Articles | Volume 8, issue 1
SOIL, 8, 223–235, 2022
https://doi.org/10.5194/soil-8-223-2022
SOIL, 8, 223–235, 2022
https://doi.org/10.5194/soil-8-223-2022
Original research article
25 Mar 2022
Original research article | 25 Mar 2022

Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions

Yuanyuan Yang et al.

Related authors

Miniaturised visible and near-infrared spectrometers for assessing soil health indicators in mine site rehabilitation
Zefang Shen, Raphael A. Viscarra Rossel, Haylee D'Agui, Lewis Walden, Mingxi Zhang, Tsoek Man Yiu, Kingsley Dixon, Paul Nevill, Adam Cross, Mohana Matangulu, and Yang Hu
SOIL Discuss., https://doi.org/10.5194/soil-2021-138,https://doi.org/10.5194/soil-2021-138, 2022
Revised manuscript accepted for SOIL
Short summary
Assessing the response of soil carbon in Australia to changing inputs and climate using a consistent modelling framework
Juhwan Lee, Raphael A. Viscarra Rossel, Mingxi Zhang, Zhongkui Luo, and Ying-Ping Wang
Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021,https://doi.org/10.5194/bg-18-5185-2021, 2021
Short summary
Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021,https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021,https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021,https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary

Related subject area

Soil and methods
Thermal signature and quantification of charcoal in soil by differential scanning calorimetry and BPCA markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL Discuss., https://doi.org/10.5194/soil-2021-146,https://doi.org/10.5194/soil-2021-146, 2022
Revised manuscript accepted for SOIL
Short summary
An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture
Elad Levintal, Yonatan Ganot, Gail Taylor, Peter Freer-Smith, Kosana Suvocarev, and Helen E. Dahlke
SOIL, 8, 85–97, https://doi.org/10.5194/soil-8-85-2022,https://doi.org/10.5194/soil-8-85-2022, 2022
Short summary
Performance of three machine learning algorithms for predicting soil organic carbon in German agricultural soil
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL Discuss., https://doi.org/10.5194/soil-2021-107,https://doi.org/10.5194/soil-2021-107, 2021
Revised manuscript under review for SOIL
Short summary
Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021,https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary
The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021,https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary

Cited articles

Bachar, A., Al-Ashhab, A., Soares, M. I., Sklarz, M. Y., Angel, R., Ungar, E. D., and Gillor, O.: Soil microbial abundance and diversity along a low precipitation gradient, Microbial. Ecol., 60, 453–461, 2010. a
Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez-García, M., Ebersberger, I., de Sousa, F., Amend, A., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., Veldre, V., and Nilsson, R. H.: Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data, Meth. Ecol. Evol., 4, 914–919, https://doi.org/10.1111/2041-210X.12073, 2013. a
BioPlatforms Australia: Biomes of Australian Soil Environments (BASE), BioPlatforms Australia [data set], https://doi.org/10.4227/71/561c9bc670099, last access: 22 March 2022. a
Bissett, A. and Viscarra Rossel, R.: Soil visible–near infrared (vis–NIR) spectra for the Biomes of Australian Soil Environments (BASE) soil microbial diversity database (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6265730, 2022. a
Bissett, A., Fitzgerald, A., Meintjes, T., Mele, P. M., Reith, F., Dennis, P. G., Breed, M. F., Brown, B., Brown, M. V., Brugger, J., Byrne, M., Caddy-Retalic, S., Carmody, B., Coates, D. J., Correa, C., Ferrari, B. C., Gupta, V. V. S. R., Hamonts, K., Haslem, A., Hugenholtz, P., Karan, M., Koval, J., Lowe, A. J., Macdonald, S., McGrath, L., Martin, D., Matt, M., North, K. I., Paungfoo-Lonhienne, C., Pendall, E., Phillips, L., Pirzl, R., Powell, J. R., Ragan, M. A., Schmidt, S., Seymour, N., Snape, I., Stephen, J. R., Stevens, M., Tinning, M., Williams, K., Yeoh, Y. K., Zammit, C. M., and Young, A.: Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database, GigaScience, 5, s13742-016-0126-5, https://doi.org/10.1186/s13742-016-0126-5, 2016. a, b, c, d
Download
Short summary
We present a new method to estimate the relative abundance of the dominant phyla and diversity of fungi in Australian soil. It uses state-of-the-art machine learning with publicly available data on soil and environmental proxies for edaphic, climatic, biotic and topographic factors, and visible–near infrared wavelengths. The estimates could serve to supplement the more expensive molecular approaches towards a better understanding of soil fungal abundance and diversity in agronomy and ecology.