Articles | Volume 1, issue 1
https://doi.org/10.5194/soil-1-117-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/soil-1-117-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The interdisciplinary nature of SOIL
E. C. Brevik
Department of Natural Sciences, Dickinson State University, Dickinson, ND, USA
Departament de Geografia, Universitat de València, Valencia, Spain
J. Mataix-Solera
GEA-Grupo de Edafología Ambiental , Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Avda. de la Universidad s/n, Edificio Alcudia, Elche, Alicante, Spain
School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
J. N. Quinton
Lancaster Environment Centre, Lancaster University, Lancaster, UK
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Tannenstrasse 1, 8092 Zurich, Switzerland
K. Van Oost
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Related authors
P. Pereira, A. Gimeìnez-Morera, A. Novara, S. Keesstra, A. Jordán, R. E. Masto, E. Brevik, C. Azorin-Molina, and A. Cerdà
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-12947-2015, https://doi.org/10.5194/hessd-12-12947-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
Road and railway embankments contribute importantly to soil and water losses in South-Eastern Spain. Comparing with other land uses as scrubland and citrus plantations, road and railway embankments increased exponentially the amount of sediment transport and runoff. Restoration programs are needed to decrease soil and water losses in these man-made infrastructures.
E. C. Brevik and T. J. Sauer
SOIL, 1, 35–46, https://doi.org/10.5194/soil-1-35-2015, https://doi.org/10.5194/soil-1-35-2015, 2015
Antoine de Clippele, Astrid C. H. Jaeger, Simon Baumgartner, Marijn Bauters, Pascal Boeckx, Clement Botefa, Glenn Bush, Jessica Carilli, Travis W. Drake, Christian Ekamba, Gode Lompoko, Nivens Bey Mukwiele, Kristof Van Oost, Roland A. Werner, Joseph Zambo, Johan Six, and Matti Barthel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3313, https://doi.org/10.5194/egusphere-2024-3313, 2024
Short summary
Short summary
Tropical forest soils as a large terrestrial source of carbon dioxide (CO2) contribute to the GHG budgets. Despite this, carbon flux data from forested wetlands is scarce in tropical Africa. The study presents three years of semi-continuous measurements of surface CO2 fluxes within the Congo Basin. Although no seasonal patterns were evident, our results showed a positive effect of soil temperature and soil moisture, while a quadratic relationship was observed with the water table level.
Vira Leng, Rémi Cardinael, Florent Tivet, Vang Seng, Phearum Mark, Pascal Lienhard, Titouan Filloux, Johan Six, Lyda Hok, Stéphane Boulakia, Clever Briedis, João Carlos de Moraes Sá, and Laurent Thuriès
SOIL, 10, 699–725, https://doi.org/10.5194/soil-10-699-2024, https://doi.org/10.5194/soil-10-699-2024, 2024
Short summary
Short summary
We assessed the long-term impacts of no-till cropping systems on soil organic carbon and nitrogen dynamics down to 1 m depth under the annual upland crop productions (cassava, maize, and soybean) in the tropical climate of Cambodia. We showed that no-till systems combined with rotations and cover crops could store large amounts of carbon in the top and subsoil in both the mineral organic matter and particulate organic matter fractions. We also question nitrogen management in these systems.
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
EGUsphere, https://doi.org/10.5194/egusphere-2024-2796, https://doi.org/10.5194/egusphere-2024-2796, 2024
Short summary
Short summary
We studied how different organic and inorganic nutrient inputs affect soil organic carbon (SOC) down to 70 cm in Kenya. After 19 years, all organic treatments increased SOC stocks as compared to the control, but mineral nitrogen had no significant effect. Manure was the organic treatment that significantly increased SOC the deepest as its effect could be observed down to 60 cm. Manure was the best strategy to limit SOC loss in croplands and maintain soil quality after deforestation.
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024, https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
EGUsphere, https://doi.org/10.5194/egusphere-2024-2346, https://doi.org/10.5194/egusphere-2024-2346, 2024
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gasses (GHG) since 1750 is attributed to human activity, however natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source for CO2 and N2O and a minor sink for CH4.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-2205, https://doi.org/10.5194/egusphere-2024-2205, 2024
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions, as long as more data to constrain model parameters are not available.
Karl Auerswald, Juergen Geist, John N. Quinton, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2024-1702, https://doi.org/10.5194/egusphere-2024-1702, 2024
Short summary
Short summary
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven climate change. However, at the global scale, CO2-driven climate change neither reduces precipitation nor adequately explains droughts. Land-use change, particularly soil sealing, compaction, and drainage, are likely more significant for water losses by runoff leading to flooding and water scarcity and are therefore an important part the solution to mitigate floods, droughts, and heatwaves.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, and Rémi Cardinael
SOIL, 10, 151–165, https://doi.org/10.5194/soil-10-151-2024, https://doi.org/10.5194/soil-10-151-2024, 2024
Short summary
Short summary
Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our knowledge of the impact of CA on top- and subsoil soil organic carbon (SOC) stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. Using two long-term experimental sites with different soil types, we found that mulch could increase top SOC stocks, but no tillage alone had a slightly negative impact.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-37, https://doi.org/10.5194/hess-2024-37, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
While rainwater is a key resource in crop production, its productivity faces challenges from climate change. Using a simple model of climate, water, and crop yield interactions, we found that rain-scarce croplands in Ethiopia are likely to experience decreases in crop yield during the main growing season, primarily due to future temperature increases. These insights are crucial for shaping future water management plans, policies, and informed decision-making for climate adaptation.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, https://doi.org/10.5194/soil-9-301-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Charlotte Decock, Juhwan Lee, Matti Barthel, Elizabeth Verhoeven, Franz Conen, and Johan Six
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-221, https://doi.org/10.5194/bg-2022-221, 2022
Preprint withdrawn
Short summary
Short summary
One of the least well understood processes in the nitrogen (N) cycle is the loss of nitrogen gas (N2), referred to as total denitrification. This is mainly due to the difficulty of quantifying total denitrification in situ. In this study, we developed and tested a novel modeling approach to estimate total denitrification over the depth profile, based on concentrations and isotope values of N2O. Our method will help close N budgets and identify management strategies that reduce N pollution.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Tegawende Léa Jeanne Ilboudo, Lucien NGuessan Diby, Delwendé Innocent Kiba, Tor Gunnar Vågen, Leigh Ann Winowiecki, Hassan Bismarck Nacro, Johan Six, and Emmanuel Frossard
EGUsphere, https://doi.org/10.5194/egusphere-2022-209, https://doi.org/10.5194/egusphere-2022-209, 2022
Preprint withdrawn
Short summary
Short summary
Our results showed that at landscape level SOC stock variability was mainly explained by clay content. We found significant linear positive relationships between VC and SOC stocks for the land uses annual croplands, perennial croplands, grasslands and bushlands without soil depth restrictions until 110 cm. We concluded that in the forest-savanna transition zone, soil properties and topography determine land use, which in turn affects the stocks of SOC and TN and to some extent the VC stocks.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021, https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary
Short summary
This work delivers openly accessible and validated calibrations for diagnosing 26 soil properties based on mid-infrared spectroscopy. These were developed for four regions in Burkina Faso and Côte d'Ivoire, including 80 fields of smallholder farmers. The models can help to site-specifically and cost-efficiently monitor soil quality and fertility constraints to ameliorate soils and yields of yam or other staple crops in the four regions between the humid forest and the northern Guinean savanna.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Roisin O'Riordan, Jess Davies, Carly Stevens, and John N. Quinton
SOIL, 7, 661–675, https://doi.org/10.5194/soil-7-661-2021, https://doi.org/10.5194/soil-7-661-2021, 2021
Short summary
Short summary
As urban populations grow, soil sealing with impermeable surfaces will increase. At present there is limited knowledge on the effect of sealing on soil carbon and nutrients. We found that, in general, sealing reduced soil carbon and nutrients; however, where there were additions due to human activity, soil carbon and nutrients were increased. This suggests that there is a legacy soil carbon store in areas with an industrial past and highlights the influence of artefacts in urban soil.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021, https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Short summary
We developed the Swiss mid-infrared spectral library and a statistical model collection across 4374 soil samples with reference measurements of 16 properties. Our library incorporates soil from 1094 grid locations and 71 long-term monitoring sites. This work confirms once again that nationwide spectral libraries with diverse soils can reliably feed information to a fast chemical diagnosis. Our data-driven reduction of the library has the potential to accurately monitor carbon at the plot scale.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021, https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Short summary
In this study, we show that a soil spectral library (SSL) can be used to predict soil carbon at new and very different locations. The importance of this finding is that it requires less time-consuming lab work than calibrating a new model for every local application, while still remaining similar to or more accurate than local models. Furthermore, we show that this method even works for predicting (drained) peat soils, using a SSL with mostly mineral soils containing much less soil carbon.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020, https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary
Short summary
This study developed a spatially distributed carbon cycling model applicable in an eroding landscape. It includes all three carbon isotopes so that it is able to represent the carbon isotopic compositions. The model is able to represent the observations that eroding area is enriched in 13C and depleted of 14C compared to depositional area. Our simulations show that the spatial variability of carbon isotopic properties in an eroding landscape is mainly caused by the soil redistribution.
Long Ho, Ruben Jerves-Cobo, Matti Barthel, Johan Six, Samuel Bode, Pascal Boeckx, and Peter Goethals
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-311, https://doi.org/10.5194/bg-2020-311, 2020
Revised manuscript not accepted
Short summary
Short summary
Rivers are being polluted by human activities, especially in urban areas. We studied the greenhouse gas (GHG) emissions from an urban river system. The results showed a clear trend between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality worsened, its contribution to global warming can go up by 10 times. Urban rivers emitted 4-times more than of the amount of GHGs compared to rivers in natural sites.
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020, https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Short summary
Four wheat cultivars were labeled with 13CO2 to quantify the effect of rooting depth and root biomass on the belowground transfer of organic carbon. We found no clear relation between the time since cultivar development and the amount of carbon inputs to the soil. Therefore, the hypothesis that wheat cultivars with a larger root biomass and deeper roots promote carbon stabilization was rejected. The amount of root biomass that will be stabilized in the soil on the long term is, however, unknown.
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
Short summary
The latest commercial laser spectrometers have the potential to revolutionize N2O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
François Clapuyt, Veerle Vanacker, Marcus Christl, Kristof Van Oost, and Fritz Schlunegger
Solid Earth, 10, 1489–1503, https://doi.org/10.5194/se-10-1489-2019, https://doi.org/10.5194/se-10-1489-2019, 2019
Short summary
Short summary
Using state-of-the-art geomorphic techniques, we quantified a 2-order of magnitude discrepancy between annual, decadal, and millennial sediment fluxes of a landslide-affected mountainous river catchment in the Swiss Alps. Our results illustrate that the impact of a single sediment pulse is strongly attenuated at larger spatial and temporal scales by sediment transport. The accumulation of multiple sediment pulses has rather a measurable impact on the regional pattern of sediment fluxes.
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019, https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
Short summary
Policy to conserve thinning arable soils relies on a balance between the rates of soil erosion and soil formation. Our knowledge of the latter is meagre. Here, we present soil formation rates for an arable hillslope, the first of their kind globally, and a woodland hillslope, the first of their kind in Europe. Rates range between 26 and 96 mm kyr−1. On the arable site, erosion rates are 2 orders of magnitude greater, and in a worst-case scenario, bedrock exposure could occur in 212 years.
He Zhang, Emilien Aldana-Jague, François Clapuyt, Florian Wilken, Veerle Vanacker, and Kristof Van Oost
Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, https://doi.org/10.5194/esurf-7-807-2019, 2019
Short summary
Short summary
We evaluated the performance of a drone system to reconstruct 3-D topography. We used a direct georeferencing method to make the pictures have precise coordinates, which also improves the survey efficiency. With both consumer-grade and professional-grade camera and drone setups, we obtained centimetric accuracy, which provides a flexible application in topography remote sensing using drones.
Karl Voglmeier, Johan Six, Markus Jocher, and Christof Ammann
Biogeosciences, 16, 1685–1703, https://doi.org/10.5194/bg-16-1685-2019, https://doi.org/10.5194/bg-16-1685-2019, 2019
Tino Colombi, Florian Walder, Lucie Büchi, Marlies Sommer, Kexing Liu, Johan Six, Marcel G. A. van der Heijden, Raphaël Charles, and Thomas Keller
SOIL, 5, 91–105, https://doi.org/10.5194/soil-5-91-2019, https://doi.org/10.5194/soil-5-91-2019, 2019
Short summary
Short summary
The role of soil aeration in carbon sequestration in arable soils has only been explored little, especially at the farm level. The current study, which was conducted on 30 fields that belong to individual farms, reveals a positive relationship between soil gas transport capability and soil organic carbon content. We therefore conclude that soil aeration needs to be accounted for when developing strategies for carbon sequestration in arable soil.
Elizabeth Verhoeven, Matti Barthel, Longfei Yu, Luisella Celi, Daniel Said-Pullicino, Steven Sleutel, Dominika Lewicka-Szczebak, Johan Six, and Charlotte Decock
Biogeosciences, 16, 383–408, https://doi.org/10.5194/bg-16-383-2019, https://doi.org/10.5194/bg-16-383-2019, 2019
Short summary
Short summary
This study utilized state-of-the-art measurements of nitrogen isotopes to evaluate nitrogen cycling and to assess the biological sources of the potent greenhouse gas, N2O, in response to water-saving practices in rice systems. Water-saving practices did emit more N2O, and high N2O production had a lower 15N isotope signature. Modeling and visual interpretation indicate that these emissions mostly came from denitrification or nitrifier denitrification, controlled upstream by nitrification rates.
Victoria Naipal, Philippe Ciais, Yilong Wang, Ronny Lauerwald, Bertrand Guenet, and Kristof Van Oost
Biogeosciences, 15, 4459–4480, https://doi.org/10.5194/bg-15-4459-2018, https://doi.org/10.5194/bg-15-4459-2018, 2018
Short summary
Short summary
We seek to better understand the links between soil erosion by rainfall and the global carbon (C) cycle by coupling a soil erosion model to the C cycle of a land surface model. With this modeling approach we evaluate the effects of soil removal on soil C stocks in the presence of climate change and land use change. We find that accelerated soil erosion leads to a potential SOC removal flux of 74 ±18 Pg of C globally over the period AD 1850–2005, with significant impacts on the land C balance.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Ruzhen Wang, Xue Wang, Yong Jiang, Artemi Cerdà, Jinfei Yin, Heyong Liu, Xue Feng, Zhan Shi, Feike A. Dijkstra, and Mai-He Li
Biogeosciences, 15, 1763–1774, https://doi.org/10.5194/bg-15-1763-2018, https://doi.org/10.5194/bg-15-1763-2018, 2018
Short summary
Short summary
Our results highlight the importance of soil physicochemical properties (mainly SOC, C : N, and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature) in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Gerard Govers, Roel Merckx, Bas van Wesemael, and Kristof Van Oost
SOIL, 3, 45–59, https://doi.org/10.5194/soil-3-45-2017, https://doi.org/10.5194/soil-3-45-2017, 2017
Short summary
Short summary
We discuss pathways towards better soil protection in the 21st century. The efficacy of soil conservation technology is not a fundamental barrier for a more sustainable soil management. However, soil conservation is generally not directly beneficial to the farmer. We believe that the solution of this conundrum is a rapid, smart intensification of agriculture in the Global South. This will reduce the financial burden and will, at the same time, allow more effective conservation.
Debashis Mandal, Pankaj Srivastava, Nishita Giri, Rajesh Kaushal, Artemi Cerda, and Nurnabi Meherul Alam
Solid Earth, 8, 217–233, https://doi.org/10.5194/se-8-217-2017, https://doi.org/10.5194/se-8-217-2017, 2017
Florian Wilken, Peter Fiener, and Kristof Van Oost
Earth Surf. Dynam., 5, 113–124, https://doi.org/10.5194/esurf-5-113-2017, https://doi.org/10.5194/esurf-5-113-2017, 2017
Short summary
Short summary
This study presents a model that accounts for preferential erosion and transport of sediment and soil organic carbon in agricultural landscapes. We applied the model to a small catchment in Belgium for a period of 100 years. After a thorough model evaluation, these simulations shows that sediment and carbon export are highly episodic and that the temporal variability is largely influenced by selective erosion and deposition.
Vincenzo Alagna, Vincenzo Bagarello, Simone Di Prima, Fabio Guaitoli, Massimo Iovino, Saskia Keesstra, and Artemio Cerdà
SOIL Discuss., https://doi.org/10.5194/soil-2016-79, https://doi.org/10.5194/soil-2016-79, 2017
Manuscript not accepted for further review
Short summary
Short summary
Beerkan infiltration tests along with BEST (Beerkan Estimation of Soil Transfer parameters) algorithm led to accurate estimates of the hydraulic conductivity in both crusted and un-crusted soils. A sampling strategy implying beerkan tests carried out along and between the vine-rows allowed to assess the reduction in hydraulic conductivity with extemporaneous measurements alone. The effect of the cycling occurrence of crusting due to rainfalls and wetting–drying cycles on the vineyard inter-row.
Jianlin Zhao, Kristof Van Oost, Longqian Chen, and Gerard Govers
Biogeosciences, 13, 4735–4750, https://doi.org/10.5194/bg-13-4735-2016, https://doi.org/10.5194/bg-13-4735-2016, 2016
Short summary
Short summary
We used a novel approach to reassess erosion rates on the CLP. We found that both current average topsoil erosion rates and the maximum magnitude of the erosion-induced carbon sink are overestimated on the CLP. Although average topsoil losses on the CLP are still high, a major increase in agricultural productivity occurred since 1980. Hence, erosion is currently not a direct threat to agricultural productivity on the CLP but the long-term effects of erosion on soil quality remain important.
Victoria Naipal, Christian Reick, Kristof Van Oost, Thomas Hoffmann, and Julia Pongratz
Earth Surf. Dynam., 4, 407–423, https://doi.org/10.5194/esurf-4-407-2016, https://doi.org/10.5194/esurf-4-407-2016, 2016
Short summary
Short summary
We present a new large-scale coarse-resolution sediment budget model that is compatible with Earth system models and simulates sediment dynamics in floodplains and on hillslopes. We applied this model on the Rhine catchment for the last millennium, and found that the model reproduces the spatial distribution of sediment storage and the scaling relationships as found in observations. We also identified that land use change explains most of the temporal variability in sediment storage.
Saskia D. Keesstra, Johan Bouma, Jakob Wallinga, Pablo Tittonell, Pete Smith, Artemi Cerdà, Luca Montanarella, John N. Quinton, Yakov Pachepsky, Wim H. van der Putten, Richard D. Bardgett, Simon Moolenaar, Gerben Mol, Boris Jansen, and Louise O. Fresco
SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, https://doi.org/10.5194/soil-2-111-2016, 2016
Short summary
Short summary
Soil science, as a land-related discipline, has links to several of the UN Sustainable Development Goals which are demonstrated through the functions of soils and related ecosystem services. We discuss how soil scientists can rise to the challenge both internally and externally in terms of our relations with colleagues in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the set of steps to be taken by the soil science community as a whole.
R. Hüppi, R. Felber, A. Neftel, J. Six, and J. Leifeld
SOIL, 1, 707–717, https://doi.org/10.5194/soil-1-707-2015, https://doi.org/10.5194/soil-1-707-2015, 2015
Short summary
Short summary
Biochar is considered an opportunity to tackle major environmental issues in agriculture. Adding pyrolised organic residues to soil may sequester carbon, increase yields and reduce nitrous oxide emissions from soil. It is unknown, whether the latter is induced by changes in soil pH. We show that biochar application substantially reduces nitrous oxide emissions from a temperate maize cropping system. However, the reduction was only achieved with biochar but not with liming.
P. Pereira, A. Gimeìnez-Morera, A. Novara, S. Keesstra, A. Jordán, R. E. Masto, E. Brevik, C. Azorin-Molina, and A. Cerdà
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-12947-2015, https://doi.org/10.5194/hessd-12-12947-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
Road and railway embankments contribute importantly to soil and water losses in South-Eastern Spain. Comparing with other land uses as scrubland and citrus plantations, road and railway embankments increased exponentially the amount of sediment transport and runoff. Restoration programs are needed to decrease soil and water losses in these man-made infrastructures.
C. Decock, J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, and J. Six
SOIL, 1, 687–694, https://doi.org/10.5194/soil-1-687-2015, https://doi.org/10.5194/soil-1-687-2015, 2015
Short summary
Short summary
Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.
A. Adugna, A. Abegaz, and A. Cerdà
Solid Earth Discuss., https://doi.org/10.5194/sed-7-3511-2015, https://doi.org/10.5194/sed-7-3511-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The research has been con conducted to estimate erosion risk over certain areas for land restoration. The result of the USLE showed that the annual rate of soil loss is in the range of 4.5Mgha-1y-1 in forestland and 65.9Mgha-1y-1 in cropland. The rate of soil loss in the cropland, which accounts for about 69% of the total soil loss in the study area, is very highly severe. This clearly shows that cropland should be prioritized to carry out land management practices such as minimum tillage.
V. Naipal, C. Reick, J. Pongratz, and K. Van Oost
Geosci. Model Dev., 8, 2893–2913, https://doi.org/10.5194/gmd-8-2893-2015, https://doi.org/10.5194/gmd-8-2893-2015, 2015
Short summary
Short summary
We adjusted the topographical and rainfall erosivity factors that are the triggers of erosion in the Revised Universal Soil Loss Equation (RUSLE) model to make the model better applicable at coarse resolution on a global scale. The adjusted RUSLE model compares much better to current high resolution estimates of soil erosion in the USA and Europe. It therefore provides a basis for estimating past and future global impacts of soil erosion on climate with the use of Earth system models.
A. Ola, I. C. Dodd, and J. N. Quinton
SOIL, 1, 603–612, https://doi.org/10.5194/soil-1-603-2015, https://doi.org/10.5194/soil-1-603-2015, 2015
Short summary
Short summary
Plant roots are crucial in soil erosion control. Moreover, some species respond to nutrient-rich patches by lateral root proliferation. At the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff; whereas at depth local increases in shear strength may reinforce soils at the shear plane. This review considers the potential of manipulating plant roots to control erosion.
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015, https://doi.org/10.5194/soil-1-575-2015, 2015
F. Wiaux, M. Vanclooster, and K. Van Oost
Biogeosciences, 12, 4637–4649, https://doi.org/10.5194/bg-12-4637-2015, https://doi.org/10.5194/bg-12-4637-2015, 2015
Short summary
Short summary
In this study, we highlight the role of soil physical conditions and gas transfer mechanisms and dynamics in the decomposition and storage of soil organic carbon in subsoil layers. To illustrate it, we measured the time series of soil temperature, moisture and CO2 concentration and calculated CO2 fluxes along 1 m depth soil profiles during 6 months throughout two contrasted soil profiles along a hillslope in the central loess belt of Belgium.
B. Wolf, L. Merbold, C. Decock, B. Tuzson, E. Harris, J. Six, L. Emmenegger, and J. Mohn
Biogeosciences, 12, 2517–2531, https://doi.org/10.5194/bg-12-2517-2015, https://doi.org/10.5194/bg-12-2517-2015, 2015
J. L. Costa, V. Aparicio, and A. Cerdà
Solid Earth, 6, 361–371, https://doi.org/10.5194/se-6-361-2015, https://doi.org/10.5194/se-6-361-2015, 2015
Short summary
Short summary
Several experiments have confirmed the improvements in soil aggregation and infiltration achieved by no-tillage (NT) management associated with increases of bulk density. An increase in bulk density implies a reduction of the porosity that is in contradiction with the increased infiltration that occurs in macro and mesopores. We found that the reduction in total porosity under NT is mainly a product of a reduction of the mesopores. The results indicate NT did not affect the crop yields.
S. Doetterl, J.-T. Cornelis, J. Six, S. Bodé, S. Opfergelt, P. Boeckx, and K. Van Oost
Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, https://doi.org/10.5194/bg-12-1357-2015, 2015
Short summary
Short summary
We link the mineralogy of soils affected by erosion and deposition to the distribution of soil carbon fractions, their turnover and microbial activity. We show that the weathering status of soils and their history are controlling the stabilization of carbon with minerals. After burial, aggregated C is preserved more efficiently while non-aggregated C can be released and younger C re-sequestered more easily. Weathering changes the effectiveness of stabilization mechanism limiting this C sink.
E. C. Brevik and T. J. Sauer
SOIL, 1, 35–46, https://doi.org/10.5194/soil-1-35-2015, https://doi.org/10.5194/soil-1-35-2015, 2015
A. Morugán-Coronado, F. García-Orenes, and A. Cerdà
SOIL Discuss., https://doi.org/10.5194/soild-2-1-2015, https://doi.org/10.5194/soild-2-1-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
-Different uses of soil have an important effect on the soil microbial structure.
-This research shows the effect of three different management practices in soil microbial community under Mediterranean conditions.
-The application of organic farming increased the organic carbon content, microbial biomass, enzymatic activities and basal soil respiration.
A. Jordán, J. García-Moreno, Á. J. Gordillo-Rivero, L. M. Zavala, and A. Cerdà
SOIL Discuss., https://doi.org/10.5194/soild-1-295-2014, https://doi.org/10.5194/soild-1-295-2014, 2014
Revised manuscript has not been submitted
P. Pereira, X. Úbeda, J. Mataix-Solera, M. Oliva, and A. Novara
Solid Earth, 5, 209–225, https://doi.org/10.5194/se-5-209-2014, https://doi.org/10.5194/se-5-209-2014, 2014
Z. Wang, K. Van Oost, A. Lang, T. Quine, W. Clymans, R. Merckx, B. Notebaert, and G. Govers
Biogeosciences, 11, 873–883, https://doi.org/10.5194/bg-11-873-2014, https://doi.org/10.5194/bg-11-873-2014, 2014
T. Hoffmann, S. M. Mudd, K. van Oost, G. Verstraeten, G. Erkens, A. Lang, H. Middelkoop, J. Boyle, J. O. Kaplan, J. Willenbring, and R. Aalto
Earth Surf. Dynam., 1, 45–52, https://doi.org/10.5194/esurf-1-45-2013, https://doi.org/10.5194/esurf-1-45-2013, 2013
A. Novara, L. Gristina, F. Guaitoli, A. Santoro, and A. Cerdà
Solid Earth, 4, 255–262, https://doi.org/10.5194/se-4-255-2013, https://doi.org/10.5194/se-4-255-2013, 2013
P. Pereira, A. Cerdà, X. Úbeda, J. Mataix-Solera, D. Martin, A. Jordán, and M. Burguet
Solid Earth, 4, 153–165, https://doi.org/10.5194/se-4-153-2013, https://doi.org/10.5194/se-4-153-2013, 2013
A. Morugán-Coronado, V. Arcenegui, F. García-Orenes, J. Mataix-Solera, and J. Mataix-Beneyto
Solid Earth, 4, 119–127, https://doi.org/10.5194/se-4-119-2013, https://doi.org/10.5194/se-4-119-2013, 2013
Related subject area
Soils and natural ecosystems
Advancing studies on global biocrust distribution
Mineral dust and pedogenesis in the alpine critical zone
The soil knowledge library (KLIB) – a structured literature database on soil process research
Masked diversity and contrasting soil processes in tropical seagrass meadows: the control of environmental settings
Biocrust-linked changes in soil aggregate stability along a climatic gradient in the Chilean Coastal Range
Content of soil organic carbon and labile fractions depend on local combinations of mineral-phase characteristics
Effects of environmental factors and soil properties on soil organic carbon stock in a natural dry tropical area of Cameroon
The role of ecosystem engineers in shaping the diversity and function of arid soil bacterial communities
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
Disaggregating a regional-extent digital soil map using Bayesian area-to-point regression kriging for farm-scale soil carbon assessment
Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science
Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach
Local versus field scale soil heterogeneity characterization – a challenge for representative sampling in pollution studies
Analysis and definition of potential new areas for viticulture in the Azores (Portugal)
Siqing Wang, Li Ma, Liping Yang, Yali Ma, Yafeng Zhang, Changming Zhao, and Ning Chen
SOIL, 10, 763–778, https://doi.org/10.5194/soil-10-763-2024, https://doi.org/10.5194/soil-10-763-2024, 2024
Short summary
Short summary
Biological soil crusts cover a substantial proportion of dryland ecosystems and play crucial roles in ecological processes. Consequently, studying the spatial distribution of biocrusts holds great significance. This study aimed to stimulate global-scale investigations of biocrust distribution by introducing three major approaches. Then, we summarized present understandings of biocrust distribution. Finally, we proposed several potential research topics.
Jeffrey S. Munroe, Abigail A. Santis, Elsa J. Soderstrom, Michael J. Tappa, and Ann M. Bauer
SOIL, 10, 167–187, https://doi.org/10.5194/soil-10-167-2024, https://doi.org/10.5194/soil-10-167-2024, 2024
Short summary
Short summary
This study investigated how the deposition of mineral dust delivered by the wind influences soil development in mountain environments. At six mountain locations in the southwestern United States, modern dust was collected along with samples of soil and local bedrock. Analysis indicates that at all sites the properties of dust and soil are very similar and are very different from underlying rock. This result indicates that soils are predominantly composed of dust delivered by the wind over time.
Hans-Jörg Vogel, Bibiana Betancur-Corredor, Leonard Franke, Sara König, Birgit Lang, Maik Lucas, Eva Rabot, Bastian Stößel, Ulrich Weller, Martin Wiesmeier, and Ute Wollschläger
SOIL, 9, 533–543, https://doi.org/10.5194/soil-9-533-2023, https://doi.org/10.5194/soil-9-533-2023, 2023
Short summary
Short summary
Our paper presents a new web-based software tool to support soil process research. It is designed to categorize publications in this field according to site and soil characteristics, as well as experimental conditions, which is of critical importance for the interpretation of the research results. The software tool is provided open access for the soil science community such that anyone can contribute to improve the contents of the literature data base.
Gabriel Nuto Nóbrega, Xosé L. Otero, Danilo Jefferson Romero, Hermano Melo Queiroz, Daniel Gorman, Margareth da Silva Copertino, Marisa de Cássia Piccolo, and Tiago Osório Ferreira
SOIL, 9, 189–208, https://doi.org/10.5194/soil-9-189-2023, https://doi.org/10.5194/soil-9-189-2023, 2023
Short summary
Short summary
The present study addresses the soil information gap in tropical seagrass meadows. The different geological and bioclimatic settings caused a relevant soil diversity. Contrasting geochemical conditions promote different intensities of soil processes. Seagrass soils from the northeastern semiarid coast are marked by a more intense sulfidization. Understanding soil processes may help in the sustainable management of seagrasses.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Malte Ortner, Michael Seidel, Sebastian Semella, Thomas Udelhoven, Michael Vohland, and Sören Thiele-Bruhn
SOIL, 8, 113–131, https://doi.org/10.5194/soil-8-113-2022, https://doi.org/10.5194/soil-8-113-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) and its labile fractions are influenced by soil use and mineral properties. These parameters interact with each other and affect SOC differently depending on local conditions. To investigate the latter, the dependence of SOC content on parameters that vary on a local scale depending on parent material, soil texture, and land use as well as parameter combinations was statistically assessed. Relevance and superiority of local models compared to total models were shown.
Désiré Tsozué, Nérine Mabelle Moudjie Noubissie, Estelle Lionelle Tamto Mamdem, Simon Djakba Basga, and Dieudonne Lucien Bitom Oyono
SOIL, 7, 677–691, https://doi.org/10.5194/soil-7-677-2021, https://doi.org/10.5194/soil-7-677-2021, 2021
Short summary
Short summary
Studies on soil organic carbon stock (SOCS) in the Sudano-Sahelian part of Cameroon are very rare. Organic C storage decreases with increasing latitude and more than 60 % of the SOCS is stored below the first 25 cm depth. In addition, a good correlation is noted between precipitation which decreases with increasing latitude and the total SOCS, indicating the importance of climate in the distribution of the total SOCS in the study area, which directly influence the productivity of the vegetation.
Capucine Baubin, Arielle M. Farrell, Adam Št'ovíček, Lusine Ghazaryan, Itamar Giladi, and Osnat Gillor
SOIL, 7, 611–637, https://doi.org/10.5194/soil-7-611-2021, https://doi.org/10.5194/soil-7-611-2021, 2021
Short summary
Short summary
In this paper, we describe changes in desert soil bacterial diversity and function when two ecosystem engineers, shrubs and ant nests, in an arid environment are present. The results show that bacterial activity increases when there are ecosystem engineers and that their impact is non-additive. This is one of a handful of studies that investigated the separate and combined effects of ecosystem engineers on soil bacterial communities investigating both composition and function.
Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter
SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, https://doi.org/10.5194/soil-7-217-2021, 2021
Short summary
Short summary
This paper focuses on the production of global maps of soil properties with quantified spatial uncertainty, as implemented in the SoilGrids version 2.0 product using DSM practices and adapting them for global digital soil mapping with legacy data. The quantitative evaluation showed metrics in line with previous studies. The qualitative evaluation showed that coarse-scale patterns are well reproduced. The spatial uncertainty at global scale highlighted the need for more soil observations.
Sanjeewani Nimalka Somarathna Pallegedara Dewage, Budiman Minasny, and Brendan Malone
SOIL, 6, 359–369, https://doi.org/10.5194/soil-6-359-2020, https://doi.org/10.5194/soil-6-359-2020, 2020
Short summary
Short summary
Most soil management activities are implemented at farm scale, yet digital soil maps are commonly available at regional/national scales. This study proposes Bayesian area-to-point kriging to downscale regional-/national-scale soil property maps to farm scale. A regional soil carbon map with a resolution of 100 m (block support) was disaggregated to 10 m (point support) information for a farm in northern NSW, Australia. Results are presented with the uncertainty of the downscaling process.
Boris Jansen and Guido L. B. Wiesenberg
SOIL, 3, 211–234, https://doi.org/10.5194/soil-3-211-2017, https://doi.org/10.5194/soil-3-211-2017, 2017
Short summary
Short summary
The application of lipids in soils as molecular proxies, also often referred to as biomarkers, has dramatically increased in the last decades. Applications range from inferring changes in past vegetation composition to unraveling the turnover of soil organic matter. However, the application of soil lipids as molecular proxies comes with several constraining factors. Here we provide a critical review of the current state of knowledge on the applicability of molecular proxies in soil science.
Marleen de Blécourt, Marife D. Corre, Ekananda Paudel, Rhett D. Harrison, Rainer Brumme, and Edzo Veldkamp
SOIL, 3, 123–137, https://doi.org/10.5194/soil-3-123-2017, https://doi.org/10.5194/soil-3-123-2017, 2017
Short summary
Short summary
We examined the spatial variability in SOC in a 10 000 ha landscape in SW China. The spatial variability in SOC was largest at the plot scale (1 ha) and the associations between SOC and land use, soil properties, vegetation, and topographical attributes varied across plot to landscape scales. Our results show that sampling designs must consider the controlling factors at the scale of interest in order to elucidate their effects on SOC against the variability within and between plots.
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017, https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Short summary
Here we demonstrate the use of a probabilistic approach for quantifying soil physical properties and variability using time and environmental input. We applied this approach to a synthesis of soil chronosequences, i.e., soils that change with time. The model effectively predicted clay content across the soil chronosequences and for soils in complex terrain using soil depth as a proxy for hill slope. This model represents the first attempt to model soils from a probabilistic viewpoint.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016, https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary
Short summary
This study combined fieldwork, geochronology and modelling to get a better understanding of Arctic soil development on a landscape scale. Main processes are aeolian deposition, physical and chemical weathering and silt translocation. Discrepancies between model results and field observations showed that soil and landscape development is not as straightforward as we hypothesized. Interactions between landscape processes and soil processes have resulted in a complex soil pattern in the landscape.
Z. Kardanpour, O. S. Jacobsen, and K. H. Esbensen
SOIL, 1, 695–705, https://doi.org/10.5194/soil-1-695-2015, https://doi.org/10.5194/soil-1-695-2015, 2015
J. Madruga, E. B. Azevedo, J. F. Sampaio, F. Fernandes, F. Reis, and J. Pinheiro
SOIL, 1, 515–526, https://doi.org/10.5194/soil-1-515-2015, https://doi.org/10.5194/soil-1-515-2015, 2015
Short summary
Short summary
Vineyards in the Azores have been traditionally settled on lava field terroirs whose workability and trafficability limitations make them presently unsustainable.
A landscape zoning approach based on a GIS analysis, incorporating factors of climate and topography combined with the soil mapping units suitable for viticulture was developed in order to define the most representative land units, providing an overall perspective of the potential for expansion of viticulture in the Azores.
Cited articles
Abadi Ghadim, A. K.: Water repellency: a whole-farm bio-economic perspective, J. Hydrol., 231–232, 396–405, 2000.
Bachmann, J., Guggenberger, G., Baumgartl, T., Ellerbrock, R. H., Urbanek, E., Goebel, M.-O., Kaiser, K., Horn, R., and Fischer, W. R.: Physical carbon-sequestration mechanisms under special consideration of soil wettability, J. Plant Nutr. Soil Sc., 171, 14–26, 2008.
Baer, S. G., Rice, C. W., and Blair, J. M.: Assessment of soil quality in fields with short and long term enrollment in the CRP, J. Soil Water Conserv., 55, 142–146, 2000.
Baggs, E. M.: Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction, Current Opinion in Environmental Sustainability, 3, 321–327, 2011.
Bai, Z. G., Dent, D. L., Olsson, L., and Schaepman, M. E.: Proxy global assessment of land degradation, Soil Use Manage., 24, 223–234, https://doi.org/10.1111/j.1475-2743.2008.00169.x, 2008.
Bakr, N., Weindorf, D. C., Zhu, Y., Arceneaux, A. E., and Selim, H. M.: Evaluation of compost/mulch as highway embankment erosion control in Louisiana at the plot-scale, J. Hydrol., 468, 257–267, 2012.
Bardgett, R.: Causes and consequences of biological diversity in soil, Zoology, 105, 367–374, 2002
Bardgett, R., Anderson, J., Behan-Pelletier, V., Brussaard, L., Coleman, D., Ettema, C., Moldenke, A., Schimel, J., and Wall, D.: The influence of soil biodiversity on hydrological pathways and the transfer of materials between terrestrial and aquatic ecosystems, Ecosystems, 4, 421–429, 2001.
Bardgett, R. D., Usher, M. B., and Hopkins, D. W.: Biological diversity and function in soils, Cambridge, Cambridge University Press, 2005.
Barrios, E.: Soil biota, ecosystem services and land productivity, Ecol. Econ., 64, 269–285, 2007.
Bashan, Y. and De-Bashan, L. E.: How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment, Adv. Agron., 108, 77–136, 2010.
Bell, E., Damon, R., Eardley, D., and Siemen, J.: Fresh start: Inspiring our youth with knowledge, experience, access to farming, local foods, and life skills for healthy and sustainable living, LIB 322: Wicked Problems of Sustainability, Paper 1, available at: http://scholarworks.gvsu.edu/wickedproblems/1 (last access: 29 March 2014), 2013.
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., and Kirk, G. J. D.: Carbon losses from all soils across England and Wales 1978–2003, Nature, 437, 245–248, 2005.
Berg, G. and Smalla, K.: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere, FEMS Microbiol. Ecol., 68, 1–13, 2009.
Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period, P. Natl. Acad. Sci. USA, 110, 20882–20887, 2013.
Bragg, J. R., Prince, R. C., Harner, E. J., and Atlas, R. M.: Effectiveness of bioremediation for the Exxon Valdez oil spill, Nature, 368, 413–418, 1994.
Brevik, E. C.: Collier Cobb and Allen D. Hole: Geologic mentors to early soil scientists, Phys. Chem. Earth, 35, 887–894, 2010.
Brevik, E. C.: Soils and human health – an overview, in: Soils and human health, edited by: Brevik, E. C. and Burgess, L. C., Boca Raton, FL, USA, CRC Press, 29–56, 2013a.
Brevik, E. C.: Forty years of soil formation in a South Georgia, USA borrow pit, Soil Horiz., 54, 20–29, https://doi.org/10.2136/sh12-08-0025, 2013b.
Brevik, E. C. and Fenton, T. E.: Long-term effects of compaction on soil properties along the Mormon Trail, south-central Iowa, USA, Soil Horiz., 53, 37–42, https://doi.org/10.2136/sh12-03-0011, 2012.
Brevik, E. C. and Hartemink, A. E.: Early soil knowledge and the birth and development of soil science, Catena, 83, 23–33, 2010.
Brevik, E. C. and Sauer, T. J.: The past, present, and future of soils and human health studies, SOIL, 1, 35–46, https://doi.org/10.5194/soil-1-35-2015, 2015.
Briggs, J. M., Spielmann, K. A., Schaafsma, H., Kintigh, K. W., Kruse, M., Morehouse, K., and Schollmeyer, K.: Why ecology needs archaeologists and archaeology needs ecologists, Front. Ecol. Environ., 4, 180–188, 2006.
Bronick, C. J. and Lal, R.: Soil structure and management: a review, Geoderma, 124, 3–22, 2004.
Brown, A.: Geology and the Tullahoma Campaign of 1863, Geotimes, 8, 20–25, 1963.
Bullard, T. F., McDonald, E. V., and Baker, S. E.: Integration of new methods in soils and geomorphology applied to cultural resources management on military lands, Reno, NV, USA, Desert Research Institute, available at: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA520262 (last access: 14 January 2015), 2008.
Burgess, L. C.: Organic pollutants in soil, in: Soils and human health, edited by: Brevik, E. C. and Burgess, L. C., Boca Raton, FL, USA, CRC Press, 83–106, 2013.
Calzolari, C.: Research in pedology: A historical perspective, in: The Soils of Italy, edited by: Costantini, E. A. C. and Dazzi, C., Dordrecht, The Netherlands, Springer, 1–17, 2013.
Caravaca, F., García, C., Hernández, M. T., and Roldán, A.: Aggregate stability changes after organic amendment and mycorrhizal inoculation in the afforestation of a semiarid site with Pinus halepensis, Appl. Soil Ecol., 19, 199–208, 2002.
Cardon, Z. G. and Whitbeck, J. L.: The rhizosphere, An ecological perspective, Amsterdam, The Netherlands, Elsevier, 2007.
Carr, P. M., Delate, K., Zhao, X., Cambardella, C. A., Carr, P. L., and Heckman, J. R.: Organic farming impacts on soil, food, and human health, in: Soils and human health, edited by: Brevik, E. C. and Burgess, L. C., Boca Raton, FL, USA, CRC Press, 241–258, 2013.
Cerdà, A.: Soil aggregate stability in three Mediterranean environments, Soil Technol., 9, 129–133, 1996.
Cerdà, A.: Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions, Water Resour. Res., 35, 319–328, 1999.
Cerdà, A. and Doerr, S. H.: Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation, Int. J. Wildland Fire, 14, 423–437, 2005.
Cerdà, A. and Jurgensen, M. F.: The influence of ants on soil and water losses from an orange orchard in eastern Spain, J. Appl. Entomol., 132, 306–314, 2008.
Cooper, J. E. and Rao, J. R.: Molecular approached to soil, rhizosphere and plant microorganism analysis, Cambridge, UK, CABI Publishing, 2006.
Corre, M., Van Kessel, C., and Pennock, D. J.: Landscape and seasonal patterns of nitrous oxide emissions in a semiarid region, Soil Sci. Soc. Am. J., 60, 1806–1815, 1996.
Dekker, L. W. and Ritsema, C. J.: How water moves in a water repellent sandy soil: 1. Potential and actual water repellency, Water Resour. Res., 30, 2507–2517, 1994.
Devries, K.: Infantry warfare in the Early 14th Century, Suffolk, UK, Boydell, 1996.
de Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., Jørgensen, H. B., Brady, M. V., Christensen, S., de Ruiter, P. C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Gera Hol, W. H., Hotes, S., Mortimer, S. R., Setälä, H., Sgardelis, S. P., Uteseny, K., van der Putten, W. H., Wolters, V., and Bardgett, R. D.: Soil food web properties explain ecosystem services across European land use systems, P. Natl. Acad. Sci. USA, 110, 14296–14301, https://doi.org/10.1073/pnas.1305198110, 2013.
Dlapa, P., Chrenková, K., Mataix-Solera, J., and Šimkovic, I.: Soil profile improvement as a by-product of gully stabilization measures, Catena, 92, 155–161, 2012.
Doerr, S. H., Shakesby, R. A., and Walsh, R. P. D.: Soil water repellency: its causes, characteristics and hydro-geomorphological significance, Earth-Sci. Rev., 51, 33–65, 2000.
Doolittle, J. A. and Brevik, E. C.: The use of electromagnetic induction techniques in soils studies, Geoderma, 223–225, 33–45, https://doi.org/10.1016/j.geoderma.2014.01.027, 2014.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Engman, E. T. and Chauhan, N.: Status of microwave soil moisture measurements with remote sensing, Remote Sens. Environ., 51, 189–198, 1995.
Eynard, A., Schumacher, T. E., Lindstrom, M. J., Malo, D. D.: Effects of agricultural management systems on soil organic carbon in aggregates of Ustolls and Usterts, Soil Till. Res., 81, 253–263, 2005.
Fernández, C., Vega, J. A., Jiménez, E., Vieira, D. C. S., Merino, A., Ferreiro, A., and Fonturbel, T.: Seeding and mulching + seeding effects on post-fire runoff, soil erosion and species diversity in Galicia (NW Spain), Land Degrad. Dev., 23, 150–156, https://doi.org/10.1002/ldr.1064, 2012.
Figuerola, E. L. M., Guerrero, L. D., Türkowsky, D., Wall, L. G., and Erijman, L.: Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale, Environ. Microbiol., online first, https://doi.org/10.1111/1462-2920.12497, 2014.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478, 337–342, 2011.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first century, Philos. T. Ros. Soc. B, 368, 20130164, https://doi.org/10.1098/rstb.2013.0164, 2013.
García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., and Caravaca, F.: Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem, Soil Use Manage., 28, 571–579, 2012.
Garrison, V. H., Shinn, E. A., Foreman, W. T., Griffin, D. W., Holmes, C. W., Kellogg, C. A., Majewski, M. S., Richardson, L. L., Ritchie, K. B., and Smith, G. W.: African and Asian dust: from desert soils to coral reefs, BioScience, 53, 469–480, 2003.
Gerke, H. H. and van Genuchten, M. T.: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media, Water Resour. Res., 29, 305–319, 1993.
Hartemink, A. E.: Soils are back on the global agenda, Soil Use Manage., 24, 327–330, 2008.
Heckman, J. R.: Human contact with plants and soils for health and well-being, in: Soils and human health, edited by: Brevik, E. C. and Burgess, L. C., Boca Raton, FL, USA, CRC Press, 227–240, 2013.
Helmke, M. F. and Losco, R. L.: Soil's influence on water quality and human health, in: Soils and human health, edited by: Brevik, E. C. and Burgess, L. C., Boca Raton, FL, USA, CRC Press, 155–176, 2013.
Helms, D.: Hugh Hammond Bennett and the creation of the Soil Conservation Service, J. Soil Water Conserv., 65, 37A–47A, 2010.
Herries, A. I. R.: New approaches for integrating palaeomagnetic and mineral magnetic methods to answer archaeological and geological questions on Stone Age sites, in: Terra Australis 28-New Directions in Archaeological Science, edited by: Fairbrain, A., O'Conner, S., and Marwick, B., Canberra, Australia, The Australian National University Press, 235–253, 2009.
Holliday, V. T.: Soils in archaeological research, New York, NY, USA, Oxford University Press, 2004.
Homburg, J. A.: Archaeological investigations at the LSU campus mounds, Louisiana Archaeology, 15, 31–204, 1988.
Homburg, J. A. and Sandor, J. A.: Anthropogenic effects on soil quality of ancient agricultural systems of the American Southwest, Catena, 85, 144–154, 2011.
Howitt, R. E., Català-Luque, R., De Gryze, S., Wicks, S., and Six, J.: Realistic payments could encourage farmers to adopt practices that sequester carbon, Calif. Agr., 63, 91–95, 2009.
Hunt, H. W., Coleman, D. C., Ingham, E. R., Ingham, R. E., Elliott, E. T., Moore, J. C., Rose, S. L., Reid, C. P. P., and Morley, C. R.: The detrital food web in a shortgrass prairie, Biol. Fert. Soils, 3, 57–68, 1987.
Jans, M. M. E., Kars, H., Nielsen-Marsh, C. M., Smith, C. I., Nord, A. G., Arthur, P., and Earl, N.: In situ preservation of archaeological bone: A histological study within a multidisciplinary approach, Archaeometry, 44, 343–352, 2002.
Jarvis, N. J.: A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality, Eur. J. Soil Sci., 58, 523–546, 2007.
Jiménez, M. N., Fernández-Ondoño, E., Ripoll, M. Á., Castro-Rodríguez, J., Huntsinger, L., and Navarro, F. B.: Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterranean climatic conditions, Land Degrad. Dev., online first, https://doi.org/10.1002/ldr.2250, 2013.
Jones, B.: Animals and medical geology, in: Essentials of Medical Geology, edited by: Selinus, O., Alloway, B., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., and Smedley, P., Amsterdam, The Netherlands, Elsevier, 513–526, 2005.
Jones, C. V., Lawton, J. H., and Shachak, M.: Positive and negative effects of organisms as physical ecosystem engineers, Ecology, 78, 1946–1957, 1997.
Jones, R., Spoor, G., and Thomasson, A.: Vulnerability of subsoils in Europe to compaction: a preliminary analysis, Soil Till. Res., 73, 131–143, 2003.
Jordán, A., Zavala, L. M., and Gil, J.: Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain, Catena, 81, 77–85, 2010.
Kabata-Pendias, A. and Mukherjee, A. B.: Trace elements from soil to human, Berlin, Germany, Springer-Verlag, 2007.
Kong, A. Y. Y., Scow, K. M., Córdova-Kreylos, A. L., Holmes, W. E., and Six, J.: Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems, Soil Biol. Biochem., 43, 20–30, 2011.
Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, 2004.
Lark, M.: Science on the Normandy beaches: J. D. Bernal and the prediction of soil trafficability for Operation Overlord, Soil Surv. Horiz., 49, 12–15, 2008.
Lavelle, P. and Spain, A. V.: Soil Ecology, Amsterdam, The Netherlands, Kluwer Scientific Publications, 2001.
Lavelle, P., Bignell, D., Lepage, M., Wolters, W., Roger, P., Ineson, P., Heal, O. W., and Dhillion, S.: Soil function in a changing world: the role of invertebrate ecosystem engineers, Eur. J. Soil Biol., 33, 159–193, 1997.
Loynachan, T. E.: Human disease from introduced and resident soilborne pathogens, in: Soils and human health, edited by: Brevik, E. C. and Burgess, L. C., Boca Raton, FL, USA, CRC Press, 107–136, 2013.
Lozano, E., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Bárcenas, G. M., González-Pérez, J. A., García-Orenes, F., Torres, M. P., and Mataix-Beneyto, J.: Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest, Geoderma, 207–208, 212–220, 2013.
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., and Imeson, A. C.: Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes, Ecology, 86, 288–297, 2005.
Mangalassery, S., Sjögersten, S., Sparkes, D. L., Sturrock, C. J., and Mooney, S. J.: The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases, Soil Till. Res., 132, 39–46, 2013.
Markus, F., Hannes, F. William, A. J., and Leuenberger, J.: Susceptibility of soils to preferential flow of water: A field study, Water Resour. Res., 30, 1945–1954, 1994.
Martinez-Viveros, O., Jorquera, M., Crowley, D. E., Gajardo, G., and Mora, M. L.: Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria, Journal of Soil Science and Plant Nutrition, 10, 293–319, 2010.
McBratney, A., Field, D. J., and Koch, A.: The dimensions of soil security, Geoderma, 213, 203–213, 2014.
McKissock, I., Gilkes, R. J., Harper, R. J., and Carter, D. J.: Relationships of water repellency to soil properties for different spatial scales of study, Aust. J. Soil Res., 36, 495–507, 1998.
Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., Burrows, E., Bowles, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton, A., Zhou, Y.-M., and Tang, J.: Soil warming, carbon–nitrogen interactions, and forest carbon budgets, P. Natl. Acad. Sci. USA, 108, 9508–9512, 2011.
Mérel, P., Yi, F., Lee, J., and Six, J.: A regional bio-economic model of nitrogen use in cropping systems, Am. J. Agr. Econ., 96, 67–91, 2014.
Mittelbach, H., Lehner, I., and Seneviratne, S. I.: Comparison of four soil moisture sensor types under field conditions in Switzerland, J. Hydrol., 430, 39–49, 2012.
Montgomery, D.: Dirt: The erosion of civilizations, Berkeley, CA, USA, University of California Press, 2007.
Parsons, R. B., Scholtes, W. H., and Riecken, F. F.: Soils of Indian mounds in northeastern Iowa as benchmarks for studies of soil genesis, Soil Sci. Soc. Am. Proc., 26, 491–496, 1962.
Pepper, I. L., Gerba, C. P., Newby, D. T., and Rice, C. W.: Soil: a public health threat or savior?, Crit. Rev. Env. Sci. Tec., 39, 416–432, 2009.
Pereg, L. and McMillan, M.: Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems, Soil Biol. Biochem., 80, 349–358, 2015.
Pimental, D. and Kounang, N.: Ecology of soil erosion in ecosystems, Ecosystems, 1, 416–426, 1998.
Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., and Cassman, K. G.: Limited potential of no-till agriculture for climate change mitigation, Nature Clim. Change, 4, 678–683, 2014.
Procop, G., Jobstmann, H., and Schönbauer, A.: Final report overview of best practices for limiting soil sealing or mitigating its effects in EU-27, Brussels, Belgium, European Commission, 2011.
Pronk, G. J., Heister, K., Ding, G., Smalla, K., and Kögel-Knabner, I.: Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations, Geoderma, 189–190, 585–594, 2012.
Puente, M. E., Bashan, Y., Li, C. Y., and Lebsky, V. K.: Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rock, Plant Biol., 6, 629–642, 2004.
Purin, S. and Rilling, M. C.: The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function, Pedobiologia, 51, 123–130, 2007.
Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3, 311–314, 2010.
Reeve, J., Schadt, C., Carpenter-Boggs, L., Kang, S., Zhou, J., and Reganold, J. P.: Effects of soil type and farm management on soil ecological functional genes and microbial activities, ISME J., 4, 1099–1107, 2010.
Rillig, M. C.: Arbuscular mycorrhizae, glomalin and soil quality, Can. J. Soil Sci., 84, 355–363, 2004.
Rook, G. A. W.: 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the "hygiene" or "old friends" hypothesis, Clin. Exp. Immunol., 160, 70–79, 2010.
Roth, C. H., Malicki, M. A., and Plagge, R.: Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR, Eur. J. Soil Sci., 43, 1–13, 2006.
Sandor, J. A. and Eash, N. S.: Significance of ancient agricultural soils for long-term agronomic studies and sustainable agriculture research, Agron. J., 83, 29–37, 1991.
Six, J., Elliott, E. T., and Paustian, K.: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture, Soil Biol. Biochem., 32, 2099–2103, 2000.
Six, J., Bossuyt, H., De Gryze, S., and Denef, K.: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics, Soil Till. Res., 79, 7–31, 2004.
Sombroek, W., Ruivo, M. D. L., Fearnside, P. M., Glaser, B., and Lehmann, J.: Amazonian Dark Earths as carbon stores and sinks, in Amazonian Dark Earths, Dordrecht, The Netherlands, Springer, 125–139, 2003.
Sørensen, P. and Rubæk, G. H.: Leaching of nitrate and phosphorus after autumn and spring application of separated solid animal manures to winter wheat, Soil Use Manage., 28, 1–11, 2012.
Stevens, C. J., Dise, N. B., Mountford, J. O., and Gowing, D. J.: Impact of nitrogen deposition on the species richness of grasslands, Science, 303, 1876–1879, 2004.
Sweetwood, R. V., Terry, R. E., Beach, T., Dahlin, B. H., and Hixson, D.: The Maya footprint: Soil resources of Chunchucmil, Yucatán, Mexico, Soil Sci. Soc. Am. J., 73, 1209–1220, 2009.
Swift, M. J., Heal, O. W., and Anderson, J. M.: Decomposition in terrestrial ecosystems, Oxford, UK, Blackwell Scientific, 1979.
Taumer, K., Stoffregen, H., and Wessolek, G.: Seasonal dynamics of preferential flow in a water repellent soil, Vadose Zone J., 5, 405–411, 2006.
Tipping, E., Benham, S., Boyle, J. F., Crow, P., Davies, J., Fischer, U., Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor, A. J., Monteith, D. T., Rowe, E. C., and Toberman, H.: Atmospheric deposition of phosphorus to land and freshwater, Env. Sci. Proc. Impacts, 16, 1608–1617, 2014.
Tittonell, P., Vanlauwe, B., Leffelaar, P. A., Shepherd, K. D., and Giller, K. E.: Exploring diversity in soil fertility management of smallholder farms in western Kenya II. within-farm variability in resource allocation, nutrient flows and soil fertility status, Agr. Ecosyst. Environ., 110, 166–184, 2005.
Torsvik, V. and Ovreas, L.: Microbial diversity and function in soil: from genes to ecosystems, Curr. Opin. Microbial., 5, 240–245, 2002.
Tóth, G., Montanarella, L., and Rusco, E.: Threats to soil quality in Europe, Ispra, Italy, Institute for Environment and Sustainability, 2008.
UNCCD: Zero net land degradation: A sustainable development goal for Rio +20, Bonn, Germany, United Nations Convention to Combat Desertification, 2012.
van Groenigen, K. J., Osenberg, C. W., and Hungate, B. A.: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2, Nature, 475, 214–216, 2011.
Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., and Smith, C. J.: Tolerable versus actual soil erosion rates in Europe, Earth-Sci. Rev., 94, 23–38, 2009.
Voisin, A.: Soil, grass, and cancer, New York, NY, USA, Philosophical Library Inc., 1959.
Wagner, P. L.: The concept of environmental determinism in cultural evolution, in: Origins of agriculture, edited by: Reed, C. A., Berlin, Germany, Walter de Gruyter, 49–74, 1977.
Wessels, K. J.: Letter to the Editor: Comments on "Proxy global assessment of land degradation" by Z. G. Bai et al. (2008), Soil Use Manage., 25, 91–92, https://doi.org/10.1111/j.1475-2743.2009.00195.x, 2009.
Yi, F., Mérel, P., Lee, J., Farzin, Y. H., and Six, J.: Switchgrass in California: where, and at what price?, Glob. Change Biol. Bioen., 6, 672–686, 2014.
Young, I. M. and Crawford, J. W.: Interactions and self-organisation in the soil-microbe complex, Science, 304, 1634–1637, 2004.
Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nat. Geosci., 4, 601–605, 2011.
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
This paper provides a brief accounting of some of the many ways that the study of soils can be...
Special issue