Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quality assessment of meta-analyses on soil organic carbon
Julia Fohrafellner
CORRESPONDING AUTHOR
BIOS Science Austria, Dietrichgasse 27, 1130 Vienna, Austria
Sophie Zechmeister-Boltenstern
Department of Forest- and Soil
Sciences, Institute of Soil Research (IBF), University of Natural Resources and Life Sciences, Vienna (BOKU),
Gregor-Mendel-Straße 33, 1180 Vienna, Austria
Rajasekaran Murugan
Department of Forest- and Soil
Sciences, Institute of Soil Research (IBF), University of Natural Resources and Life Sciences, Vienna (BOKU),
Gregor-Mendel-Straße 33, 1180 Vienna, Austria
Elena Valkama
Sustainability Science and Indicators, Bioeconomy and
Environment, Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
Related authors
Julia Fohrafellner, Maximilian Lippl, Armin Bajraktarevic, Andreas Baumgarten, Heide Spiegel, Robert Körner, and Taru Sandén
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-426, https://doi.org/10.5194/essd-2025-426, 2025
Preprint under review for ESSD
Short summary
Short summary
The first openly accessible Austrian near-infrared (NIR) Soil Spectral Library was developed, including over 2100 samples covering all Austrian environmental zones. The prediction of soil properties via partial least square regression showed potential, but the accuracy was insufficient compared to routine laboratory analyses. We encourage using the open Library as a foundation for further spectral analysis and modelling and we support future soil health assessments via spectroscopy.
Julia Fohrafellner, Maximilian Lippl, Armin Bajraktarevic, Andreas Baumgarten, Heide Spiegel, Robert Körner, and Taru Sandén
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-426, https://doi.org/10.5194/essd-2025-426, 2025
Preprint under review for ESSD
Short summary
Short summary
The first openly accessible Austrian near-infrared (NIR) Soil Spectral Library was developed, including over 2100 samples covering all Austrian environmental zones. The prediction of soil properties via partial least square regression showed potential, but the accuracy was insufficient compared to routine laboratory analyses. We encourage using the open Library as a foundation for further spectral analysis and modelling and we support future soil health assessments via spectroscopy.
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Armin Malli, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Christoph Wohner, Sophie Zechmeister-Boltenstern, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data, 17, 685–702, https://doi.org/10.5194/essd-17-685-2025, https://doi.org/10.5194/essd-17-685-2025, 2025
Short summary
Short summary
Long-term observation sites have been established in six Austrian locations, covering major ecosystem types such as forests, grasslands, and wetlands. The purpose of these observations is to measure baselines for assessing the impacts of extreme climate events on the carbon cycle. The collected datasets include meteorological variables, soil temperature and moisture, carbon dioxide fluxes, and tree stem growth in forests at a resolution of 15–60 min between 2019 and 2021.
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Cited articles
Acutis, M., Tadiello, T., Perego, A., di Guardo, A., Schillaci, C., and
Valkama, E.: EX-TRACT: An excel tool for the estimation of standard
deviations from published articles, Environ. Model. Softw., 147, 105236,
https://doi.org/10.1016/j.envsoft.2021.105236, 2022.
Aguilera, E., Lassaletta, L., Gattinger, A., and Gimeno, B. S.: Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis, Agr. Ecosyst. Environ., 168, 25–36, https://doi.org/10.1016/j.agee.2013.02.003, 2013.
Angers, D. A. and Eriksen-Hamel, N. S.: Full-Inversion tillage and organic carbon distribution in soil profiles: A Meta-Analysis, Soil Sci. Soc. Am. J., 72, 1370–1374, https://doi.org/10.2136/sssaj2007.0342, 2008.
Aksnes, D. W., Langfeldt, L., and Wouters, P.: Citations, Citation
Indicators, and Research Quality: An Overview of Basic Concepts and
Theories, Sage Open, 9, https://doi.org/10.1177/2158244019829575, 2019.
Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D., Yang, J., and Matocha, C.: Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis, Glob. Chang. Biol., 25, 2591–2606, https://doi.org/10.1111/gcb.14658, 2019.
Beillouin, D., Ben-Ari, T., and Makowski, D.: Evidence map of crop
diversification strategies at the global scale, Environ. Res. Lett., 14, 123001,
https://doi.org/10.1088/1748-9326/ab4449, 2019.
Beillouin, D., Cardinael, R., Berre, D., Boyer, A., Corbeels, M., Fallot,
A., Feder, F., and Demenois, J.: A global overview of studies about land
management, land-use change, and climate change effects on soil organic
carbon, Global Change Biol., 28, 1690–1702, https://doi.org/10.1111/gcb.15998,
2021.
Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismanyoky, T., Lipiec,
J., Tits, M., Toth, Z., and Katterer, T.: The effect of crop residues, cover
crops, manures and nitrogen fertilization on soil organic carbon changes in
agroecosystems: a synthesis of reviews, Mitig. Adapt. Strat. Gl., 25,
929–952, https://doi.org/10.1007/s11027-020-09916-3, 2020.
Borenstein, M., Hedges, L. V., Higgins, J., and Rothstein, H.: Introduction
to meta-analysis, Wiley, 421 pp., 2009.
Brandt, K., Sêrednicka-Tober, D., Baranìski, M., Sanderson, R., Leifert, C.,
and Seal, C.: Methods for Comparing Data across Differently Designed
Agronomic Studies: Examples of Different Meta-analysis Methods Used to
Compare Relative Composition of Plant Foods Grown Using Organic or
Conventional Production Methods and a Protocol for a Systematic Review, J.
Agr. Food Chem., 61, 7173–7180, https://doi.org/10.1021/jf4008967, 2013.
Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., and Cayuela, M. L.: The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review, Nutr. Cycl. Agroecosyst. 111, 103–125, https://doi.org/10.1007/s10705-017-9903-5, 2018.
Collaboration for Environmental Evidence: Guidelines and Standards for
Evidence Synthesis in Environmental Management, Version 5, edited by: Pullin, A. S., Frampton, G. K., Livoreil, B., and Petrokofsky, G., https://environmentalevidence.org/information-for-authors/ (last access: 17 January 2023), 2018.
Collaboration for Environmental Evidence: The Collaboration for
Environmental Evidence Synthesis Appraisal Tool (CEESAT), Version 2.1.,
https://environmentalevidence.org/ceeder/about-ceesat/ (last access: 17 January 2023), 2020.
Cooper, J., Baranski, M., Stewart, G., Nobel-de Lange, M., Bàrberi, P., Fließbach, A., Peigné, J., Berner, A., Brock, C., Casagrande, M., Crowley, O., David, C., De Vliegher, A., Döring, T. F., Dupont, A., Entz, M., Grosse, M., Haase, T., Halde, C., Hammerl, V., Huiting, H., Leithold, G., Messmer, M., Schloter, M., Sukkel, W., van der Heijden, M. G. A., Willekens, K., Wittwer, R., and Mäder, P.: Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis, Agron. Sustain. Dev., 36, https://doi.org/10.1007/s13593-016-0354-1, 2016.
Cooper, H., Hedges, L. V., and Valentine, J. C.: Potentials and Limitations
of Research Synthesis, in: The Handbook of Research Synthesis and
Meta-Analysis, edited by: Cooper, H., Hedges, L. V., and Valentine, J. C.,
Russell Sage Foundation, 518–525, 2019a.
Cooper, H., Hedges, L. V., and Valentine, J. C.: Research Synthesis as a
Scientific Process, in: The Handbook of Research Synthesis and
Meta-Analysis, edited by: Cooper, H., Hedges, L. V., and Valentine, J. C.,
Russell Sage Foundation, New York, 4–15, 2019b.
Cooper, H., Hedges, L. V., and Valentine, J. C.: The handbook of research
synthesis and meta-analysis, 3rd ed., Russell Sage Foundation, New York, 556 pp., 2019c.
Côté, I. M., Curtis, P. S., Rothstein, H. R., and Stewart, G. B.:
Gathering Data: searching Literature and selection Criteria, Princeton
University Press, 37–51, 2013.
Culina, A., Crowther, T. W., Ramakers, J. J. C., Gienapp, P., and Visser, M.
E.: How to do meta-analysis of open datasets, Nat. Ecol. Evol., 2,
1053–1056,
https://doi.org/10.1038/s41559-018-0579-2, 2018.
Curtis, P. S., Mengersen, K., Lajeunesse, M. J., Rothstein, H. R., and
Stewart, G. B.: Extraction and Critical appraisal of Data, in: Handbook of
Meta-analysis in Ecology and Evolution, edited by: Koricheva, J., Gurevitch,
J. and Mengersen, K., Princeton University Press, Princeton, 52–60, ISBN 9780691137285, 2013.
Dicks, L. V., Walsh, J. C., and Sutherland, W. J.: Organising evidence for
environmental management decisions: A “4S” hierarchy, Trends Ecol. Evol.,
29, 607–613,
https://doi.org/10.1016/j.tree.2014.09.004, 2014.
Feng, Q., An, C., Chen, Z., and Wang, Z.: Can deep tillage enhance carbon sequestration in soils?, A meta-analysis towards GHG mitigation and sustainable agricultural management, Renew. Sustain. Energy Rev., 133, 110293, https://doi.org/10.1016/j.rser.2020.110293, 2020.
García-Palacios, P., Gattinger, A., Bracht-Jørgensen, H., Brussaard, L., Carvalho, F., Castro, H., Clément, J.-C., De Deyn, G., D'Hertefeldt, T., Foulquier, A., Hedlund, K., Lavorel, S., Legay, N., Lori, M., Mäder, P., Martínez-García, L. B., da Silva, P., Muller, A., Nascimento, E., Reis, F., Symanczik, S., Paulo Sousa, J., and Milla, R.: Crop traits drive soil carbon sequestration under organic farming, J. Appl. Ecol., 55, 2496–2505, https://doi.org/10.1111/1365-2664.13113, 2018.
Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mäder, P., Stolze, M., Smith, P., Scialabba, N. E. H., and Niggli, U.: Enhanced top soil carbon stocks under organic farming, P. Natl. Acad. Sci. USA, 109, 18226–18231, https://doi.org/10.1073/pnas.1209429109, 2012.
Glass, G. V: Primary, Secondary, and Meta-Analysis of Research, Educ. Res.,
5, 3–8, https://doi.org/10.3102/0013189X005010003, 1976.
Gonçalves, R. S. and Musen, M. A.: Analysis: The variable quality of
metadata about biological samples used in biomedical experiments, Sci. Data,
6, 1–15, https://doi.org/10.1038/sdata.2019.21, 2019.
González-Sánchez, E. J., Ordóñez-Fernández, R., Carbonell-Bojollo, R., Veroz-González, O., and Gil-Ribes, J. A.: Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture, Soil Tillage Res., 122, 52–60, https://doi.org/10.1016/j.still.2012.03.001, 2012.
Gurevitch, J. and Hedges, L. V.: Statistical Issues in Ecological
Meta-Analyses, Ecology, 80, 1142, https://doi.org/10.2307/177061, 1999.
Gurevitch, J., Koricheva, J., Nakagawa, S., and Stewart, G.: Meta-analysis
and the science of research synthesis, Nature, 555, 175–182,
https://doi.org/10.1038/nature25753, 2018.
Haddaway, N. R., Hedlund, K., Jackson, L. E., Katterer, T., Lugato, E., Thomsen, I. K., Jorgensen, H. B., and Isberg, P.-E.: How does tillage intensity affect soil organic carbon?, A systematic review, Environ. Evid., 6, https://doi.org/10.1186/s13750-017-0108-9, 2017.
Haddaway, N. R., Bethel, A., Dicks, L. V., Koricheva, J., Macura, B.,
Petrokofsky, G., Pullin, A. S., Savilaakso, S., and Stewart, G. B.: Eight
problems with literature reviews and how to fix them, Nat. Ecol. Evol., 4,
1582–1589, https://doi.org/10.1038/s41559-020-01295-x, 2020.
Han, P., Zhang, W., Wang, G., Sun, W., and Huang, Y.: Changes in soil organic carbon in croplands subjected to fertilizer management: a global meta-analysis, Sci. Rep., 6, 27199, https://doi.org/10.1038/srep27199, 2016.
Hedges, L. V., Gurevitch, J., and Curtis, P. S.: The Meta-Analysis of
Response Ratios in Experimental Ecology, Ecology, 80, 1150,
https://doi.org/10.2307/177062, 1999.
Hungate, B. A., van Groenigen, K. J., Six, J., Jastrow, J. D., Luo, Y., de
Graaff, M. A., van Kessel, C., and Osenberg, C. W.: Assessing the effect of
elevated carbon dioxide on soil carbon: A comparison of four meta-analyses,
Global Change Biol., 15, 2020–2034,
https://doi.org/10.1111/j.1365-2486.2009.01866.x, 2009.
IPCC: Revised 1996 IPCC guidelines for national greenhouse gas inventories: Reference
Manual (Volume 3), edited by: Houghton, J. T., Meira, L. G., Filho, L. G., Lim, B., Treanton, K., Mamaty,
I., Bonduki, Y., Griggs, D. J. and Callender, B. A. (Eds), Intergovernmental Panel on Climate
Change, Bracknell, United Kingdom, 1997.
IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E.,
Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade,
R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi,
S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E.,
Kissick, K., Belkacemi, M., and Malley, J., https://doi.org/10.1017/9781009157988.001, 2019.
Jamshidi, L., Heyvaert, M., Declercq, L., Fernández-Castilla, B.,
Ferron, J. M., Moeyaert, M., Beretvas, S. N., Onghena, P., and van den
Noortgate, W.: Methodological quality of meta-analyses of single-case
experimental studies, Res. Dev. Disabil., 79, 97–115,
https://doi.org/10.1016/j.ridd.2017.12.016, 2018.
Jia, G., Shevliakova, E., Artaxo, P., de Noblet-Ducoudré, N., Houghton,
R., House, J., Kitajima, K., Lennard, C., Popp, A., Sirin, A., Sukumar, R.,
and Verch, L.: Land–climate interactions, in: Climate Change and Land: an
IPCC special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia,
E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P.,
Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S.,
Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley,
K., Kissick, K., Belkacemi, M., and Malley, J., https://doi.org/10.1017/9781009157988.004, 2019.
Jian, J., Du, X., Reiter, M. S., and Stewart, R. D.: A meta-analysis of global cropland soil carbon changes due to cover cropping, Soil Biol. Biochem., 143, 107735, https://doi.org/10.1016/j.soilbio.2020.107735, 2020.
King, A. E. and Blesh, J.: Crop rotations for increased soil carbon: Perenniality as a guiding principle: Perenniality, Ecol. Appl., 28, 249–261, https://doi.org/10.1002/eap.1648, 2018.
Kopittke, P. M., Dalal, R. C., Finn, D., and Menzies, N. W.: Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production, Global Change Biol., 23, 2509–2519, https://doi.org/10.1111/gcb.13513, 2017.
Koricheva, J. and Gurevitch, J.: Place of Meta-analysis among other
Methods of research synthesis, in: Handbook of Meta-analysis in
Ecology and Evolution, edited by: Koricheva, J., Gurevitch, J.,
and Mengersen, K., Princton University Press, Princeton, 3–13,
2013a.
Koricheva, J. and Gurevitch, J.: Uses and misuses of meta-analysis in plant
ecology, J. Ecol., 102, 828–844, https://doi.org/10.1111/1365-2745.12224,
2014.
Koricheva, J., Gurevitch, J., and Mengersen, K. (Eds.): Handbook
of Meta-analysis in Ecology and Evolution, Princeton University
Press, 520 pp., 2013b.
Krupnik, T. J., Andersson, J. A., Rusinamhodzi, L., Corbeels, M., Shennan,
C., and Gérard, B.: Does size matter?, A critical review of meta-analysis
in agronomy, Exp. Agric., 55, 200–229,
https://doi.org/10.1017/S0014479719000012, 2019.
Ladha, J. K., Reddy, C. K., Padre, A. T., and van Kessel, C.: Role of Nitrogen Fertilization in Sustaining Organic Matter in Cultivated Soils, J. Environ. Qual., 40, 1756–1766, https://doi.org/10.2134/jeq2011.0064, 2011.
Lessmann, M., Ros, G. H., Young, M. D., and de Vries, W.: Global variation
in soil carbon sequestration potential through improved cropland management,
Global Change Biol., 28, 1162–1177, https://doi.org/10.1111/gcb.15954, 2022.
Leydesdorff, L., Bornmann, L., Comins, J. A., and Milojević, S.:
Citations: Indicators of Quality? The Impact Fallacy, Front. Res. Metr. Anal.,
1, https://doi.org/10.3389/frma.2016.00001, 2016.
Li, Y., Li, Z., Chang, S. X., Cui, S., Jagadamma, S., Zhang, Q., and Cai, Y.: Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture, Sci. Total Environ., 740, 140147, https://doi.org/10.1016/j.scitotenv.2020.140147, 2020.
Lipsey, M. W.: Identifying Potentially Interesting Variables And Analysis
Opportunities, in: The Handbook of Research Synthesis and Meta-Analysis,
edited by: Cooper, H., Hedges, L. V., and Valentine, J. C., Russell Sage
Foundation, New York, 142–151, 2019.
Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J., Jin, Y., and Zou, J.: Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis, Global Change Biol., 8, 392–406, https://doi.org/10.1111/gcbb.12265, 2016.
Lortie, C. J., Lau, J., and Lajeunesse, M. J.: Graphical Presentation of
results, in: Handbook of Meta-analysis in Ecology and Evolution, edited by:
Koricheva, J., Gurevitch, J., and Mengersen, K., Princeton University Press,
Princeton, 339–347, 2013.
Lortie, C. J., Stewart, G., Rothstein, H., and Lau, J.: How to critically
read ecological meta-analyses, Res. Synth. Meth., 6, 124–133,
https://doi.org/10.1002/jrsm.1109, 2015.
Luo, Z., Wang, E., and Sun, O. J.: Can no-tillage stimulate carbon sequestration in agricultural soils?, A meta-analysis of paired experiments, Agr. Ecosyst. Environ., 139, 224–231, https://doi.org/10.1016/j.agee.2010.08.006, 2010.
Maillard, É. and Angers, D. A.: Animal manure application and soil organic carbon stocks: A meta-analysis, Glob. Chang. Biol., 20, 666–679, https://doi.org/10.1111/gcb.12438, 2014.
Majumder, S., Neogi, S., Dutta, T., Powel, M. A., and Banik, P.: The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages, J. Environ. Manage., 250, 109466, https://doi.org/10.1016/j.jenvman.2019.109466, 2019.
Mäkipää, R., Muukkonen, P., and Peltoniemi, M.: the costs of
monitoring changes in forest soil carbon stocks, Boreal Environ. Res., 13 (suppl. B), 120–130, ISSN 1797-2469, 2008.
Mathew, I., Shimelis, H., Mutema, M., Minasny, B., and Chaplot, V.: Crops for increasing soil organic carbon stocks – A global meta analysis, Geoderma, 367, 114230, https://doi.org/10.1016/j.geoderma.2020.114230, 2020.
Mayo-Wilson, E. and Grant, S.: Transparent Reporting: Registrations,
Protocols, and Final Reports, in: Handbook of Meta-analysis in Ecology and
Evolution, edited by: Cooper, H., Hedges, L. V., and Valentine, J. C.,
Russell Sage Foundation, New York, 471–488, 2019.
McDaniel, M. D., Tiemann, L. K., and Grandy, A. S.: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics?, A meta-analysis, Ecol. Appl., 24, 560–570, https://doi.org/10.1890/13-0616.1, 2014.
Meurer, K. H. E., Haddaway, N. R., Bolinder, M. A., and Kätterer, T.: Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil – A systematic review using an ESM approach, Earth-Sci. Rev., 177, 613–622, https://doi.org/10.1016/j.earscirev.2017.12.015, 2018.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D. J.,
Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin,
M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C.,
Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I.,
Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C. C., Vågen, T. G.,
van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma,
292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew,
M., Shekelle, P., Stewart, L. A., and Group, P.-P.: Preferred reporting
items for systematic review and meta-analysis protocols (PRISMA-P) 2015
statement, Syst. Rev., 4, 1–9, https://doi.org/10.1186/2046-4053-4-1, 2015.
Mondal, S., Chakraborty, D., Bandyopadhyay, K., Aggarwal, P., and Rana, D. S.: A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response, L. Degrad. Dev., 31, 557–567, https://doi.org/10.1002/ldr.3470, 2020.
Nakagawa, S. and Cuthill, I. C.: Effect size, confidence interval and
statistical significance: A practical guide for biologists, Biol. Rev., 82, 591–605, https://doi.org/10.1111/j.1469-185X.2007.00027.x,
2007.
Nakagawa, S., Noble, D. W. A., Senior, A. M., and Lagisz, M.:
Meta-evaluation of meta-analysis: Ten appraisal questions for biologists,
BMC Biol., 15, 1–14, https://doi.org/10.1186/s12915-017-0357-7, 2017.
O'Dea, R. E., Lagisz, M., Jennions, M. D., Koricheva, J., Noble, D. W. A.,
Parker, T. H., Gurevitch, J., Page, M. J., Stewart, G., Moher, D., and
Nakagawa, S.: Preferred reporting items for systematic reviews and
meta-analyses in ecology and evolutionary biology: a PRISMA extension,
Biol. Rev., 96, 1695–1722, https://doi.org/10.1111/brv.12721, 2021.
Ogle, S. M., Breidt, F. J., and Paustian, K.: Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions, Biogeochemistry, 72, 87–121, https://doi.org/10.1007/s10533-004-0360-2, 2005.
O'Leary, B. C., Kvist, K., Bayliss, H. R., Derroire, G., Healey, J. R.,
Hughes, K., Kleinschroth, F., Sciberras, M., Woodcock, P., and Pullin, A.
S.: The reliability of evidence review methodology in environmental science
and conservation, Environ. Sci. Pol., 64, 75–82,
https://doi.org/10.1016/j.envsci.2016.06.012, 2016.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C.,
Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E.,
Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M.,
Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A.,
Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., and
Moher, D.: The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews, BMJ, 372, https://doi.org/10.1136/bmj.n71, 2021.
Parker, T. H., Forstmeier, W., Koricheva, J., Fidler, F., Hadfield, J. D.,
Chee, Y. E., Kelly, C. D., Gurevitch, J., and Nakagawa, S.: Transparency in
Ecology and Evolution: Real Problems, Real Solutions, Trend. Ecol. Evol., 31,
711–719, https://doi.org/10.1016/j.tree.2016.07.002, 2016.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate-smart soils, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Philibert, A., Loyce, C., and Makowski, D.: Assessment of the quality of
meta-analysis in agronomy, Agr. Ecosyst. Environ., 148, 72–82,
https://doi.org/10.1016/j.agee.2011.12.003, 2012.
Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, Agr. Ecosyst. Environ., 200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024, 2015.
Pullin, A. S. and Knight, T. M.: Science informing Policy – A health warning
for the environment, https://doi.org/10.1186/2047-2382-1-15,
2012.
Rothstein, H., Lortie, C. J., Stewart, G. B., Koricheva, J., and Gurevitch,
J.: Quality standards for research syntheses, 323–339, ISBN 9780691137285, 2013.
Schillaci, C., Perego, A., Valkama, E., Märker, M., Saia, S., Veronesi,
F., Lipani, A., Lombardo, L., Tadiello, T., Gamper, H. A., Tedone, L., Moss,
C., Pareja-Serrano, E., Amato, G., Kühl, K., Dămătîrcă,
C., Cogato, A., Mzid, N., Eeswaran, R., Rabelo, M., Sperandio, G., Bosino,
A., Bufalini, M., Tunçay, T., Ding, J., Fiorentini, M., Tiscornia, G.,
Conradt, S., Botta, M., and Acutis, M.: New pedotransfer approaches to
predict soil bulk density using WoSIS soil data and environmental covariates
in Mediterranean agro-ecosystems, Sci. Total Environ., 780, 146609,
https://doi.org/10.1016/j.scitotenv.2021.146609, 2021.
Seavy, N. E. and Howell, C. A.: How can we improve information delivery to
support conservation and restoration decisions?, Biodivers. Conserv., 19,
1261–1267, https://doi.org/10.1007/s10531-009-9752-x, 2010.
Smith, P.: Soils and climate change,
https://doi.org/10.1016/j.cosust.2012.06.005, 2012.
Smith, P., Andrén, O., Karlsson, T., Perälä, P., Regina, K.,
Rounsevell, M., and van Wesemael, B.: Carbon sequestration potential in
European croplands has been overestimated, Global Change Biol., 11, 2153–2163,
https://doi.org/10.1111/j.1365-2486.2005.01052.x, 2005.
Stewart, G.: Meta-analysis in applied ecology, Biol. Lett., 6, 78–81,
https://doi.org/10.1098/rsbl.2009.0546, 2010.
Sun, W., Canadell, J. G., Yu, Lijun, Yu, Lingfei, Zhang, W., Smith, P., Fischer, T., and Huang, Y.: Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture, Glob. Chang. Biol., 26, 3325–3335, https://doi.org/10.1111/gcb.15001, 2020.
Tadiello, T., Perego, A., Valkama, E., Schillaci, C., and Acutis, M.:
Computation of total soil organic carbon stock and its standard deviation
from layered soils, MethodsX, 9, 101662,
https://doi.org/10.1016/j.mex.2022.101662, 2022.
Tubiello, F. N., Salvatore, M., Ferrara, A. F., House, J., Federici, S.,
Rossi, S., Biancalani, R., Condor Golec, R. D., Jacobs, H., Flammini, A.,
Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz Sanchez, M. J.,
Srivastava, N., and Smith, P.: The Contribution of Agriculture, Forestry and
other Land Use activities to Global Warming, 1990–2012, Global Change Biol., 21,
2655–2660, https://doi.org/10.1111/gcb.12865, 2015.
Tuomisto, H. L., Hodge, I. D., Riordan, P., and Macdonald, D. W.: Does organic farming reduce environmental impacts? – A meta-analysis of European research, J. Environ. Manage., 112, 309–320, https://doi.org/10.1016/j.jenvman.2012.08.018, 2012.
Valkama, E., Virkajärvi, P., Uusitalo, R., Ylivainio, K., and Turtola,
E.: Meta-analysis of grass ley response to phosphorus fertilization in
Finland, Grass Forage Sci., 71, 36–53,
https://doi.org/10.1111/gfs.12156, 2015.
Vetter, D., Rucker, G., and Storch, I.: Meta-analysis: A need for
well-defined usage in ecology and conservation biology, Ecosphere, 4, 1–24,
https://doi.org/10.1890/ES13-00062.1, 2013.
Virto, I., Barre, P., Burlot, A., and Chenu, C.: Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems, Biogeochemistry, 108, 17–26, https://doi.org/10.1007/s10533-011-9600-4, 2012.
Woodcock, P., Pullin, A. S., and Kaiser, M. J.: Evaluating and improving the
reliability of evidence syntheses in conservation and environmental science:
A methodology, Biol. Conserv., 176, 54–62,
https://doi.org/10.1016/j.biocon.2014.04.020, 2014.
Xia, L., Lam, S. K., Wolf, B., Kiese, R., Chen, D., and Butterbach-Bahl, K.: Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems, Glob. Chang. Biol., 24, 5919–5932, https://doi.org/10.1111/gcb.14466, 2018.
Xiao, L., Kuhn, N. J., Zhao, R., and Cao, L.: Net effects of conservation
agriculture principles on sustainable land use: A synthesis, Global Change Biol., 27, 6321–6330, https://doi.org/10.1111/gcb.15906, 2021.
Xu, H., Sieverding, H., Kwon, H., Clay, D., Stewart, C., Johnson, J. M. F., Qin, Z., Karlen, D. L., and Wang, M.: A global meta-analysis of soil organic carbon response to corn stover removal, Global Change Biol., 11, 1215–1233, https://doi.org/10.1111/gcbb.12631, 2019.
Young, M. D., Ros, G. H., and de Vries, W.: Impacts of agronomic measures on
crop, soil, and environmental indicators: A review and synthesis of
meta-analysis, Agr. Ecosyst. Environ., 319, 107551, https://doi.org/10.1016/j.agee.2021.107551, 2021.
Short summary
The number of meta-analyses in agriculture and soil sciences is continuously rising, but they are often of poor quality. We quantitatively analyzed the quality of 31 meta-analyses studying the effects of different management practices on soil organic carbon (SOC). We found that only one meta-analysis on no tillage/reduced tillage obtained a high score. New or improved meta-analyses on the effects of organic agriculture, biochar, fertilization, and crop diversification on SOC are urgently needed.
The number of meta-analyses in agriculture and soil sciences is continuously rising, but they...