Articles | Volume 9, issue 1
Original research article
16 Feb 2023
Original research article |  | 16 Feb 2023

The role of long-term mineral and manure fertilization on P species accumulation and phosphate-solubilizing microorganisms in paddy red soils

Shuiqing Chen, Jusheng Gao, Huaihai Chen, Zeyuan Zhang, Jing Huang, Lefu Lv, Jinfang Tan, and Xiaoqian Jiang

Related authors

Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol
Shouhao Li, Shuiqing Chen, Shanshan Bai, Jinfang Tan, and Xiaoqian Jiang
SOIL, 10, 49–59,,, 2024
Short summary

Related subject area

Soils and managed ecosystems
The QuantiSlakeTest, measuring soil structural stability by dynamic weighing of undisturbed samples immersed in water
Frédéric Marie Vanwindekens and Brieuc François Hardy
SOIL, 9, 573–591,,, 2023
Short summary
Managing soil organic carbon in tropical agroecosystems: evidence from four long-term experiments in Kenya
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323,,, 2023
Short summary
Impact of contrasting fertilizer technologies on N dynamics from subsurface bands of “pure” or blended fertilizer applications
Chelsea K. Janke and Michael J. Bell
SOIL, 9, 243–259,,, 2023
Short summary
Wetting and drying cycles, organic amendments, and gypsum play a key role in structure formation and stability of sodic Vertisols
Sara Niaz, J. Bernhard Wehr, Ram C. Dalal, Peter M. Kopittke, and Neal W. Menzies
SOIL, 9, 141–154,,, 2023
Short summary
Quality assessment of meta-analyses on soil organic carbon
Julia Fohrafellner, Sophie Zechmeister-Boltenstern, Rajasekaran Murugan, and Elena Valkama
SOIL, 9, 117–140,,, 2023
Short summary

Cited articles

Achat, D., Bakker, M., Zeller, B. O. B., Pellerin, S., Bienaimé, S., and Morel, C.: Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization, Soil Biol. Biochem., 42, 1479–1490,, 2010. 
Acosta-Martínez, V. and Ali Tabatabai, M.: Phosphorus Cycle Enzymes, in: Methods of Soil Enzymology, edited by: Dick, R. P., SSSA Book Series, 161–183,, 2011. 
Ahmed, W., Liu, K., Qaswar, M., Huang, J., Huang, Q., Xu, Y., Ali, S., Mehmood, S., Ammar Asghar, R. M., Mahmood, M., and Zhang, H.: Long-term mineral fertilization improved the grain yield and phosphorus use efficiency by changing soil P fractions in ferralic cambisol, Agronomy, 9, 784,, 2019. 
Alori, E. T., Glick, B. R., and Babalola, O. O.: Microbial phosphorus solubilization and its potential for use in sustainable agriculture, Front Microbiol., 8, 971,, 2017. 
Arai, Y., Livi, K. J. T., and Sparks, D. L.: Phosphate reactivity in long-term poultry litter-amended southern delaware sandy soils, Soil Sci. Soc. Am. J., 69, 616–629,, 2005. 
Short summary
Long-term inorganic P (IP) fertilization increased total P (TP), available P (AP) and IP, but manure fertilization accelerated the accumulation of organic P (OP). Long-term mineral fertilization had a negative impact on bacterial communities, while manure fertilization and rhizosphere soil provided more nutrients that improved the separation of bacterial communities. Correspondingly, P indicators such as IP and TP were related to the variation in a phosphate-solubilizing bacterial community.