reductions in diversity
decrease soil C pools and process rates. Further, we tested
the hypothesis that biodiversity manipulations across groups
of organisms with different body sizes more strongly affect
C cycling processes than manipulations within groups, due to
a higher degree of functional redundancy within than across
groups (Andrén and Balandreau, 1999; Setald, 2002). In ad-
dition, we tested whether diversity of soil microbes versus
soil fauna (including micro-, meso-, and macrofauna) im-
pacts C cycling differently. Finally, since “biodiversity” is a
metric that differs greatly in absolute numbers for soil organ-
isms that differ in body size, we evaluated how the relative
loss of diversity (in percent) within body size groups (i.e.,
microbes, soil fauna) affects soil C cycling.
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2 Methods

2.1 Data compilation

We compiled published studies that explicitly manipulated
soil biodiversity and measured responses of soil C cycling
pools and/or processes. We systematically searched ISI Web
of Science using all possible combinations of one soil C
search term (plant biomass, soil C, decomposition, respira-
tion, or NPP), one soil organism search term (microbes, bac-
teria, fungi, microorganism*, soil fauna, soil biota, soil or-
ganism*, microfauna, mesofauna, macrofauna, nematode*,
collembola, acari, termite*, earthworm*), and the term “*di-
versity”. We used “*” as a wildcard character such that pa-
pers using either singular or plural terms were returned. Ad-
ditional relevant studies referenced in those returned by the
search engines were also included in the literature compila-
tion. While biodiversity sensu stricto includes both species
richness and abundance (Magurran, 2005), we follow the re-
cent nomenclature used in plant and soil studies and assume
that the number of species present in a community represents
the diversity of the community.

Each study included in our analysis presented data on
one or more commonly measured biogeochemical C pool
and/or process. Biogeochemical pool measurements were
plant biomass and soil C pools (either total soil C, dissolved
organic C (DOC), or microbial biomass). Measured biogeo-
chemical processes were soil C respiration and plant tissue
decomposition. The duration of manipulative experiments
included in this analysis ranged from 14 days to 3 years.
More studies were conducted under controlled laboratory
and greenhouse conditions rather than under field conditions
(37 and 8 studies, respectively). When extracting data from
these studies, we took values directly from published tables
or the text whenever possible. If necessary, we estimated val-
ues from graphical data with image analysis software (Im-
ageJ, National Institutes of Health, Bethesda, MD, USA).

In total we analyzed 45 published studies, of which 8 ex-
amined the effects of soil biodiversity on total plant biomass,
10 examined effects on aboveground plant biomass, 9 exam-
ined effects on root biomass, 13 examined effects on C res-
piration, 25 examined effects on decomposition, and 3 used
laboratory microcosms to examine effects on soil C pools
(Table 1). For soil C respiration, we included data that were
obtained from either laboratory or in situ incubation stud-
ies in which the substrate was soil only or soil with organic
amendments other than plant tissue (e.g., glucose). Labora-
tory studies typically estimated potential C mineralization
rates, using temperature and moisture conditions assumed to
be optimal for microbial activity. These measurements were
made in closed microcosms with flux rates estimated from
two or more repeated measurements of headspace gas con-
centrations. In situ studies used static or flow-through cham-
bers to measure CO; flux rates from the soil surface, and thus
would include both microbial heterotrophic and root (au-
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Table 1. Overview of studies used in the analyses.
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Response Body size Size Taxonomic Number of  Reference
variable group class group studies
Total plant biomass  Microbes <5um Ectomycorrhizal fungi 1 Baxter and Dighton (2001)
Mesofauna 100 um-2mm Microarthropods 2 Liiri et al. (2002), Eisenhauer and
Schédler (2011)
Microbes + microfauna <5-100 um Microflora, nematodes 1 Bezemer et al. (2005)
Microbes + macrofauna <5um, >2mm Fungi, earthworms 2 Eisenhauer et al. (2010), Eisenhauer
and Schadler (2011)
Mesofauna + macrofauna 100 um-> 2 mm Collembola, enchytraeids, earthworms 1 Eisenhauer and Schadler (2011)
Microbes + microfauna -+ mesofauna <5pm-2mm Bacteria, fungi, protozoa, nematodes, mi- 1 Sulkava et al. (2001)
croarthropods, enchytraeids
Shoot biomass Microbes <5um Ectomycorrhizal fungi 1 Baxter and Dighton (2001)
Mesofauna 100 pm-2mm Microarthropods 3 Liiri et al. (2002), Cole et al. (2004),
Eisenhauer and Schadler (2011)
Microbes + macrofauna <5pm, >2mm Fungi, earthworms 2 Eisenhauer et al. (2010), Eisenhauer
and Schadler (2011)
Mesofauna + macrofauna 100 um-> 2mm Collembola, enchytraeids, earthworms 1 Eisenhauer and Schédler (2011)
Microbes + microfauna + mesofauna <5pm-2mm Bacteria, fungi, protozoa, nematodes, mi- 1 Sulkava et al. (2001)
croarthropods, enchytraeids
Microbes + microfauna + mesofauna <5pm-2mm Bacteria, fungi, protozoa, microarthropods, 1 Laakso and Setala (1999)
enchytraeids
Microbes + microfauna + mesofauna  5pm->2mm Fungi, nematodes, enchytraeids, microarthro- 1 Ladygina et al. (2010)
-+ macrofauna pods, wireworms
Root biomass Microbes <5um Ectomycorrhizal fungi 1 Baxter and Dighton (2001)
Mesofauna 100 pm-2 mm Microarthropods 3 Liiri et al. (2002), Eisenhauer et
al. (2011), Eisenhauer and Schéadler
(2011)
Microbes + macrofauna <5um, >2mm Fungi, earthworms 2 Eisenhauer et al. (2010), Eisenhauer
and Schédler (2011)
Mesofauna + macrofauna 100 pm-> 2 mm Collembola, enchytraeids, earthworms 1 Eisenhauer and Schédler (2011)
Microbes + microfauna + mesofauna <5pm-2mm Bacteria, fungi, protozoa, nematodes, mi- 1 Sulkava et al. (2001)
croarthropods, enchytraeids
Microbes + microfauna + mesofauna  5pm->2mm Fungi, nematodes, enchytraeids, microarthro- 1 Ladygina et al. (2010)
-+ macrofauna pods, wireworms
Respiration Microbes <5um Bacteria 1 Wertz et al. (2006)
Microbes <5um Bacteria, fungi 3 Griffiths et al. (2000, 2001, 2004)
Microbes <5um Fungi 5 Wilkinson et al. (2010, 2011, 2012),
Tiunov and Scheu (2005), Setdld and
McLean (2004)
Macrofauna >2mm Earthworms 1 Scheu et al. (2002)
Microbes + mesofauna <5pm, 100pm-2mm  Microflora, enchytraeids, microarthropods 1 Edsberg (2000)
Mesofauna + macrofauna 100 pm-> 2 mm Not specified 1 Risch et al. (2013)
Microfauna + mesofauna + macro- 5pm->2mm Nematodes, enchytraeids, earthworms 1 Bradford et al. (2007)
fauna
Decomposition Microbes <5um Bacteria 1 Bell et al. (2005)
Microbes <5um Fungi 3 Progar et al. (2000), Toljander et
al. (2006), LeBauer et al. (2010)
Microbes <5um Bacteria, fungi 3 Griffiths et al. (2000, 2001), Liebich et
al. (2007)
Mesofauna 100 um-2mm Collembola 2 Cragg and Bardgett (2001), Eisenhauer
and Schadler (2011)
Macrofauna >2mm Woodlice, millipedes 1 Collison et al. (2013)
Macrofauna >2mm Woodlice, earthworms 1 Zimmer et al. (2005)
Microbes + microfauna <5um-100 pm Bacteria, fungi, nematodes 2 Mikola and Setala (1998a, b)
Microbes + mesofauna <5pm, 100pm-2mm  Microflora, enchytraeids, microarthropods 1 Edsberg (2000)
Microbes + mesofauna <5pm, 100pm-2mm  Fungi, collembola, mites 1 Hedlund and Ohrn (2000)
Microbes + macrofauna <5pm, >2mm Fungi, ants, termites 1 Warren and Bradford (2012)
Microbes + microfauna + mesofauna <5pm-2mm Bacteria, fungi, protozoa, nematodes, mi- 1 Sulkava et al. (2001)
croarthropods, enchytraeids
Microbes + microfauna + mesofauna <5pm-2mm Bacteria, fungi, nematodes, protozoa, collem- 1 Cortet et al. (2003)
bola, enchytraeids, mites
Microbes + microfauna + mesofauna <5pm-2mm Not specified 2 Heneghan et al. (1999), Wall et
al. (2008)
Microfauna + mesofauna + macro- 5pm->2mm Protozoa, nematodes, enchytraeids, arthropods, 1 Bradford et al. (2002)
fauna earthworms
Microbes + microfauna + mesofauna ~ <5pum->2mm Fungi, arthropods 1 Araujo et al. (2012)
-+ macrofauna
Microbes + microfauna + mesofauna  5pm->2mm Fungi, bacteria, protozoa, nematodes, mi- 1 Carrillo et al. (2011)
-+ macrofauna croarthropods
Microbes + microfauna + mesofauna  <5pm->2mm Not specified 1 Slade and Riutta (2012)
-+ macrofauna
Microbes + microfauna + mesofauna  <5pm->2mm Not specified 1 Yang and Chen (2009)
-+ macrofauna
Soil C Microbes <5um Bacteria, fungi 1 Liebich et al. (2007)
Mesofauna 100 pm-2mm Collembola 1 Cragg and Bardgett (2001)
Macrofauna >2mm Woodlice, earthworms 1 Zimmer et al. (2005)
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totrophic) respiration (Holland et al., 1999). Plant tissue de-
composition data were obtained from studies that measured
either litter mass loss through time or C respiration from
plant tissues decomposed under controlled laboratory con-
ditions. Litter mass loss analyses used mesh litterbags and
measured mass at two or more points in time (Harmon et al.,
1999). For studies in which the source of decomposed ma-
terial (i.e., soil or plant C) could be partitioned, data were
separated and included in soil C respiration or plant tissue
decomposition data groupings. For all biogeochemical pool
and process studies in which data were available from mul-
tiple measurement times, we calculated the mean value for
all measurement times and used only that value in the meta-
analysis.

Soil biodiversity impacts on C respiration and decomposi-
tion were assessed by manipulating biodiversity either within
a single body size group (i.e., microbes (including bacteria
and fungi), micro-, or meso-, or macrofauna) or across mul-
tiple body size groups (e.g., micro-, meso-, macrofauna; e.g.,
Bradford et al., 2002). We treated the within-body size and
across-body size groupings as two separate categories for the
analysis. For plant biomass, however, there were not enough
studies to run meta-analyses for individual categories. We
also categorized the studies by soil microorganisms or soil
fauna (micro-, meso-, and macro fauna grouped together due
to inadequate numbers of studies to split these up). Catego-
rizing studies in this manner allowed us to assess whether
species diversity within or across body size groups affected
C cycling differently, while also enabling us to compare the
relative impacts of diversity within the soil microbial com-
munity versus soil biodiversity within the soil faunal com-
munity.

Many of the studies we compiled assessed soil biodiver-
sity impacts on C cycling by quantifying responses to a di-
versity gradient (e.g., > 2 diversity levels). Inherent to this
design is the possibility for multiple comparisons among di-
versity treatments. For example, an analysis of how diver-
sity of a three species community (species a, b, and ¢) af-
fects ecosystem processes could yield a comparison of each
single-species community (a, b, or ¢) with the three-species
community (a + b + ¢). This comparison yields three obser-
vations: (1) “a” versus “a+b-+c”, (2) “b” versus “a+b-+c”,
and (3) “c” versus “a 4+ b+ ¢”. In our meta-analysis we did
not consider these three comparisons to be independent, but
we calculated the mean of the three single-species treatments
and then calculated one response variable based on the com-
parison between that one single-species mean and the three-
species community. Intermediate levels of diversity were ex-
cluded from the meta-analysis to avoid any individual study
from unduly weighting the analysis. This method prevented
studies with a large species diversity gradient (i.e., a multi-
tude of species included in the analysis) from dominating our
meta-analysis.

www.soil-journal.net/1/257/2015/

2.2 Statistical analyses

To test how soil microbial and/or soil faunal diversity af-
fects ecosystem C pools (plant biomass) and processes (C
respiration and decomposition), and to test whether biodiver-
sity manipulations across multiple body size groups affected
C cycling differently from manipulations within groups, we
analyzed the data set with meta-analysis (Curtis and Wang,
1998; Hungate et al., 2009), using the statistical software
MetaWin 2.0 (Rosenberg et al., 2000). We were unable to
use meta-analysis for soil C pools because the number of
studies available (3) was inadequate for a meaningful anal-
ysis. The response ratio (R) was calculated as the value of
a particular response variable at low diversity divided by the
value at high diversity. The natural log of the response ratio
R (InR) was used as a metric for all of the response vari-
ables (de Graaff et al., 2006; van Groenigen et al., 2006).
To ease interpretation of figures, the results for the analy-
ses on InR were back-transformed to response ratios and re-
ported as percentage change under a reduction in diversity
(that is, 100 x [R — 1]). Thus, for response variables where
there was no change between higher and lower diversity com-
munities, the change would equal 0. For cases with greater
values for response variables in low-diversity communities
than high-diversity communities, the percent change would
be would be positive, and lower values for response variables
in low-diversity communities than high-diversity communi-
ties would yield negative values for the percent change.

Conventional meta-analyses weight each individual obser-
vation by the reciprocal of the mixed model variance (Cur-
tis and Wang, 1998). However, such an analysis requires that
the standard deviations of individual studies be known. These
data were not available for a large proportion of the studies
used in our analysis. Thus, we weighted individual values in-
cluded in the analysis by experimental replication (Hedges
and Olkin, 1985; Adams et al., 1997), assuming that better-
replicated experiments resulted in data with lower variance.
We choose this metric because well-replicated studies pro-
vide more reliable estimates of the response of individual
variables (e.g., Hungate et al., 1996, 2009). We used boot-
strapping to calculate confidence intervals on mean effect
size estimates for the whole data set and for individual cate-
gories (Adams et al., 1997). We considered diversity effects
significant if the 95% confidence intervals did not overlap
with zero. In addition, we considered diversity effects for in-
dividual categories different from each other if they varied
significantly at the p < 0.05 level.

Further, we tested how a loss of belowground species di-
versity is linked to changes in C pools and processes by per-
forming linear regressions with percent change in species
diversity and the effect size (InR) of each of the response
variables. Percent change in diversity was calculated as (low
diversity — high diversity/high diversity) x 100. Since the ab-
solute number of species typically manipulated for diversity
gradient studies varies among species that differ in body size
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Plant biomass

L 2 Total biomass (17)
Py Aboveground
biomass (20)
Py Belowground
biomass (22)
-40 -30 -20 -10 0 10 20

Response to a reduction in soil biodiversity (%)

Figure 1. The percent response of total plant biomass, shoot
biomass, and root biomass to a change in soil community diver-
sity (i.e., “high” vs. “low” diversity). Studies included in the analy-
sis manipulated diversity of the soil microbial community, the soil
micro-, meso, or macrofaunal community or a combination of these
trophic groups. Data represent means with 95 % confidence inter-
vals; numbers in brackets represent the total number of data points
included in the analysis.

in absolute terms (i.e., many more species are usually present
in studies of microbial diversity than in studies of faunal di-
versity), we calculated relative differences in species diver-
sity for each treatment. Thus manipulation of microbial di-
versity might include a low-diversity treatment of 100 versus
a high-diversity treatment of 1000 species, while manipula-
tion of soil fauna might span from low diversity of 1 species
to high diversity of 10 species. Calculated as relative differ-
ences in diversity, both examples would be the same (i.e.,
low diversity is 10% of the number of species present in
high diversity). We performed two sets of regressions. The
first included all soil biodiversity levels, and the second in-
cluded the highest and lowest biodiversity levels only. We
used linear regression (SPSS v. 20) to regress InR against rel-
ative change in species diversity. We performed regressions
in which we considered InR (the effect size) between every
diversity level, and also regressions in which we only con-
sidered InR between the highest and lowest diversity levels,
omitting intermediate diversity levels.

3 Results

3.1 Impacts of soil biodiversity on ecosystem C pools
and processes

Results from our meta-analyses indicate very different re-
sponses to changes in soil biodiversity among C pools (plant
biomass; soil C pools not included because of inadequate
number of studies) and processes (soil C respiration and
plant tissue decomposition). Plant biomass did not respond
to changes in diversity, either when analyzed as total biomass
or partitioned into aboveground and belowground biomass
(Fig. 1). In contrast to the lack of impact on plant C pools, de-
creased soil biodiversity (including studies that manipulated
diversity within and across body size groups) corresponded

SOIL, 1, 257-271, 2015

Soil C respiration

—— 4 All studies (56)
— < Diversity within body size groups (43)
L Diversity across body size groups (13)
—— 4 Diversity of soil microbes (26)
-60 -40 -20 0 20 40 60

Response to a reduction in soil biodiversity (%)

Figure 2. The percent response of soil C respiration to a change
in soil community diversity (i.e., “high” vs. “low” diversity). Stud-
ies included in the analysis manipulated diversity of the soil micro-
bial community; the soil micro-, meso, or macrofaunal community;
or a combination of these body size groups (“all studies”). Further
studies are categorized by studies that manipulated species diversity
within or across body size groups, and by studies that manipulated
the soil microbial community (including fungi and bacteria) or the
soil faunal community (including micro-, meso-, and macrofauna).
Data represent means with 95 % confidence intervals; numbers in
brackets represent the total number of data points included in the
analysis.

7 Plant tissue decomposition
—— 4 All studies (96)
—_—— 1 Diversity within body size groups (28)
—— - Diversity across body size groups (68)
L 2 Diversity of soil microbes (14)
L 2 1 Diversity of soil fauna (14)
-6I0 -SIU -4‘0 -3‘0 -2‘0 -1‘0 0 1‘0

Response to a reduction in soil biodiversity (%)

Figure 3. The percent response of decomposition to a change in
soil community diversity (i.e., “high” vs. “low” diversity). Studies
included in the analysis manipulated diversity of the soil microbial
community; the soil micro-, meso, or macrofaunal community; or a
combination of these trophic groups (“all studies™). Further studies
are categorized by studies that manipulated species diversity within
or across body size groups, and by studies that manipulated the soil
microbial community (including fungi and bacteria) or the soil fau-
nal community (including micro-, meso-, and macrofauna). Data
represent means with 95 % confidence intervals; numbers in brack-
ets represent the total number of data points included in the analysis.

to a mean 27.5 % reduction in soil C respiration (Fig. 2) and
a mean 18 % reduction in decomposition (Fig. 3).

When soil C respiration responses were partitioned into
studies that manipulated diversity within body size groups
versus those that manipulated diversity across body size
groups, we found a significant effect only for within-group
manipulations (Fig. 2). Due to a lack of studies that manip-
ulated solely soil fauna (there was just one study: Scheu et
al., 2002), we were unable to compare how a change in soil
faunal biodiversity versus soil microbial biodiversity impacts
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soil C respiration. However, when we omitted studies ma-
nipulating soil faunal biodiversity from our analysis and as-
sessed impacts of reductions in soil microbial biodiversity
alone on soil C respiration, we found that soil C respiration
was reduced by 41 % (Fig. 2).

Plant tissue decomposition generally responded negatively
to reductions in soil biodiversity (Fig. 3). Studies that ma-
nipulated diversity within soil organismal groups and those
that manipulated diversity across organismal groups both led
to similar reductions in decomposition (means of 23 % and
15 %, respectively; Fig. 3). Further, whereas reduced soil mi-
crobial diversity did not significantly reduce decomposition
rates, reduced soil faunal diversity led to a 37 % reduction in
mean decomposition (Fig. 3).

3.2 Relationships between diversity loss and C cycling
processes

Regression analyses revealed a negative linear relationship
between soil biodiversity and InR for soil C respiration
(Fig. 4). This relationship was significant when we regressed
the percent change in soil biodiversity and InR for C respi-
ration based on all diversity treatments in the compiled stud-
ies (Fig. 4a) and also when we calculated InR for the high-
est and lowest diversity treatments only (Fig. 4b). We fur-
ther examined how a decline in diversity within body size
groups (data available for microorganisms and macrofauna)
and across body size groups (multiple body size groups) was
related to soil C respiration. Soil microbial diversity was the
only body size group significantly related to soil C respira-
tion, with a decline in soil microbial diversity reducing C res-
piration (Fig. 4a). The paucity of data available for the other
body size groups prevented us from running any meaningful
regression analyses. We have, however, highlighted the other
body size groups in the regression figure to depict the dearth
of studies on these organisms relative to microbes.

Regression analysis also revealed a significant response in
decomposition to altered biodiversity when all studies were
included (Fig. 5a), but not when only the highest and low-
est diversity treatments were included (Fig. 5b). Reductions
in biodiversity did not significantly affect decomposition in
studies that measured litter mass loss. Conversely, when de-
composition was measured via CO, efflux, there was a sig-
nificant relationship between decomposition and biodiversity
change when all diversity treatments were included in the
analysis (R = 0.307, p < 0.001; data not shown).

4 Discussion

Changes in biodiversity have been linked with changes in
ecosystem functioning, but so far studies have largely fo-
cused on plant diversity (e.g., Isbell et al., 2011). Whether or
not similar patterns exist for soil biodiversity remains largely
unknown. Here, we provide the first quantitative synthesis of
studies testing effects of soil biodiversity on C cycling. Us-
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Figure 4. Regressions between a percent change in the soil mi-
crobial, soil macrofaunal, or soil microbial and soil faunal commu-
nities (i.e., multiple organismal groups) and the natural log of the
response ratio of soil C respiration (InR; calculated as the natural
log of the response ratio, R, which was the value of the response
variable at low diversity divided by the value at high diversity). No
studies in our literature compilation of soil C respiration included
manipulation of only soil microfauna or mesofauna, so these body
size groups are not included in the figure. Percent change in di-
versity was calculated as (low diversity — high diversity/high diver-
sity) x100. (a) includes all possible comparisons across diversity
gradients in studies, whereas (b) includes the comparisons between
the lowest and highest diversity levels only.

ing meta-analysis and regression analysis, we showed that
loss of soil biodiversity can have negative consequences for
the soil C cycle but that relationships between C cycling pro-
cesses with soil biodiversity vary across groups of soil organ-
isms and are process-dependent. Below we explore how our
findings contribute to our knowledge of how soil biodiver-
sity drives ecosystem functions. We also discuss experimen-
tal shortcomings and methodological challenges and suggest
directions for future research.

4.1 Biodiversity impacts on C pools

Few studies have assessed the relationship between soil bio-
diversity and soil C pools. We found just three studies in our
literature search, and these studies all used different indices
of soil C pools: ergosterol, which is a measure of fungal
biomass (Liebich et al., 2007); dissolved organic C (Cragg
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Figure 5. Regressions between a percent change in the soil mi-
crobial, mesofaunal, macrofaunal, or soil microbial and soil faunal
communities (i.e., multiple organismal groups) and the natural log
of the response ratio of litter decomposition (InR; calculated as the
natural log of the response ratio, R, which was the value of the re-
sponse variable at low diversity divided by the value at high diver-
sity). No studies in our literature compilation of litter decomposition
included manipulation only of soil microfauna, so this body size
group is not included in the figure. Percent change in diversity was
calculated as (low diversity — high diversity/high diversity) x100.
(a) includes all possible comparisons across diversity gradients in
studies, whereas (b) includes the comparisons between the lowest
and highest diversity levels only.

and Bardgett, 2001); and soil organic C concentration (Zim-
mer et al., 2005). All three studies were of short duration
(range: 42 to 70 days) and were conducted in microcosms in
which diversity of the microbial community (Liebich et al.,
2007), microfauna (collembola; Cragg and Bardgett, 2001),
or macrofauna (earthworms and woodlice; Zimmer et al.,
2005) was manipulated. Due to the small number of studies,
we were unable to conduct a quantitative analysis. However,
none of the individual studies showed an impact of soil biodi-
versity on soil C pools. It is probably not surprising that very
few studies attempted to relate soil community diversity to
soil C pools, due to the difficulty of maintaining soil biodi-
versity manipulations in microcosms for long time periods.
Bulk soil organic C pools are typically stable on the order
of years to decades due the large pool sizes and the relatively
slow rates of biological processes (Conen et al., 2003; Smith,
2004), so short-term effect of soil biodiversity on this pool
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would be expected to be low and undetectable. We expect
that some metrics of the relatively labile fraction in the soil
C pool (e.g., particulate organic matter, DOC) will be more
temporally dynamic than the bulk pool (Six et al., 2002) and
would be better target response variables for assessing biodi-
versity impacts. Even more likely to provide information on
soil biodiversity impacts on soil C cycling are studies assess-
ing diversity effects on short-term C fluxes.

Plant biomass, assessed as a whole or partitioned into root
and shoot biomass, was not significantly affected by soil bio-
diversity. Our analysis included studies that manipulated di-
versity of mycorrhizal fungi (Baxter and Dighton, 2001),
microarthropods (Liiri et al., 2002), meso- and macrofau-
nal decomposers (Eisenhauer and Schéadler, 2011), or more
complex foodwebs consisting of multiple groups of different
body sizes (Sulvaka et al., 2001; Laakso and Setald, 1999;
Ladygina et al., 2010; Eisenhauer et al., 2010; Eisenhauer
and Schadler, 2011). The lack of a response of plant biomass
production to soil biodiversity results from the contradict-
ing results generated across a number of studies, and indi-
cates that soil biodiversity does not unequivocally promote
plant production (reviewed in van der Heijden et al., 2008).
With the exception of rhizosphere organisms such as myc-
orrhizal fungi, rhizobia, and root pathogens or herbivores,
linkages between soil organisms and plant biomass are in-
direct, i.e., decomposer organisms break down organic com-
pounds and make nutrients available for plant uptake (War-
dle et al., 2004). This indirect link between plant growth and
soil organisms may result in a rather weak relationship be-
tween soil biodiversity and plant production (Balvanera et
al., 2006). In line with this, we did find a trend of decreased
plant production with loss of soil biodiversity. However, the
limited number of studies reduced our statistical power, re-
stricting our ability to quantify soil biodiversity impacts on
plant biomass production. Another complication in assessing
biodiversity impacts on plant production is that to date stud-
ies have exclusively been conducted in laboratory and green-
house settings. While laboratory manipulations can provide
useful information about potential controls over ecological
processes, these manipulations are by necessity short-term
(range: 35 days—52 weeks for the studies we compiled) and
may include only a subset of the complex food webs and
biogeochemical processes that occur in natural field settings
(Hol et al., 2010). Furthermore, diversity effects may become
more apparent over time as functional redundancy declines
(Reich et al., 2012).

Although soil biodiversity did not conclusively impact soil
C pools or affect plant biomass production, biodiversity as a
whole appears to play an important role in maintaining and
enhancing plant biomass production and soil C pools. For ex-
ample, plant diversity can promote plant biomass production
and soil C storage (Tilman et al., 2006; Cardinale et al., 2012;
Fornara and Tilman, 2008; Steinbeiss et al., 2008), and these
benefits of aboveground biodiversity on ecosystem functions
are often attributed to increases in plant nutrient uptake re-
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sulting from belowground spatial and temporal differentia-
tion in resource use (e.g., McKane et al., 1990; Tilman et al.,
1996; Casper and Jackson, 1997; Schenk et al., 1999; van
Ruijven and Berendse, 2005; van der Heijden et al., 2003).
As such, a single limiting resource (e.g., soil N) may be spa-
tially partitioned among co-occurring plant species, which
reduces inter-specific competition and thereby facilitates co-
existence (McKane et al., 1990). It is reasonable to expect
that similar mechanisms occur for soil organisms (Prosser
and Nicol, 2012; Sechi et al., 2015), and effects of plant and
soil organism diversity on ecosystem functions may not be
independent of each other, as increased plant diversity may
be accompanied by increased soil biodiversity (Scherber et
al., 2010; Eisenhauer et al., 2011a, b). If this is the case, soil
biodiversity could explain, at least in part, the observed pos-
itive relationship between plant diversity and ecosystem C
pools and processes. It is worthy of mention here that soil
fungal pathogens have been found an important driver of ob-
served positive relationships between plant diversity and pro-
ductivity (Maron et al., 2011).

4.2 Soll biodiversity impacts on soil C processes

Results from our meta-analysis show that loss of soil bio-
diversity significantly reduces soil C respiration (—27.5 %).
This is a strong reduction in soil C mineralization that could
have important ecosystem-level consequences for the soil C
cycle. However, some caution is warranted in interpreting
these results as the experimental design of many of the stud-
ies included in the analyses may have inadvertently over- or
underestimated soil biodiversity impacts on processes impor-
tant to the soil C cycle (Nielsen et al., 2011). The response of
C respiration to a loss in soil biodiversity was overwhelm-
ingly driven by studies manipulating soil microbial diver-
sity, and when we categorized the analysis by studies that
manipulated the soil microbial community only, the aver-
age response to a reduction in biodiversity was even greater
(—41%). In addition, the regression analysis revealed that
a loss in soil biodiversity was significantly related to a loss
in soil C respiration only when soil microbial diversity was
included in the analysis. This suggests that these studies con-
tributed in large part to the strong response of soil C respira-
tion to a reduction in soil biodiversity. Many of these studies
used a relatively low number of microbial species when com-
pared to soil microbial diversity in natural ecosystems. For
example, Setéld and McLean (2004) used 43 taxa of sapro-
phytic fungi, a large number relative to most manipulative ex-
periments, but a small number relative to the estimated num-
ber of fungi in natural soils. In addition, the majority of the
studies were conducted under highly controlled and short-
term laboratory conditions. Some studies used fumigation or
dilution methods to alter soil microbial diversity (Griffiths et
al., 2000, 2001, 2004; Wertz et al., 2006), and although it ap-
pears that microbial diversity decreases with increased dilu-
tion or fumigation, the main impacts of these treatments may
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be on the community structure by favoring taxa that physi-
ologically withstand the pressures of dilution or fumigation.
Studies using this technique showed that the response of C
respiration to an increase in biodiversity leveled off (Bell et
al., 2005) with increasing species number, and that responses
to these treatments are often idiosyncratic, which suggests
that they are driven by the soil microbial community struc-
ture rather than by diversity. Thus, although our synthesis in-
dicates that the response of soil C respiration to a reduction
in soil biodiversity can be significant, we contend that the re-
sponse may be an overestimation of what would happen in
soils with natural communities.

Although many studies have assessed the impact of soil
microbial diversity on soil C respiration, only one study eval-
uated effects of soil faunal diversity (earthworms) on C res-
piration (Scheu et al., 2002). This study indicated that soil
faunal richness impacts soil microbial community function-
ing, which may in turn alter soil C respiration. Soil fauna can
strongly affect microbial processes and community compo-
sition by enhancing the availability of resources to the mi-
crobial community (Edwards, 2000; Heal et al., 1997; Pe-
tersen and Luxton, 1982). For example, invasive earthworms
in North America have been associated with changes in soil
respiration, although these effects may be mediated through
changes in the abundance of other organisms, such as mi-
crobes (Szlavecz et al., 2011) or availability of soil and litter
resources (Huang et al., 2010). Thus, a change in the diver-
sity of soil fauna is expected to alter soil C respiration, but
more studies that manipulate soil fauna are required to con-
firm this hypothesis.

Results from the meta-analysis and the regression analy-
sis show that loss of soil biodiversity significantly reduces
plant tissue decomposition (—18%). Unlike the other re-
sponse variables, soil biodiversity impacts on plant tissue de-
composition were not dominated by studies that manipulated
the soil microbial community. Rather, ca. 84 % of decom-
position studies in our compilation manipulated soil fauna
or multiple groups of soil organisms; soil faunal biodiver-
sity effects on plant tissue decomposition were significant
(—37 %). The significant impact of soil faunal manipulations
on litter decomposition may be due to the strong direct effect
of soil fauna on litter decomposition, particularly in the early
stages of decomposition (Heemsbergen et al., 2004; Berg and
Laskowski, 2006; Milcu and Manning, 2011). By contrast,
soil microbial diversity reductions alone did not significantly
suppress decomposition rates. This finding is despite indi-
vidual observations that the diversity of litter-associated mi-
crobes increases as decomposition proceeds (e.g., Dilly et al.,
2004). Nonetheless, based on our observation that soil faunal
diversity has a strong impact on plant tissue decomposition,
we propose that diversity of the soil community, and particu-
larly soil faunal diversity, is an important factor driving rates
of litter decomposition. This notion is supported by a recent
article showing that a reduction in the diversity of detriti-
vores (both microorganisms and invertebrates) slows the rate
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at which litter is decomposed, regardless of the location of
the experiment (Handa et al., 2014).

We hypothesized that diversity across multiple organismal
groups composed of different body sizes would impact soil
C cycling processes to a greater extent than diversity within
groups of organisms with a single body size, with the as-
sumption that within-group diversity would be accompanied
by a greater degree of functional redundancy (Laakso and
Setéld, 1999; Wardle, 1999; Cragg and Bardgett, 2001). For
example, a higher diversity of feeding guilds has been linked
to more effective substrate use (Setdld and Huhta, 1991). Our
analysis, however, suggests that, for plant tissue decompo-
sition, diversity across multiple body size groups has simi-
lar impacts on soil C cycling to diversity within body size
groups. For soil C respiration, the effect of reduced diver-
sity within groups was even stronger than that of smaller di-
versity across groups. This may result from the approaches
taken to assess community impacts on soil C cycling. First,
there is a lack of consistency in approaches taken to study
effects of soil biodiversity on C cycling, both for the within-
and the across-body size group approach. As such, the level
of functional diversity between “high-" and “low-" diversity
treatments may have varied across studies, and it is unclear
whether shifts in functional diversity were greater for across-
group manipulations than for within-group manipulations.
Except for Heemsbergen et al. (2004), no studies have explic-
itly tested for the functional dissimilarity among the species
manipulated. Second, populations of soil organisms at lower
trophic levels may show compensatory growth responses to
loss of biomass predation by organisms of higher trophic lev-
els (e.g., Ingham et al., 1985), resulting in no net effect of
manipulation of trophic diversity on the processes regulated
by lower-trophic-level soil organisms. Third, effects of func-
tional or trophic groups of organisms may have opposing ef-
fects on the C cycling pools and process rates. For example,
Ladygina et al. (2010) showed that arbuscular mycorrhizal
fungi and decomposer (enchytraeids and collembola) can-
celed each other out in affecting plant community biomass.

4.3 Methodological concerns

While manipulating diversity of any group of organisms is
fraught with challenges, manipulation of soil organism di-
versity is particularly challenging. A more comprehensive
assessment of soil diversity impacts on C cycling will re-
quire that some of these challenges are addressed. Nielsen et
al. (2011) found that the response to a reduction in diversity
was greater if diversity levels were low (i.e., <10 species
included in the analysis) and conducted under more con-
trolled experimental conditions, rather than under high di-
versity (i.e., > 10 species included in the analysis) and more
natural experimental conditions. Our analysis set out to quan-
tify how the design of the study affected soil C cycling pro-
cesses, by comparing studies that manipulated soil biodiver-
sity within a single body size group with studies that manip-
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ulated biodiversity across multiple groups. Across-body size
group manipulations approach the natural complexity of soil
food webs to a much greater degree than within-group ma-
nipulations. However, even the most complex manipulations
accounted only for a fraction of the diversity likely under
natural field conditions. As such, to further enhance our un-
derstanding of soil community diversity impacts on soil C
cycling, studies should incorporate more natural conditions
in their design and manipulate more complete soil communi-
ties. A recent study by Wagg et al. (2014) used a method for
manipulating a broad size range of soil organisms by inocu-
lating sterilized soils with soil communities derived through
a series of different-sized filters. This method allowed the
researchers to successfully obtain a broad soil biodiversity
gradient within and across groups of soil organism that span
a gradient in body sizes in their grassland microcosms, and
showed that soil biodiversity loss and simplification of soil
community composition impairs multiple ecosystem func-
tions, including litter decomposition and soil C sequestration.
However, filtering groups of organisms based on body size
does not allow for separating between effects of functional
dissimilarity from effects of biodiversity (species richness)
per se. This underscores the pervasive challenge to truly mea-
suring biodiversity effects on ecosystem processes. A paral-
lel concern is that soil biodiversity typically cuts across mul-
tiple trophic groups (e.g., manipulation of nematodes would
potentially alter both herbivores and predators in the soil).
Aboveground diversity—ecosystem function studies have typ-
ically been limited to the primary producer trophic level, but
results may vyield very different relationships if consumer
trophic levels are included in diversity manipulations (Borer
et al., 2014). Finally, we caution that measuring soil biodi-
versity is exceedingly difficult, and in many cases treatments
were assumed to affect biodiversity for the duration of the
experiment, but this was often not measured. It is also pos-
sible that a change in the relative abundance of organisms is
an important component of biodiversity and studies in our
compilation typically equated species richness with diver-
sity, whereas biodiversity sensu stricto includes both species
richness and abundance (Magurran, 2005). To fully compre-
hend how biodiversity impacts ecosystem function, an at-
tempt should be made at manipulating and maintaining dif-
ferent levels of soil community diversity, in the strict sense
of the definition.

5 Conclusions

If we are to fully understand how anthropogenically induced
changes in biodiversity affect the terrestrial C cycle, we must
dig deeper and embrace the challenges associated with study-
ing the belowground world. Understanding the complex rela-
tionships between soil biodiversity and C cycling processes
is currently limited by the sheer number of methodological
concerns associated with these studies, which can greatly
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overestimate or underestimate the impact of soil biodiver-
sity on soil C cycling, challenging extrapolation to natural
field conditions. Nonetheless, our data point towards a defi-
nite importance of soil community diversity on key C cycling
processes. Our quantitative analysis revealed significant neg-
ative effects of loss of soil biodiversity on rates of soil respi-
ration and litter decomposition. If this is the case, declines
in soil biodiversity could significantly affect the rates and
dynamics of C cycling. However, biodiversity effects were
not always consistent across groups of organisms. Differ-
ential responses of groups of organisms could be related to
their functional role in the respective processes. It is, how-
ever, important to emphasize that we are still lacking a full
understanding of the underlying changes in soil community
functioning (or the lack of) with shifts in soil biodiversity
(Nielsen et al., 2011; Briones, 2014). Future studies should
therefore attempt to further elucidate the relative importance
of taxonomic diversity (species numbers) versus functional
diversity. Effects of loss of soil biodiversity on ecosystem
C cycling should depend on the degree of functional dis-
similarity of the organisms involved (Heemsbergen et al.,
2004). Hence, unraveling the level of variation in functional
traits among soil organisms, both within and across feed-
ing groups, should be a future research priority. Such studies
would improve predictions on the global C cycling in the face
of future environmental changes. Given the importance of the
soil community in regulating the direction and magnitude of
C fluxes between the atmosphere and terrestrial ecosystems,
advancing our understanding of soil biodiversity impacts on
biogeochemical cycles may enhance the efficacy of climate
change mitigation efforts.
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