Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-223-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-223-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang
Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth WA 6845, Australia
Zefang Shen
Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth WA 6845, Australia
Andrew Bissett
CSIRO Oceans and Atmosphere, GPO BOX 1538, Hobart TAS 7001, Australia
Raphael A. Viscarra Rossel
CORRESPONDING AUTHOR
Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth WA 6845, Australia
Related authors
No articles found.
Yang Hu, Adam Cross, Zefang Shen, Johan Bouma, and Raphael A. Viscarra Rossel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3939, https://doi.org/10.5194/egusphere-2024-3939, 2025
Short summary
Short summary
We reviewed the literature on soil health definition, indicators and assessment frameworks, highlighting sensing technologies' significant potential to improve current time-consuming and costly assessment methods. We proposed a soil health assessment framework from an ecological perspective free from human bias, that leverages proximal sensing, remote sensing, machine learning, and sensor data fusion to enable objective, rapid, cost-effective, scalable, and integrative assessments.
Thorsten Behrens, Karsten Schmidt, Felix Stumpf, Simon Tutsch, Marie Hertzog, Urs Grob, Armin Keller, and Raphael Viscarra Rossel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2810, https://doi.org/10.5194/egusphere-2024-2810, 2024
Preprint archived
Short summary
Short summary
We integrate various methods to create soil property maps for soil surveyors, which they can utilize as a reference before beginning their fieldwork. A new sampling design based on a geographical stratification is proposed focussing on local feature space variability. It allows for a systematic analysis of predictive accuracy for varying densities. The spectral and spatial models yielded high accuracies. Our study highlights the value of integrating pedometric technologies in soil surveys.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Lewis Walden, Farid Sepanta, and Raphael Viscarra Rossel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2464, https://doi.org/10.5194/egusphere-2023-2464, 2023
Preprint archived
Short summary
Short summary
We characterised the chemical and mineral composition of soil organic carbon fractions with mid-infrared spectroscopy. We identified unique and shared features of the spectra of carbon fractions, and the interactions between their organic and mineral components. These interactions are key to the persistence of C in soils, and we propose that mid-infrared spectroscopy could help to infer stability of soil C.
Zefang Shen, Haylee D'Agui, Lewis Walden, Mingxi Zhang, Tsoek Man Yiu, Kingsley Dixon, Paul Nevill, Adam Cross, Mohana Matangulu, Yang Hu, and Raphael A. Viscarra Rossel
SOIL, 8, 467–486, https://doi.org/10.5194/soil-8-467-2022, https://doi.org/10.5194/soil-8-467-2022, 2022
Short summary
Short summary
We compared miniaturised visible and near-infrared spectrometers to a portable visible–near-infrared instrument, which is more expensive. Statistical and machine learning algorithms were used to model 29 key soil health indicators. Accuracy of the miniaturised spectrometers was comparable to the portable system. Soil spectroscopy with these tiny sensors is cost-effective and could diagnose soil health, help monitor soil rehabilitation, and deliver positive environmental and economic outcomes.
Juhwan Lee, Raphael A. Viscarra Rossel, Mingxi Zhang, Zhongkui Luo, and Ying-Ping Wang
Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, https://doi.org/10.5194/bg-18-5185-2021, 2021
Short summary
Short summary
We performed Roth C simulations across Australia and assessed the response of soil carbon to changing inputs and future climate change using a consistent modelling framework. Site-specific initialisation of the C pools with measurements of the C fractions is essential for accurate simulations of soil organic C stocks and composition at a large scale. With further warming, Australian soils will become more vulnerable to C loss: natural environments > native grazing > cropping > modified grazing.
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021, https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Short summary
We developed the Swiss mid-infrared spectral library and a statistical model collection across 4374 soil samples with reference measurements of 16 properties. Our library incorporates soil from 1094 grid locations and 71 long-term monitoring sites. This work confirms once again that nationwide spectral libraries with diverse soils can reliably feed information to a fast chemical diagnosis. Our data-driven reduction of the library has the potential to accurately monitor carbon at the plot scale.
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021, https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Short summary
In this study, we show that a soil spectral library (SSL) can be used to predict soil carbon at new and very different locations. The importance of this finding is that it requires less time-consuming lab work than calibrating a new model for every local application, while still remaining similar to or more accurate than local models. Furthermore, we show that this method even works for predicting (drained) peat soils, using a SSL with mostly mineral soils containing much less soil carbon.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Cited articles
Bachar, A., Al-Ashhab, A., Soares, M. I., Sklarz, M. Y., Angel, R., Ungar,
E. D., and Gillor, O.: Soil microbial abundance and diversity along a low
precipitation gradient, Microbial. Ecol., 60, 453–461, 2010. a
Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A.,
De Wit, P., Sánchez-García, M., Ebersberger, I., de Sousa, F., Amend, A.,
Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y.
J. K., Sanli, K., Eriksson, K. M., Vik, U., Veldre, V., and Nilsson, R. H.:
Improved software detection and extraction of ITS1 and ITS2 from ribosomal
ITS sequences of fungi and other eukaryotes for analysis of environmental
sequencing data, Meth. Ecol. Evol., 4, 914–919,
https://doi.org/10.1111/2041-210X.12073, 2013. a
BioPlatforms Australia: Biomes of Australian Soil Environments (BASE), BioPlatforms Australia [data set], https://doi.org/10.4227/71/561c9bc670099, last access: 22 March 2022. a
Bissett, A. and Viscarra Rossel, R.: Soil visible–near infrared (vis–NIR) spectra for the Biomes of Australian Soil Environments (BASE) soil microbial diversity database (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6265730, 2022. a
Bissett, A., Fitzgerald, A., Meintjes, T., Mele, P. M., Reith, F., Dennis,
P. G., Breed, M. F., Brown, B., Brown, M. V., Brugger, J., Byrne, M., Caddy-Retalic, S., Carmody, B., Coates, D. J., Correa, C., Ferrari, B. C., Gupta, V. V. S. R., Hamonts, K., Haslem, A., Hugenholtz, P., Karan, M., Koval, J., Lowe, A. J., Macdonald, S., McGrath, L., Martin, D., Matt, M., North, K. I., Paungfoo-Lonhienne, C., Pendall, E., Phillips, L., Pirzl, R., Powell, J. R., Ragan, M. A., Schmidt, S., Seymour, N., Snape, I., Stephen, J. R., Stevens, M., Tinning, M., Williams, K., Yeoh, Y. K., Zammit, C. M., and Young, A.:
Introducing BASE: the Biomes of Australian Soil Environments soil
microbial diversity database, GigaScience, 5, s13742-016-0126-5, https://doi.org/10.1186/s13742-016-0126-5, 2016. a, b, c, d
Blankinship, J. C., Niklaus, P. A., and Hungate, B. A.: A meta-analysis of
responses of soil biota to global change, Oecologia, 165, 553–565, 2011. a
Clark, R. N. and Roush, T. L.: Reflectance spectroscopy: Quantitative analysis
techniques for remote sensing applications, J. Geophys. Res.,
89, 6329–6340, 1984. a
Davinic, M., Fultz, L. M., Acosta-Martinez, V., Calderón, F. J., Cox,
S. B., Dowd, S. E., Allen, V. G., Zak, J. C., and Moore-Kucera, J.:
Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate
stratification of soil bacterial communities and organic matter composition,
Soil Biol. Biochem., 46, 63–72, 2012. a
Delgadobaquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan,
J. J., Encinar, D., Berdugo, M., Campbell, C. D., and Singh, B. K.: Microbial
diversity drives multifunctionality in terrestrial ecosystems, Nat.
Commun., 7, 10541–10541, 2016. a
Delgadobaquerizo, M., Oliverio, A. M., Brewer, T. E., Benaventgonzalez, A.,
Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., and Fierer,
N.: A global atlas of the dominant bacteria found in soil, Science, 359,
320–325, 2018a. a
Donohue, R. J., McVicar, T., and Roderick, M. L.: Climate-related trends in
Australian vegetation cover as inferred from satellite observations,
1981–2006, Glob. Change Biol., 15, 1025–1039, 2009. a
Duan, Y. B., Xie, N. D., Song, Z. Q., Ward, C. S., Yung, C. M., Hunt, D. E.,
Johnson, Z. I., and Wang, G. Y.: A high-resolution time series reveals
distinct seasonal patterns of planktonic fungi at a temperate coastal ocean
site (Beaufort, North Carolina, USA), Appl. Environ. Microbiol.,
84, e00967-18,
https://doi.org/10.1128/AEM.00967-18, 2018. a
Fisher, A., Rudin, C., and Dominici, F.: All Models are Wrong, but Many are
Useful: Learning a Variable's Importance by Studying an Entire Class of
Prediction Models Simultaneously, J. Mach. Learn. Res., 20,
1–81, 2019. a
Friedman, J. H.: Greedy function approximation: A gradient boosting machine,
Ann. Stat., 29, 1189–1232, 2001. a
Gai, J., Christie, P., Feng, G., and Li, X. L.: Twenty years of research on
community composition and species distribution of arbuscular mycorrhizal
fungi in China: a review, Mycorrhiza, 16, 229–239, 2006. a
Gallant, J., Wilson, N., Dowling, T., Read, A., and Inskeep, C.: SRTM-derived 1
second digital elevation models version 1.0, Geoscience Australia: Canberra,
ACT, 2011. a
Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., and
Whiteley, A. S.: The bacterial biogeography of British soils, Environ.
Microbiol., 13, 1642–1654, 2011. a
Griffiths, R. I., Thomson, B. C., Plassart, P., Gweon, H. S., D., S., Creamer,
R. E., Lemanceau, P., and Bailey, M. J.: Mapping and validating predictions
of soil bacterial biodiversity using European and national scale datasets,
Appl. Soil Ecol., 97, 61–68, 2016. a
Hart, M. M., Cross, A. T., D'Agui, H. M., Dixon, K. W., Van der Heyde, M.,
Mickan, B., Horst, C., Grez, B. M., Valliere, J. M., Viscarra Rossel, R. A.,
Whiteley, A., Wong, W. S., Zhong, H., and Nevill, P.: Examining assumptions
of soil microbial ecology in the monitoring of ecological restoration,
Ecol. Solut. Evid., 1, e12031,
https://doi.org/10.1002/2688-8319.12031, 2020. a, b
Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps, C., Roxburgh, S. H., van Gorsel, E., Viscarra Rossel, R. A., and Wang, Z.: Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles, Biogeosciences, 10, 2011–2040, https://doi.org/10.5194/bg-10-2011-2013, 2013. a
Horrigue, W., Dequiedt, S., Chemidlin Prévost-Bouré, N., Jolivet, C., Saby,
N. P., Arrouays, D., Bispo, A., Maron, P., and Ranjard, L.: Predictive model
of soil molecular microbial biomass, Ecol. Ind., 64, 203–211,
2016. a
Janssen, P. and Heuberger, P.: Calibration of process-oriented models,
Ecol. Modell., 83, 55–66, 1995. a
Jenny, H.: Factors of Soil Formation: A System of Quantitative Pedology,
Courier Corporation, New York, ISBN 978-0-48668-128-3, 1994. a
Kuhn, M., Leeuw, J. D., and Zeileis, A.: Building Predictive Models in R
Using the caret Package, J. Stat. Softw., 28, 1–26, 2008. a
Lecun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444,
https://doi.org/10.1038/nature14539, 2015. a
Li, J., Delgadobaquerizo, M., Wang, J., Hu, H., Cai, Z., Zhu, Y., and Singh,
B. K.: Fungal richness contributes to multifunctionality in boreal forest
soil, Soil Biol. Biochem., 136, 107526, https://doi.org/10.1016/j.soilbio.2019.107526, 2019. a
Liu, L., Ji, M., and Buchroithner, M.: Transfer learning for soil spectroscopy
based on convolutional neural networks and its application in soil clay
content mapping using hyperspectral imagery, Sensors (Switzerland), 18, 9,
https://doi.org/10.3390/s18093169, 2018. a
Lozupone, C. A. and Knight, R.: Species divergence and the measurement of
microbial diversity, FEMS Microbiol. Rev., 32, 557–578, 2008. a
Maestre, F. T., Delgadobaquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., Quero, J. L., Garciagomez, M., Gallardo, A., Ulrich, W., Bowker, M. A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J. R., Huber-Sannwald, E., Jankju, M., Mau, R. L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods, N. N., Yuan, X., Zaady, E., and Singh, B. K.: Increasing aridity reduces soil microbial diversity and abundance in
global drylands, P. Natl. Acad. Sci. USA, 112, 15684–15689, 2015. a
Minty, B., Franklin, R., Milligan, P., Richardson, M., and Wilford, J.: The
radiometric map of Australia, Explor. Geophys., 40, 325–333, 2009. a
Morellos, A., Pantazi, X., Moshou, D., Alexandridis, T., Whetton, R.,
Tziotzios, G., Wiebensohn, J., Bill, R., and Mouazen, A. M.: Machine learning
based prediction of soil total nitrogen, organic carbon and moisture content
by using VIS-NIR spectroscopy, Biosyst. Eng., 152, 104–116, 2016. a
Ng, W., Minasny, B., Montazerolghaem, M., Padarian, J., Ferguson, R., Bailey,
S., and McBratney, A. B.: Convolutional neural network for simultaneous
prediction of several soil properties using visible/near-infrared,
mid-infrared, and their combined spectra, Geoderma, 352, 251–267,
https://doi.org/10.1016/j.geoderma.2019.06.016, 2019. a
Nicolas, C., Martinbertelsen, T., Floudas, D., Bentzer, J., Smits, M. M.,
Johansson, T., Troein, C., Persson, P., and Tunlid, A.: The soil organic
matter decomposition mechanisms in ectomycorrhizal fungi are tuned for
liberating soil organic nitrogen, ISME J., 13, 977–988, 2019. a
Nilsson, R. H., Larsson, K.-H., Taylor, A. F., Bengtsson-Palme, J., Jeppesen,
T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L.,
Saar, I., Kõljalg, U., and Abarenkov, K.: The UNITE database for molecular
identification of fungi: handling dark taxa and parallel taxonomic
classifications, Nucl. Acids Res., 47, D259–D264,
https://doi.org/10.1093/nar/gky1022, 2018. a
Prescott, J. A.: A climatic index for the leaching factor in soil formation,
J. Soil Sci., 1, 9–19, 1950. a
Quinlan, J. R.: Learning with continuous classes, in: 5th Australian joint
conference on artificial intelligence, vol. 92, pp. 343–348, Singapore,
1992. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org (last access: 22 March 2022), 2014. a
Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning), The MIT Press, 8–31,
ISBN 026218253X, 2005. a
Rousk, J., Brookes, P. C., and Baath, E.: Contrasting Soil pH Effects on Fungal
and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization,
Appl. Environ. Microbiol., 75, 1589–1596, 2009. a
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by
Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
1964. a
Schubler, A., Schwarzott, D., and Walker, C.: A new fungal phylum, the
Glomeromycota: phylogeny and evolution, Fung. Biol., 105, 1413–1421,
2001. a
Serna-Chavez, H. M., Fierer, N., and Bodegom, P. M.: Global drivers and
patterns of microbial abundance in soil, Glob. Ecol. Biogeogr., 22,
1162–1172, 2013. a
Shen, Z. and Viscarra Rossel, R. A.: Automated spectroscopic modelling with
optimised convolutional neural networks, Sci. Rep., 11, 208,
https://doi.org/10.1038/s41598-020-80486-9, 2021. a, b, c
Shi, Z., Ji, W., Viscarra Rossel, R. A., Chen, S., and Zhou, Y.: Prediction of
soil organic matter using a spatially constrained local partial least squares
regression and the Chinese vis–NIR spectral library, Eur. J.
Soil Sci., 66, 679–687, 2015. a
Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor, B. D., and
Vandewalle, J.: Least Squares Support Vector Machines, 29–70,
https://doi.org/10.1142/5089,
World Scientific Collaborate, Hackensack, USA 2002. a
Talley, S. M., Coley, P. D., and Kursar, T. A.: The effects of weather on
fungal abundance and richness among 25 communities in the Intermountain West,
BMC Ecol., 2, 7, https://doi.org/10.1186/1472-6785-2-7, 2002. a
Treseder, K. K. and Lennon, J. T.: Fungal Traits That Drive Ecosystem Dynamics
on Land, Microbiol. Mol. Biol. Rev., 79, 243–262, 2015. a
Tsakiridis, N. L., Keramaris, K. D., Theocharis, J. B., and Zalidis, G. C.:
Simultaneous prediction of soil properties from VNIR-SWIR spectra using a
localized multi-channel 1-D convolutional neural network, Geoderma, 367,
114208, https://doi.org/10.1016/j.geoderma.2020.114208, 2020. a, b
Vetrovsky, T., Kohout, P., Kopecky, M., Machac, A., Man, M., Bahnmann, B. D.,
Brabcova, V., Choi, J., Meszarosova, L., Human, Z. R., et al.: A
meta-analysis of global fungal distribution reveals climate-driven patterns,
Nat. Commun., 10, 5142, https://doi.org/10.1038/s41467-019-13164-8, 2019. a, b
Viscarra Rossel, R., Bui, E., Caritat, P., and McKenzie, N. J.: Mapping iron oxides
and the color of Australian soil usingvisible–near‐infrared reflectance
spectra, J. Geophys. Res., 115, F04031, https://doi.org/10.1029/2009JF001645, 2010. a, b
Viscarra Rossel, R., Adamchuk, V., Sudduth, K., McKenzie, N., and Lobsey, C.:
Proximal Soil Sensing. An Effective Approach for Soil Measurements in Space
and Time, Adv. Agron., 113, 243–291, https://doi.org/10.1016/B978-0-12-386473-4.00010-5, 2011. a
Viscarra Rossel, R. A.: Fine-resolution multiscale mapping of clay minerals
in Australian soils measured with near infrared spectra, J.
Geophys. Res.-Ea. Surf., 116, F04023, https://doi.org/10.1029/2011JF001977, 2011. a
Viscarra Rossel, R. A. and Brus, D. J.: The cost‐efficiency and reliability
of two methods for soil organic C accounting, Land Degrad.
Develop., 29, 506–520, 2018. a
Viscarra Rossel, R. A. and Hicks, W. S.: Soil organic carbon and its
fractions estimated by visible-near infrared transfer functions, Eur.
J. Soil Sci., 66, 438–450, https://doi.org/10.1111/ejss.12237, 2015. a
Viscarra Rossel, R. A., Chen, C., Grundy, M., Searle, R., Clifford, D., and
Campbell, P.: The Australian three-dimensional soil grid: Australia's
contribution to the GlobalSoilMap project, Soil Res., 53, 845–864, 2015. a
Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D., Demattê,
J., Shepherd, K., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aichi,
H., Barthes, B., Bartholomeus, H., Bayer, A., Bernoux, M., Bottcher, K.,
Brodsky, L., Du, C., Chappell, A., Fouad, Y., Genot, V., Gomez, C., Grunwald,
S., Gubler, A., Guerrero, C., Hedley, C., Knadel, M., Morras, H., Nocita, M.,
Ramírez López, L., Roudier, P., Campos, E., Sanborn, P.,
Sellitto, V., Sudduth, K., Rawlins, B., Walter, C., Winowiecki, L., Hong, S.,
and Ji, W.: A global spectral library to characterize the world's soil,
Earth-Sci. Rev., 155, 198–230, https://doi.org/10.1016/j.earscirev.2016.01.012,
2016. a, b
Wold, S., Sjostrom, M., and Eriksson, L.: PLS-Regression: A basic tool of chemometrics, Chemometrics and Intelligent Laboratory Systems, 58, 109–130,
2001. a
Xu, T. and Hutchinson, M.: ANUCLIM version 6.1 user guide, The Australian
National University, Fenner School of Environment and Society, Canberra,
2011. a
Zhao, X. Q. and Shen, R. F.: Aluminum-Nitrogen Interactions in the Soil-Plant
System, Front. Plant Sci., 9, 807,
https://doi.org/10.3389/fpls.2018.00807, 2018. a
Short summary
We present a new method to estimate the relative abundance of the dominant phyla and diversity of fungi in Australian soil. It uses state-of-the-art machine learning with publicly available data on soil and environmental proxies for edaphic, climatic, biotic and topographic factors, and visible–near infrared wavelengths. The estimates could serve to supplement the more expensive molecular approaches towards a better understanding of soil fungal abundance and diversity in agronomy and ecology.
We present a new method to estimate the relative abundance of the dominant phyla and diversity...