Articles | Volume 9, issue 1
Original research article
16 Feb 2023
Original research article |  | 16 Feb 2023

The role of long-term mineral and manure fertilization on P species accumulation and phosphate-solubilizing microorganisms in paddy red soils

Shuiqing Chen, Jusheng Gao, Huaihai Chen, Zeyuan Zhang, Jing Huang, Lefu Lv, Jinfang Tan, and Xiaoqian Jiang

Related authors

Lower functional redundancy in “narrow” than “broad” functions in global soil metagenomics
Huaihai Chen, Kayan Ma, Yu Huang, Qi Fu, Yingbo Qiu, Jiajiang Lin, Christopher W. Schadt, and Hao Chen
SOIL, 8, 297–308,,, 2022
Short summary

Related subject area

Soils and managed ecosystems
Wetting and drying cycles, organic amendments, and gypsum play a key role in structure formation and stability of sodic Vertisols
Sara Niaz, J. Bernhard Wehr, Ram C. Dalal, Peter M. Kopittke, and Neal W. Menzies
SOIL, 9, 141–154,,, 2023
Short summary
Quality assessment of meta-analyses on soil organic carbon
Julia Fohrafellner, Sophie Zechmeister-Boltenstern, Rajasekaran Murugan, and Elena Valkama
SOIL, 9, 117–140,,, 2023
Short summary
Soil depth as a driver of microbial and carbon dynamics in a planted forest (Pinus radiata) pumice soil
Alexa K. Byers, Loretta G. Garrett, Charlotte Armstrong, Fiona Dean, and Steve A. Wakelin
SOIL, 9, 55–70,,, 2023
Short summary
Transforming living labs into lighthouses: a promising policy to achieve land-related sustainable development
Johan Bouma
SOIL, 8, 751–759,,, 2022
Short summary
What comes after the Sun? On the integration of soil biogeochemical pre-weathering into microplastic experiments
Frederick Büks and Martin Kaupenjohann
SOIL, 8, 373–380,,, 2022
Short summary

Cited articles

Achat, D., Bakker, M., Zeller, B. O. B., Pellerin, S., Bienaimé, S., and Morel, C.: Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization, Soil Biol. Biochem., 42, 1479–1490,, 2010. 
Acosta-Martínez, V. and Ali Tabatabai, M.: Phosphorus Cycle Enzymes, in: Methods of Soil Enzymology, edited by: Dick, R. P., SSSA Book Series, 161–183,, 2011. 
Ahmed, W., Liu, K., Qaswar, M., Huang, J., Huang, Q., Xu, Y., Ali, S., Mehmood, S., Ammar Asghar, R. M., Mahmood, M., and Zhang, H.: Long-term mineral fertilization improved the grain yield and phosphorus use efficiency by changing soil P fractions in ferralic cambisol, Agronomy, 9, 784,, 2019. 
Alori, E. T., Glick, B. R., and Babalola, O. O.: Microbial phosphorus solubilization and its potential for use in sustainable agriculture, Front Microbiol., 8, 971,, 2017. 
Arai, Y., Livi, K. J. T., and Sparks, D. L.: Phosphate reactivity in long-term poultry litter-amended southern delaware sandy soils, Soil Sci. Soc. Am. J., 69, 616–629,, 2005. 
Short summary
Long-term inorganic P (IP) fertilization increased total P (TP), available P (AP) and IP, but manure fertilization accelerated the accumulation of organic P (OP). Long-term mineral fertilization had a negative impact on bacterial communities, while manure fertilization and rhizosphere soil provided more nutrients that improved the separation of bacterial communities. Correspondingly, P indicators such as IP and TP were related to the variation in a phosphate-solubilizing bacterial community.