Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-319-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-319-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the effect of catena position and hydrology on soil chemical weathering
Vanesa García-Gamero
CORRESPONDING AUTHOR
Department of Agronomy, University of Córdoba, Da Vinci building, Madrid km 396 Rd., 14071 Córdoba, Spain
Tom Vanwalleghem
Department of Agronomy, University of Córdoba, Da Vinci building, Madrid km 396 Rd., 14071 Córdoba, Spain
Adolfo Peña
Department of Rural Engineering, Civil Constructions and Engineering Projects, University of Córdoba, Da Vinci building, Madrid km 396 Rd., 14071 Córdoba, Spain
Andrea Román-Sánchez
Department of Forest Ecology, Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00 Brno, Czech Republic
Peter A. Finke
Department of Environment, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
Related authors
No articles found.
W. Marijn van der Meij and Peter A. Finke
EGUsphere, https://doi.org/10.5194/egusphere-2025-5077, https://doi.org/10.5194/egusphere-2025-5077, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We used soil evolution model SoilGen to simulate long-term soil organic carbon sequestration under varying environmental conditions and internal protection mechanisms. Our results revealed a strong role of pedogenetic and environmental history on current-day and future SOC sequestration potential. We propose a framework for developing topical digital twins of long-term soil processes to monitor and project future soil development under global change.
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Cited articles
Albrecht, W. A.: Soil Fertility and Biotic Geography, Geogr. Rev., 47,
86, 47, 86–105, https://doi.org/10.2307/212191, 1957.
Borden, R. W., Baillie, I. C., and Hallett, S. H.: The East African
contribution to the formalisation of the soil catena concept, Catena,
185, 104291, https://doi.org/10.1016/j.catena.2019.104291, 2020.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models,
Atmos. Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmosenv.2005.09.087,
2006.
Brancher, M., Hieden, A., Baumann-Stanzer, K., Schauberger, G., and Piringer,
M.: Performance evaluation of approaches to predict sub-hourly peak odour
concentrations, Atmos. Environ., 7, 100076,
https://doi.org/10.1016/j.aeaoa.2020.100076, 2020.
Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P.
L., and Stinchcomb, G.: Toward a conceptual model relating chemical reaction
fronts to water flow paths in hills, Geomorphology, 277, 100–117,
https://doi.org/10.1016/j.geomorph.2016.09.027, 2017.
Braun, J., Mercier, J., Guillocheau, F., and Robin, C.: A simple model for
regolith formation by chemical weathering, J. Geophys. Res.-Earth, 121, 2140–2171, https://doi.org/10.1002/2016JF003914, 2016.
Calabrese, S. and Porporato, A.: Wetness controls on global chemical
weathering, Environ. Res. Commun., 2, 085005,
https://doi.org/10.1088/2515-7620/abad7b, 2020.
Carpintero, E., Andreu, A., Gómez-Giráldez, P. J., Blázquez,
Á., and González-Dugo, M. P.: Remote-Sensing-Based Water Balance for
Monitoring of Evapotranspiration and Water Stress of a Mediterranean Oak –
Grass Savanna, Water, 12, 1418, https://doi.org/10.3390/w12051418, 2020.
Carracedo, M., Paquette, J. L., Alonso Olazabal, A., Santos Zalduegui, J.
F., de García de Madinabeitia, S., Tiepolo, M., and Gil Ibarguchi, J.
I.: U-Pb dating of granodiorite and granite units of the Los Pedroches
batholith. Implications for geodynamic models of the southern Central
Iberian Zone (Iberian Massif), Int. J. Earth Sci., 98, 1609–1624,
https://doi.org/10.1007/s00531-008-0317-0, 2009.
Chadwick, O. A., Gavenda, R. T., Kelly, E. F., Ziegler, K., Olson, C. G.,
Crawford Elliott, W., and Hendricks, D. M.: The impact of climate on the
biogeochemical functioning of volcanic soils, Chem. Geol., 202,
195–223, https://doi.org/10.1016/j.chemgeo.2002.09.001, 2003.
Chadwick, O. A., Roering, J. J., Heimsath, A. M., Levick, S. R., Asner, G.
P., and Khomo, L.: Shaping post-orogenic landscapes by climate and chemical
weathering, Geology, 41, 1171–1174, https://doi.org/10.1130/G34721.1, 2013.
Cipolla, G., Calabrese, S., Valerio, L., and Porporato, A.: The role of hydrology on enhanced weathering for carbon sequestration I. Modeling rock-dissolution reactions coupled to plant, soil moisture, and carbon dynamics, Adv. Water Resour., 154, 103934,
https://doi.org/10.1016/j.advwatres.2021.103934, 2021.
Cohen, S., Willgoose, G., and Hancock, G.: The mARM3D spatially distributed
soil evolution model: Three-dimensional model framework and analysis of
hillslope and landform responses, J. Geophys. Res.-Earth, 115,
1–16, https://doi.org/10.1029/2009JF001536, 2010.
Coleman, K. and Jenkinson, D.: RothC-26.3 - A Model for the turnover of
carbon in soil, Eval. Soil Org. Matter Model., 38, 237–246,
https://doi.org/10.1007/978-3-642-61094-3_17, 1996.
Dahlgren, R. A., Boettinger, J. L., Huntington, G. L., and Amundson, R. G.:
Soil development along an elevational transect in the western Sierra Nevada,
California, Geoderma, 78, 207–236, https://doi.org/10.1016/S0016-7061(97)00034-7,
1997.
Davis, B. A. S., Brewer, S., Stevenson, A. C., Guiot, J. and Data contributors: The temperature of Europe during
the Holocene reconstructed from pollen data, Quaternary Sci. Rev., 22,
1701–1716, https://doi.org/10.1016/S0277-3791(03)00173-2, 2003.
De Vries, W. and Posch, M.: Derivation of cation exchange constants for sand loess, clay and peat soils on the basis of field measurements in the Netherlands, Alterra-Report 701, Alterra Green World Research, Wageningen, 50 pp., ISSN: 1566-7197, 2003.
Dixon, J., Heimsath, A. M., and Amundson, R.: The critical role of climate
and saprolite weathering in landscape evolution, Earth Surf. Process.
Land., 34, 1507–1521, https://doi.org/10.1002/esp.1836, 2009.
Dixon, J. L., Chadwick, O. A., and Vitousek, P. M.: Climate-driven thresholds
for chemical weathering in postglacial soils of New Zealand, J. Geophys.
Res.-Earth, 121, 1619–1634, https://doi.org/10.1002/2016JF003864, 2016.
Dong, X., Cohen, M. J., Martin, J. B., McLaughlin, D. L., Murray, A. B.,
Ward, N. D., Flint, M. K., and Heffernan, J. B.: Ecohydrologic processes and
soil thickness feedbacks control limestone-weathering rates in a karst
landscape, Chem. Geol., 527, 118774, https://doi.org/10.1016/J.CHEMGEO.2018.05.021,
2019.
Duarte, I. M. R., Gomes, C. S. F., and Pinho, A. B.: Chemical Weathering, in:
Encyclopedia of Engineering Geology.Encyclopedia of Earth Sciences Series,
edited by: Bobrowsky, P. T. and Marker, B., Springer, Cham, https://doi.org/10.1007/978-3-319-12127-7_49-1, 2017.
Ferrier, K. L. and Perron, J. T.: The importance of hillslope scale in responses of chemical erosion rate to changes in tectonics and climate, J. Geophys. Res. Earth Surf., 125, e2020JF005562, https://doi.org/10.1029/2020JF005562, 2020.
Finke, P. A.: Modeling the genesis of luvisols as a function of topographic
position in loess parent material, Quaternary Int., 265, 3–17,
https://doi.org/10.1016/j.quaint.2011.10.016, 2012.
Finke, P. A. and Hutson, J. L.: Modelling soil genesis in calcareous loess,
Geoderma, 145, 462–479, https://doi.org/10.1016/j.geoderma.2008.01.017, 2008.
Finke, P. A., Vanwalleghem, T., Opolot, E., Poesen, J., and Deckers, J.:
Estimating the effect of tree uprooting on variation of soil horizon depth
by confronting pedogenetic simulations to measurements in a Belgian loess
area, J. Geophys. Res.-Earth, 118, 2124–2139, https://doi.org/10.1002/jgrf.20153,
2013.
Gabet, E. J. and Mudd, S. M.: A theoretical model coupling chemical
weathering rates with denudation rates, Geology, 37, 151–154,
https://doi.org/10.1130/G25270A.1, 2009.
García-Gamero, V., Peña, A., Laguna, A. M., Giráldez, J. V., and
Vanwalleghem, T.: Factors controlling the asymmetry of soil moisture and
vegetation dynamics in a hilly mediterranean catchment, J. Hydrol.,
598, 126207, https://doi.org/10.1016/j.jhydrol.2021.126207, 2021.
Gobat, J.-M., Aragno, M., and Matthey, W.: Le Sol Vivant, Les Presses
polytechniques et universitaires romandes, Lausanne, Presses polytechniques et universitaires romandes, ISBN: 978-2-88074-718-3, 1998.
Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Appl. Eng. Agric., 1, 96–99, 1985.
Huston, M. A.: Precipitation, soils, NPP, and biodiversity: Resurrection of
Albrecht's curve, Ecol. Monogr., 82, 277–296, https://doi.org/10.1890/11-1927.1,
2012.
IUSS Working Group WRB: World reference base for soil resources 2014,update
2015 International soil classification system for naming soils and creating
legends for soil maps, FAO, Roma, Food and Agricultural Organization of the United Nations, ISBN: 978-92-5-108369-7, 2015.
Jenny, H.: Factors of soil formation: A System of Quantitative Pedology,
McGraw-Hill Book Company Inc., New york, McGraw-Hill Book Company Inc.,
ISBN: 0-486-68128-9, 1941.
Kontos, S., Kakosimos, K., Liora, N., Poupkou, A., and Melas, D.: Towards a
regional dust modeling system in the central Middle East: Evaluation,
uncertainties and recommendations, Atmos. Environ., 246,
118160, https://doi.org/10.1016/j.atmosenv.2020.118160, 2021.
Kumar, A., Luo, J., and Bennett, G. F.: Statistical evaluation of Lower
Flammability Distance (LFD) using four hazardous release models, Process.
Saf. Prog., 12, 1–11, https://doi.org/10.1002/prs.680120103, 1993.
Lachassagne, P. and Wyns, R.: Review article The fracture permeability of
Hard Rock Aquifers is due neither to tectonics , nor to unloading , but to
weathering processes, Terra Nov., 23, 145–161,
https://doi.org/10.1111/j.1365-3121.2011.00998.x, 2011.
Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. II. Probabilistic soil moisture dynamics., Adv. Water Resour., 24, 707–723, 2001.
Langston, A. L., Tucker, G. E., Anderson, R. S., and Anderson, S. P.:
Exploring links between vadose zone hydrology and chemical weathering in the
Boulder Creek critical zone observatory, Appl. Geochem., 26, S70–S71,
https://doi.org/10.1016/j.apgeochem.2011.03.033, 2011.
Larsen, I. J., Almond, P. C., Eger, A., Stone, J. O., Montgomery, D. R., and
Malcolm, B.: Rapid Soil Production and Weathering in the Southern Alps, New Zealand, Science, 343, 637–640, https://doi.org/10.1126/science.1244908, 2014.
Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., and Nagy, K. L.:
Chemical weathering rate laws and global geochemical cycles, Geochim.
Cosmochim. Ac., 58, 2361–2386, https://doi.org/10.1016/0016-7037(94)90016-7, 1994.
Lebedeva, M. I. and Brantley, S. L.: Relating the depth of the water table to depth of
weathering, Earth Surf. Process. Land., 45, 2167–2178, https://doi.org/10.1002/esp.4873, 2020.
Maher, K.: The dependence of chemical weathering rates on fl uid residence
time, Earth Planet. Sc. Lett., 294, 101–110,
https://doi.org/10.1016/j.epsl.2010.03.010, 2010.
Maher, K.: The role of fluid residence time and topographic scales in
determining chemical fluxes from landscapes, Earth Planet. Sc. Lett.,
312, 48–58, https://doi.org/10.1016/j.epsl.2011.09.040, 2011.
Maher, K. and Chamberlain, C. P.: Hydrologic Regulation of Chemical, Science, 1502, https://doi.org/10.1126/science.1250770, 2014.
Milne, G.: Some suggested units of classification and mapping particularly
for East African soils, Soil Res., Suppl. to
Proc. Int. Union Soil Sci. IV, 183–198, 1935.
Minasny, B. and McBratney, A. B.: A rudimentary mechanistic model for soil
formation and landscape development II, A two-dimensional model
incorporating chemical weathering, Geoderma, 103, 161–179,
https://doi.org/10.1016/S0016-7061(01)00075-1, 2001.
Molina, A., Vanacker, V., Corre, M. D., and Veldkamp, E.: Patterns in Soil
Chemical Weathering Related to Topographic Gradients and Vegetation
Structure in a High Andean Tropical Ecosystem, J. Geophys.
Res.-Earth, 124, 666–685,
https://doi.org/10.1029/2018JF004856, 2019.
Mudd, S. M. and Furbish, D. J.: Using chemical tracers in hillslope soils to
estimate the importance of chemical denudation under conditions of downslope
sediment transport, J. Geophys. Res.-Earth, 111, F02021,
https://doi.org/10.1029/2005JF000343, 2006.
Oeser, R. A. and Von Blanckenburg, F.: Do degree and rate of silicate
weathering depend on plant productivity?, Biogeosciences, 17,
4883–4917, https://doi.org/10.5194/bg-17-4883-2020, 2020.
Olea, L. and San Miguel-Ayanz, A.: The Spanish dehesa, a traditional Mediterranean silvopastoral system linking production and nature conservation, in: 21st General meeting of the European
Grassland Federation, Badajoz, Spain, 3–6 April 2006, Opening paper, 3–13, ISBN: 84 689 6711 4, 2006.
Opolot, E. and Finke, P. A.: Evaluating sensitivity of silicate mineral
dissolution rates to physical weathering using a soil evolution model
(SoilGen2.25), Biogeosciences, 12, 6791–6808,
https://doi.org/10.5194/bg-12-6791-2015, 2015.
Opolot, E., Yu, Y. Y., and Finke, P. A.: Modeling soil genesis at pedon and
landscape scales: Achievements and problems, Quaternary Int., 376, 34–46,
https://doi.org/10.1016/j.quaint.2014.02.017, 2015.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peeters, I., Rommens, T., Verstraeten, G., Govers, G., Van Rompaey, A.,
Poesen, J., and Van Oost, K.: Reconstructing ancient topography through
erosion modelling, Geomorphology, 78, 250–264,
https://doi.org/10.1016/j.geomorph.2006.01.033, 2006.
Porada, P., Lenton, T. M., Pohl, A., Weber, B., Mander, L., Donnadieu, Y., Beer, C., Po, U., and Kleidon, A.: High potential for weathering and climate effects of non-vascular vegetation
in the Late Ordovician, Nat. Commun., 7, 12113, https://doi.org/10.1038/ncomms12113, 2016.
Rempe, D. M. and Dietrich, W. E.: A bottom-up control on fresh-bedrock
topography under landscapes, P. Natl. Acad. Sci. USA, 111, 6576–6581,
https://doi.org/10.1073/pnas.1404763111, 2014.
Reuter, R. J. and Bell, J. C.: Soils and Hydrology of a Wet-Sandy Catena in
East-Central Minnesota, Soil Sci. Soc. Am. J., 65, 1559–1569,
https://doi.org/10.2136/sssaj2001.6551559x, 2001.
Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C.: Strong
tectonic and weak climatic control of long-term chemical weathering rates,
Geol. Soc. Am., 29, 511–514, 2001.
Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Erosional and climatic
effects on long-term chemical weathering rates in granitic landscapes
spanning diverse climate regimes, Earth Planet. Sc. Lett., 224, 547–562,
https://doi.org/10.1016/j.epsl.2004.05.019, 2004.
Román-Sánchez, A., Vanwalleghem, T., Peña, A., Laguna, A., and
Giráldez, J. V.: Controls on soil carbon storage from topography and
vegetation in a rocky, semi-arid landscapes, Geoderma, 311, 159–166,
https://doi.org/10.1016/j.geoderma.2016.10.013, 2018.
Román-Sánchez, A., Reimann, T., Wallinga, J., and Vanwalleghem, T.:
Bioturbation and erosion rates along the soil-hillslope conveyor belt, part
1: Insights from single-grain feldspar luminescence, Earth Surf. Process.
Land., 44, 2051–2065, https://doi.org/10.1002/esp.4628, 2019.
Salve, R., Rempe, D. M., and Dietrich, W. E.: Rain, rock moisture dynamics,
and the rapid response of perched groundwater in weathered, fractured
argillite underlying a steep hillslope, Water Resour. Res., 48, 1–25,
https://doi.org/10.1029/2012WR012583, 2012.
Samouëlian, A. and Cornu, S.: Modelling the formation and evolution of
soils, towards an initial synthesis, Geoderma, 145, 401–409,
https://doi.org/10.1016/j.geoderma.2008.01.016, 2008.
Schaetzl, R. J. and Anderson, S.: Soils: Genesis and Geomophology,
Cambridge University Press, ISBN: 978-0521812016, 2005.
Schaller, M. and Ehlers, T. A.: Comparison of soil production, chemical weathering, and physical erosion rates along a climate and ecological gradient (Chile) to global observations, Earth Surf. Dynam., 10, 131–150, https://doi.org/10.5194/esurf-10-131-2022, 2022.
Schoonejans, J., Vanacker, V., Opfergelt, S., Ameijeiras-Mariño, Y., and
Christl, M.: Kinetically limited weathering at low denudation rates in
semiarid climatic conditions, J. Geophys. Res.-Earth, 121, 336–350,
https://doi.org/10.1002/2015JF003626, 2016.
Şensoy, H. and Kara, Ö.: Slope shape effect on runoff and soil
erosion under natural rainfall conditions, iForest-Biogeo. For.,
7, 110–114, https://doi.org/10.3832/IFOR0845-007, 2014.
Temme, A. J. A. M. and Vanwalleghem, T.: LORICA – A new model for linking
landscape and soil profile evolution: Development and sensitivity analysis,
Comput. Geosci., 90, 131–143, https://doi.org/10.1016/j.cageo.2015.08.004, 2016.
Vanwalleghem, T., Stockmann, U., Minasny, B., and McBratney, A. B.: A
quantitative model for integrating landscape evolution and soil formation,
J. Geophys. Res.-Earth, 118, 331–347, https://doi.org/10.1029/2011JF002296,
2013.
Welivitiya, W. D. D. P., Willgoose, G. R., and Hancock, G. R.: A coupled
soilscape-landform evolution model: Model formulation and initial results,
Earth Surf. Dynam., 7, 591–607, https://doi.org/10.5194/esurf-7-591-2019, 2019.
Whittig, L. D. and Allardice, W. R.: X-Ray Diffraction Techniques, in:
Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, edited
by: Klute, A., American Society of Agronomy, Madison, Soil Science Society of America, Inc., 331–362, ISBN: 9780891180883, 1986.
Yoo, K., Amundson, R., Heimsath, A. M., Dietrich, W. E., and Brimhall, G. H.:
Integration of geochemical mass balance with sediment transport to calculate
rates of soil chemical weathering and transport on hillslopes, J. Geophys.
Res., 112, F02013, https://doi.org/10.1029/2005JF000402, 2007.
Yoo, K., Mudd, S. M., Sanderman, J., Amundson, R., and Blum, A.: Spatial
patterns and controls of soil chemical weathering rates along a transient
hillslope, Earth Planet. Sc. Lett., 288, 184–193,
https://doi.org/10.1016/j.epsl.2009.09.021, 2009.
Yoo, K., Weinman, B., Mudd, S. M., Hurst, M., Attal, M., and Maher, K.:
Evolution of hillslope soils: The geomorphic theater and the geochemical
play, Appl. Geochem., 26, 149–153,
https://doi.org/10.1016/j.apgeochem.2011.03.054, 2011.
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Short-scale soil variability has received much less attention than at the regional scale. The...