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Abstract. Soil fungi play important roles in the functioning of ecosystems, but they are challenging to measure.
Using a continental-scale dataset, we developed and evaluated a new method to estimate the relative abun-
dance of the dominant phyla and diversity of fungi in Australian soil. The method relies on the development
of spectrotransfer functions with state-of-the-art machine learning and uses publicly available data on soil and
environmental proxies for edaphic, climatic, biotic and topographic factors, and visible–near infrared (vis–NIR)
wavelengths, to estimate the relative abundances of Ascomycota, Basidiomycota, Glomeromycota, Mortierel-
lomycota and Mucoromycota and community diversity measured with the abundance-based coverage estimator
(ACE) index. The algorithms tested were partial least squares regression (PLSR), random forest (RF), Cubist,
support vector machines (SVM), Gaussian process regression (GPR), extreme gradient boosting (XGBoost) and
one-dimensional convolutional neural networks (1D-CNNs). The spectrotransfer functions were validated with
a 10-fold cross-validation (n= 577). The 1D-CNNs outperformed the other algorithms and could explain be-
tween 45 % and 73 % of fungal relative abundance and diversity. The models were interpretable, and showed
that soil nutrients, pH, bulk density, ecosystem water balance (a proxy for aridity) and net primary productivity
were important predictors, as were specific vis–NIR wavelengths that correspond to organic functional groups,
iron oxide and clay minerals. Estimates of the relative abundance for Mortierellomycota and Mucoromycota
produced R2

≥ 0.60, while estimates of the abundance of the Ascomycota and Basidiomycota produced R2 val-
ues of 0.5 and 0.58 respectively. The spectrotransfer functions for the Glomeromycota and diversity were the
poorest with R2 values of 0.48 and 0.45 respectively. There is no doubt that the method provides estimates that
are less accurate than more direct measurements with conventional molecular approaches. However, once the
spectrotransfer functions are developed, they can be used with very little cost, and could serve to supplement
the more expensive and laborious molecular approaches for a better understanding of soil fungal abundance and
diversity under different agronomic and ecological settings.
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1 Introduction

Soil fungi are important components of microbial com-
munities, which inhabit dynamic soil environments. They
play critical functional roles as decomposers, mutualists and
pathogens (Li et al., 2019). They impact nutrient cycling
and ecosystem services, such as soil carbon fixation, fer-
tility and productivity (Vetrovsky et al., 2019; Delgadoba-
querizo et al., 2016). Given the important functions that soil
fungi perform, it is important to better characterise and un-
derstand their communities over large scales. However, data
on soil fungi are few or largely unavailable because the mea-
surement of soil fungi, which needs field sampling, followed
by culture-based analysis or DNA sequencing, are laborious,
time-consuming and costly. Using soil sensing technologies,
such as spectroscopy together with molecular approaches,
could greatly improve the utility of fungal inventory data
(Hart et al., 2020).

Improvements in soil analytical methodologies provide an
opportunity to increase sampling density for deriving a more
detailed understanding of soil properties, their spatial vari-
ation and soil conditions, and to improve decision-making.
Spectroscopic techniques, such as visible–near infrared (vis–
NIR) spectroscopy, have been developed to provide rapid
estimates of soil properties (Viscarra Rossel et al., 2016).
Soil vis–NIR spectra are largely nonspecific because of the
overlapping absorptions of soil constituents (Stenberg et al.,
2010). Complex absorption patterns generated from soil con-
stituents need to be mathematically extracted from the spec-
tra and there are various methods that can be used to model
soil properties with spectra. They include multivariate statis-
tical methods such as partial least squares regression (PLSR),
and machine learning with different algorithms, including
neural networks (Viscarra Rossel and Behrens, 2010; Morel-
los et al., 2016; Liu et al., 2018; Tsakiridis et al., 2020; Shen
and Viscarra Rossel, 2021). Thus, vis–NIR spectra can in-
tegrally characterise the soil’s mineral–organic composition,
and combined with multivariate modelling, soil spectroscopy
provides a rapid and cost-efficient method for soil character-
isation (Viscarra Rossel and Brus, 2018).

Although there are no vis–NIR absorptions that can be di-
rectly assigned to soil microbial communities or diversity,
soil microbes are dependent on fundamental soil composi-
tion: its minerals, organic matter and water content. For ex-
ample, they rely on organic matter for energy and on clay
minerals and iron oxides for the supply of essential elements
in order to grow (Müller, 2015). These organic and mineral
properties are well represented and have a direct response in
soil vis–NIR spectra (Stenberg et al., 2010). Therefore, vis–
NIR spectra have been used to model various functional soil
properties, such as soil organic carbon, cation exchange ca-
pacity, pH, clay content (Shi et al., 2015) and soil microbial
communities (Davinic et al., 2012; Yang et al., 2019). For the
latter, if microbial biomass is present in the soil organic mat-

ter, then the spectra might well detect their functional con-
stituents.

There are studies that use environmental proxies (or co-
variates) at continental and global scales to model soil mi-
crobial properties using various methods, including linear re-
gression and machine learning (Serna-Chavez et al., 2013;
Griffiths et al., 2011; Vetrovsky et al., 2019; Yang et al.,
2019; Delgadobaquerizo et al., 2018a). However, we found
no published studies that used vis–NIR spectra or a combina-
tion of spectra with other soil and environmental covariates
(i.e. spectrotransfer functions) to infer fungal abundance or
diversity. In a previous study, Yang et al. (2019) showed that
vis–NIR spectra combined with other soil and environmen-
tal data could estimate soil bacterial abundance and diversity.
Here, our hypotheses are (i) spectroscopic models with ma-
chine learning can estimate soil fungal abundance and diver-
sity at the continental scale, and (ii) spectrotransfer functions
with additional predictors for capturing other soil and envi-
ronmental properties that affect soil fungi will improve the
accuracy of the estimates.

Thus, our objective is to develop and test the spectroscopic
method for estimating soil fungal abundance and diversity
over a large scale, and our aims are to

1. compare the modelling of fungal abundance and diver-
sity with vis–NIR spectra only (spectroscopic models),
with readily available soil and environmental data only
(environmental models) and with the combined set of
vis–NIR spectra and readily available soil and environ-
mental data (spectrotransfer functions), and

2. test different statistical and machine learning algorithms
for the modelling.

2 Methods

2.1 Soil sampling and laboratory analyses

We used 577 soil samples from the Biomes of Australian Soil
Environments (BASE) project (Bissett et al., 2016). In that
project, sampling was undertaken from in that supports di-
verse plant communities across Australia. The sampling was
carried out during the growing season when hydrothermal
conditions are most conducive to typical plant growth. In
the higher rainfall forested regions of the continent, the soil
samples were collected mostly in spring and summer from
September to February. In the shrublands and grasslands of
the semi-arid and arid interior, soil samples were collected
in spring from September to November. In the transitional
zone between the south-east coast and the more arid interior,
soil samples were collected in mainly autumn from March
to May. Samples came from two soil depths (0–0.1 and
0.2–0.3 m), covering five typical Australian ecosystem types
comprising cropland, forest, grassland, shrubland and wood-
land (Fig. 1a). Woodlands in Australia represent ecosystems
which contain widely spaced trees, the crowns of which do

SOIL, 8, 223–235, 2022 https://doi.org/10.5194/soil-8-223-2022



Y. Yang et al.: Spectrotransfer estimates of soil fungal abundance and diversity 225

not touch. Woodlands consist of areas with fewer and more
scattered trees than forests. In temperate Australia, wood-
lands are mainly dominated by Eucalyptus species. Temper-
ate woodlands occur predominantly in regions with a mean
annual rainfall of between 250 and 800 mm, forming a tran-
sitional zone between the higher rainfall forested margins of
the continent and the shrub and grasslands of the arid inte-
rior. Each sample was partitioned into subsamples for DNA
sequencing (see below) and air-dried and crushed to a par-
ticle size of ≤ 2 mm for physicochemical analyses. The soil
properties analysed were total organic carbon and soil nutri-
ents (e.g. ammonium, nitrate, phosphorus, potassium), pH,
exchangeable cations (aluminium, sodium, magnesium, cal-
cium) and texture (sand, silt, clay). The methods are de-
scribed in Bissett et al. (2016). Subsamples of the ≤ 2 mm
portions were used for the spectroscopic analysis (see be-
low).

2.2 Derivation of fungal abundance and diversity

The methods for DNA extraction and sequencing are
detailed in Bissett et al. (2016). Briefly, the soil DNA
was extracted in triplicate following methods used in the
Earth Microbiome Project (http://www.Earthmicrobiome.
Org/emp-standard-protocols/dna-extraction-protocol/, last
access: 22 March 2022). Sequencing occurred with an
Illumina MiSEQ, which is described in the BASE protocols
(https://ccgapps.Com.Au/bpa-metadata/base/information,
last access: 22 March 2022). Summarising, amplicons
targeting the fungal ITS region were prepared and sequenced
for each sample. The ITS amplicons were sequenced
using 300 bp paired end sequencing. ITS1 regions were
extracted using ITSx (Bengtsson-Palme et al., 2013).
Sequences comprising full and partial ITS1 regions were
passed to the operational taxonomic units (OTUs) selec-
tion and assigning workflow (Bissett et al., 2016), which
followed guidelines described in the BASE protocols
(https://ccgapps.com.au/bpa-metadata/base/information, last
access: 22 March 2022). These are based on the most current
version of UNITE database (version 8.2, updated 15 January
2020) for molecular identification of fungi (Nilsson et al.,
2018). We used the final sample-by-OTU data matrix and
annotated taxonomy file for the analyses of fungal diversity
and composition.

To eliminate bias in the diversity comparison caused by
unbalanced sequencing, samples were resampled at the same
sequencing depth using functions of the RAM library in R
software (R Core Team, 2014). The BASE dataset sought
to produce as many sequences as resources allow with a
minimum sequencing number of 10 000 per sample. Here,
11 000 sequences (the median number of sequences in the
samples) were used as the resampling depth, because the ma-
jority of samples only had this amount of sequences, but also
because the rarefaction curves started to flatten out for all
577 samples at this sequencing depth. This suggested that

the sequencing number was sufficient (Fig. S2 in the Sup-
plement). To quantify community diversity, we then calcu-
lated the abundance-based coverage estimator (ACE) index
(Lozupone and Knight, 2008) from the resampled sample-
by-OTU matrix. The relative abundance of fungal phyla were
then determined using the ratio of the number of sequences
classified at each phylum to the total number of sequences of
each sample.

2.3 Soil visible–near-infrared spectroscopy

We measured the diffuse reflectance spectra of all air-dried
≤ 2 mm soil samples with the Labspec® vis–NIR spectrom-
eter (Malvern Panalytical, Boulder, Colorado, USA) follow-
ing the protocols described in Viscarra Rossel et al. (2016).
The spectral range of the spectrometer is 350 to 2500 nm.
Due to the low signal-to-noise ratio at the start and end
of each spectrum, for our analysis, we kept only spectra
in the range between 380 and 2450 nm. As the spectra are
highly collinear, to reduce redundancy in the data, we re-
sampled them to a resolution of 10 nm. The measurements
were performed with the instrument’s high intensity contact
probe (Malvern Panalytical, Boulder, Colorado, USA), and a
Spectralon® white reference panel was used for calibration
once every 10 measurements.

For the modelling and interpretation, we first transformed
the reflectance (R) spectra to apparent absorbance, using
A= log10(1/R), and then used the Savitzky–Golay method
with a window of size 7, a quadratic polynomial and first
derivative method (Savitzky and Golay, 1964), in order to re-
move baseline effects and to improve the signal-to-noise ra-
tio. To visualise the spectra, we further fitted each reflectance
(R) spectrum with a convex hull and computed the deviations
from the hull (Clark and Roush, 1984). These continuum re-
moved (CR) spectra help to visualise the characteristic ab-
sorptions more clearly than the Savitzky–Golay first deriva-
tives (SG1Der) absorbance spectra.

2.4 Modelling soil fungal abundance and diversity

We developed spectroscopic models, environmental models
and spectrotransfer functions for estimating soil fungal abun-
dance and diversity (see below). The spectroscopic models
used only the vis–NIR spectra, the environmental models
used only the publicly available soil and environmental data
that represent the soil forming factors soil, climate, vegeta-
tion, terrain and parent material (Jenny, 1994) and the spec-
trotransfer functions used the vis–NIR spectra together with
soil and environmental data.

We assembled a set of readily available soil and environ-
mental maps that represented climate, terrain, vegetation and
parent material. To relate the these covariates to the fungal
data, we extracted values from these maps using the geo-
graphic coordinates of the sample set. The soil property data
came from Australia-wide fine spatial resolution (90× 90 m)
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Figure 1. (a) Sampling sites and the range of ecosystem types across Australia. (b) The mean relative abundances of dominant fungal phyla
and unclassified “Others” taxa in five ecosystem types. Individual abundance of each phylum and their cumulative abundance were shown in
the graph.

digital soil maps of total organic carbon, total nitrogen, total
phosphorus, bulk density, effective cation exchange capacity,
available water capacity, pH and soil texture (sand, silt and
clay; Viscarra Rossel et al., 2015), as well as maps of the
clay minerals kaolinite, illite and smectite (Viscarra Rossel,
2011). To represent climate, we used data on mean annual
temperature (MAT), mean annual precipitation (MAP), solar
radiation and evapotranspiration (Xu and Hutchinson, 2011)
and the Prescott index (PI; Prescott, 1950), which is calcu-
lated as the ratio of precipitation to evapotranspiration. To
capture functional landscape characteristics, we used a dig-
ital elevation model (DEM) from the 3 arcsec Shuttle Radar
Topography Mission (SRTM) and derived terrain attributes
(Gallant et al., 2011). To represent vegetation, we used data
on net primary productivity (NPP; Haverd et al., 2013) and
on the fraction of photosynthetically active radiation inter-
cepted by the sunlit canopy of the evergreen (Fpar-e) and
woody (Fpar-r) vegetation (Donohue et al., 2009). To rep-
resent parent material, we used gamma radiometrics, which
comprises data on potassium, uranium and thorium (Minty
et al., 2009). Supplement Table S2 lists these data and their
main characteristics.

The spectra and the covariates were centred and scaled be-
fore the modelling of fungal abundance and diversity. The al-
gorithms that we tested were PLSR (Wold et al., 2001), Gaus-
sian process regression (GPR; Rasmussen and Williams,
2005, support vector machines (SVM; Suykens et al., 2002),
random forest (RF; Breiman, 2001), Cubist (Quinlan, 1992),
extreme gradient boosting (XGBoost; Friedman, 2001) and
optimised one-dimensional convolutional neural networks
(1D-CNNs; Shen and Viscarra Rossel, 2021). The algorithms
and their implementation are described in the Supplement
linked to this article.

The predictability of the spectroscopic models and the
spectrotransfer functions were assessed using 10-fold cross-
validation. We evaluated the estimates using the Nash–

Sutcliffe model efficiency, otherwise known as the coeffi-
cient of determination (R2), which represent the fraction of
the explained variance based on the 1 : 1 line of estimated
versus measured values (Janssen and Heuberger, 1995). The
R2 was computed as 1-RSS/TSS, where RSS is the resid-
ual sum of squares and TSS is the total sum of squares. The
root mean squared error (RMSE) measures inaccuracy, the
standard deviation of the error (SDE) measures imprecision
and the mean error (ME) measures bias (Viscarra Rossel and
McBratney, 1998). Inaccuracy (RMSE) embraces both the
bias (ME) and the imprecision (SDE; Viscarra Rossel and
McBratney, 1998). Their relationship is given by RMSE2

=

ME2
+SDE2.

To interpret the models, we calculated their variable im-
portance as follows. For the PLSR, GPR, SVM, Cubist, RF
and XGBoost models, variable importance was calculated
using the varImp function in the caret library (Kuhn et al.,
2008) of the software R. To calculate the variable importance
of the CNN models, we used permutation variable impor-
tance. In our case, we ran 1000 permutations and measured
the decrease in RMSE after a predictor was permuted (ran-
domly rearranged). The permutation breaks the relationship
between the predictor and the response variables, and a re-
duction in RMSE indicates how much the model depends on
the particular predictor. An advantage of this approach is that
it can be applied on any estimator and does not require re-
training the model (Breiman, 2001; Fisher et al., 2019). In
order to compare the importance between different fungal
phyla and diversity, we scaled the importance values between
0 and 1. In the results, we only report the variable importance
of the model that performed best.

3 Results

In total, more than 60 million quality-filtered sequences in
the whole dataset were obtained, with an average of 107 310
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Figure 2. Continuum removed (CR) spectra and the Savitzky–
Golay first derivatives (SG1Der) absorbance spectra curves
coloured by fungal ACE diversity.

sequences per sample. When we clustered the sequences at
97 % similarity level, 202 200 OTUs were detected. Each
sample had an average of 666 OTUs. In total, 16 phyla were
identified; 5 dominant phyla, with relative abundance of ap-
proximately > 2 %, were present in most soils. This rep-
resented nearly 88 % of the sequence number. The relative
abundance of fungal phyla varied across ecosystem types
(Fig. 1b).

Ascomycota (mean 0.43, SD 0.21) was the most abundant
phylum, followed by Basidiomycota (mean 0.37, SD 0.24;
Table 1). Dominant fungal phyla showed a high degree of
variability, with an averaging 83 % coefficient of variation
(CV). The ACE index showed a wide range from 81 to 1823
(mean 563, SD 315). The rich soil biodiversity of the data re-
sulted from extensive soil sampling taken from diverse vege-
tation, soils and climates across Australia.

Figure 2 shows the CR reflectance and SG1Der ab-
sorbance spectra with the characteristic absorption features.
Soil with different fungal diversity show variations in absorp-
tions, particularly around those that are due to iron oxides
(400–800 nm), minerals (around 1400, 1900 and 2200 nm)
and organic compounds (throughout the vis–NIR spectrum;
Stenberg et al., 2010). Soil with lower fungal diversity
showed a more pronounced absorbance around 600 nm as
shown in Fig. 2. In our study, the soil with lower fungal diver-
sity mainly came from central and western Australia. In these
areas, soil is subjected to intense weathering regimes and can
accumulate large quantities of iron oxides (total soil Fe2O3
larger than 10 %) in surficial environments, and strongly ab-
sorbed in the visible region (Viscarra Rossel et al., 2010).
These highly iron-rich lateritic soils occur with acidic pH
and high H2O and Al activity, which has been shown to be
not conductive to the development of fungal diversity (Vis-
carra Rossel et al., 2010).

3.1 Modelling

With the different algorithms, the spectroscopic models (i.e.
with only the vis–NIR spectra) could explain 9 %–45 % of
the variation in fungal phyla relative abundance and diversity.
Spectroscopic models of the Glomeromycota were the least
successful, with R2 values ranging from 0.09 using SVM
to 0.30 using 1D-CNN, while those of the Mortierellomy-
cota produced the largest R2 values, ranging from 0.32 using
XGBoost to 0.45 using 1D-CNN (Fig. 3). The models of di-
versity had R2 values ranging from 0.14 with PLSR to 0.35
using 1D-CNN.

The models derived with the readily available soil and en-
vironment data could explain 14 %–60 % of the variation in
fungal phyla relative abundance and diversity with the differ-
ent algorithms. These environmental models generally per-
formed better than the spectroscopic models, with an average
10 % additional variance explained.

Combining the vis–NIR spectra and soil and environmen-
tal data further improved the models and their explanatory
power. The spectrotransfer functions (i.e. with the combined
set of vis–NIR spectra and other soil and environmental data)
performed, on average, 20 % better than the spectroscopic
models and 10 % better than environmental models. Depend-
ing on the algorithm used, they could explain between 17 %
and 73 % of the variation in fungal phyla relative abundance
and diversity (Fig. 3). The spectrotransfer functions of Glom-
eromycota produced R2 values, ranging from 0.17 using
PLSR to 0.48 using 1D-CNN. The spectrotransfer functions
of the Mortierellomycota and Mucoromycota produced the
largest R2 values ranging from 0.51 to 0.73 (Fig. 3).

Generally, PLSR and GPR were the least successful meth-
ods, while SVM, RF, Cubist and XGBoost were similarly
successful at estimating fungal phyla relative abundance and
diversity (Fig. 3). The 1D-CNN spectrotransfer functions
were 13 %–31 % more successful compared to other machine
learning methods as they could explain between 45 % and
73 % of the variation in fungal relative abundance and diver-
sity (Fig. 3).

3.2 1D-CNNs spectrotransfer functions

The final architecture and optimised hyperparameters of the
1D-CNNs are given in Supplement Table S3. As deep learn-
ing models are dataset dependent, the optimisation returned
a different architecture for each response variable. Overall,
the 1D-CNNs used simple architecture with less than four
convolutional layers (Supplement Table S3). Scatter plots
of the measured versus estimated values of relative abun-
dance and diversity using 1D-CNNs spectrotransfer func-
tions and their validation statistics are shown in Fig. 4. Es-
timates of the relative abundance of Mortierellomycota and
Mucoromycota produced R2 values ≥ 0.60, while estimates
of Ascomycota and Basidiomycota produced values of 0.5≤
R2 < 0.6. Estimates of Glomeromycota and ACE produced

https://doi.org/10.5194/soil-8-223-2022 SOIL, 8, 223–235, 2022



228 Y. Yang et al.: Spectrotransfer estimates of soil fungal abundance and diversity

Table 1. Descriptive statistics of relative abundance of dominant phyla and community diversity (n= 577).

Variables Mean Median SD Range Coeff. var. (%)

Abundance

Ascomycota 0.43 0.42 0.21 0.04–0.98 49
Basidiomycota 0.37 0.32 0.24 0.01–0.92 65
Mortierellomycota 0.04 0.02 0.04 0.00–0.36 100
Glomeromycota 0.02 0.01 0.01 0.00–0.41 50
Mucoromycota 0.02 0.01 0.03 0.00–0.55 150

Diversity

ACE 563 503 315 81–1823 56

Figure 3. Coefficient of determination (R2) for the vis–NIR spectroscopic models, soil and environmental models and the spectrotransfer
functions that used a combined set of the vis–NIR and readily available soil and environmental covariates used to estimate soil fungal phyla
abundance and diversity (n= 577). The different statistical and machine learning methods were PLSR, GPR, SVM, RF, Cubist, XGBoost
and optimised 1D-CNNs.

values of 0.4≤ R2 < 0.5. The estimates were relatively unbi-
ased (small ME), although generally small values were over-
estimated and large values were underestimated (Fig. 4). Im-
precision contributed to the majority of the RMSE. The im-
precision of our estimates was a result of the absence of re-
peated sampling and the high adaptability of soil fungi to the
wide range of environments.

The important variables in the 1D-CNNs spectrotransfer
functions of phyla relative abundance and diversity were vis–
NIR wavelengths representing organic matter, iron oxide and
clay minerals (Fig. 5).

The identified wavelengths mostly coincided with absorp-
tions that are related to carbon functional groups found in
organic matter, including C-H, N-H and C-O, with a smaller
number of wavelengths coinciding with those that are related
to clay minerals and iron oxides (Table 2). The organic func-
tional groups, C-H alkyl and methyls, N-H of amines and C-
O of carbohydrates, which might indicate the presence of rel-
atively labile forms of carbon, were important in the models
of fungal phyla but not of ACE diversity. The C=O of amides
and carboxylic acids, which represent stable forms of car-
bon were not as important in modelling (Fig. 5). Other wave-
lengths that represent iron oxides and clay minerals were also

important in the models, indicating the different ecological
niches and physiological characteristics (Table 2).

Other soil properties, such as total organic carbon and pH
were important variables in the spectrotransfer functions of
Ascomycota and Basidiomycota, and fungal diversity. Total
organic carbon and total nitrogen were important in the spec-
trotransfer functions of Mortierellomycota and Mucoromy-
cota and bulk density was important in the spectrotransfer
functions of Glomeromycota, Ascomycota and ACE diver-
sity (Fig. 5). As well as soil properties, climatic factors such
as PI and PET, and vegetation, represented by Fpar-e and
NPP were also important in the modelling of fungal phyla
relative abundance and community diversity. The variables
that we used to represent terrain and the parent material ex-
erted less influence in the models (Fig. 5).

4 Discussion

Soil fungi play essential and diverse functional roles in
ecosystems. However, they are challenging to investigate due
to laborious, time-consuming and costly field sampling, and
laboratory analysis. We show that spectrotransfer functions
with readily accessible vis–NIR spectra and publicly avail-
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Figure 4. Performance of the CNN spectrotransfer functions for estimation of the relative abundance of dominant fungal phyla and diversity
index. The spectrotransfer functions used vis–NIR spectra with other publicly available data on soil environmental variables. The plots show
measured vs. estimated values using a 10-fold cross validation. The grey points represent no overlap with any other points, and the black
points represent at least two points that overlap.

Table 2. Absorption wavelength assignment (in nanometres) for the most important vis–NIR wavelengths in the 1D-CNN models. The
assignment of vis–NIR absorptions are based on Viscarra Rossel and Behrens (2010) and Stenberg et al. (2010).

ACE Ascomycota Basidiomycota Mortierellomycota Glomeromycota Mucoromycota

Iron oxides 390 390 410, 460

Clay minerals 2190, 2240 1330, 2190, 2210 1330, 2140 1360, 2140 1330, 2150

Organics

C-H of aromatics 1630, 1650

N-H of amine 2070, 2090, 2110 1010 2060 780, 2030 2060

C-H of alkyl asymmetric- 890, 1290 1250, 1280 1740 1270, 1280
symmetric doublet

C=O of carboxylic acids

C=O of amides

C-H of aliphatics

C-H of methyls 1840, 2440 1770, 1800, 1810 1880
1830, 2450

C-OH of phenolics

C-O of carbohydrates 2260 2410, 2290 2300 2300

able soil and environmental data could variably estimate (R2

ranging from 0.45 to 0.73) soil fungal abundance and di-
versity measured with ITS gene metabarcoding. The spec-
trotransfer functions explained less than 60 % of the vari-
ance in the two dominant phyla, the Ascomycota and Basid-

iomycota, representing 80 % of the total fungal relative abun-
dance. In comparison, the spectrotransfer functions could ex-
plain more than 70 % of the variance in the Mortierellomy-
cota and Mucoromycota, which were less abundant in soil.
The reason for the different predictability might be the coarse
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Figure 5. Important predictors of relative abundance of fungal phyla and diversity index measured by the variable importance of the 1D-
CNNs spectrotransfer functions (n= 577) derived with publicly accessible data that represent soil (S), climate (C), vegetation (V), terrain
(T), parent material (PM) and vis–NIR spectra. The dots in red, orange and blue indicated the most, medium and least important levels. The
importance value for the majority of wavelengths were low and close to zero, thus these wavelengths were not shown to make the figure
clearer.

phylum-level identity. Compared with the Mortierellomycota
and Mucoromycota, the Ascomycota and Basidiomycota are
more complex phylogenetic classifications and consist of
more diverse taxa with different phenotypic traits. These
taxa have distinct ecological functions and environmental
preferences, which might have reduced the predictability of
their relative abundance at the phylum level. Classifying taxa
with similar habitat preferences or studying at a finer taxo-
nomic resolution might provide better predictability and un-
derstanding of soil fungal communities. The spectrotransfer
function for the ACE index could only explain around 50 %
of the variance in diversity. The reason might be that local
geography, environmental conditions and difficult-to-proxy
long-term natural selection and evolution affect community
diversity.

The general concept of using proxies has been used in
other studies to attempt more rapid estimation of microbial
properties towards the diagnosis of soil quality. For exam-
ple, Horrigue et al. (2016) developed a statistical predictive
model of soil microbial biomass according to environmen-
tal parameters including soil physicochemical and climatic

characteristics across France. Their model (R2
= 0.67) pro-

vided a reference value of microbial biomass for a given pe-
doclimatic condition to enable rapid diagnosis of soil quality
across France. Other similar studies exist, for example Grif-
fiths et al. (2016), who focused on the estimation of bacte-
rial community structure and diversity at the Europe scale.
ITS gene metabarcoding analyses are expensive, laborious
and require specialised laboratories and methods, while spec-
troscopic measurements are faster, less expensive and soil–
environmental data are more readily available. When many
measures are needed, for example, to assess, characterise and
improve our understanding of soil fungal communities and
their associated functions at different scales, the approach
could complement molecular techniques (Hart et al., 2020).
For instance, to characterise spatial variation (i.e. for map-
ping), one needs many measurements that would be too ex-
pensive with only metabarcoding. In this case, estimates with
the spectrotransfer functions (R2

= 0.45–0.73) could com-
plement the metabarcoding analysis to represent the variabil-
ity present better. As a whole, the spatial characterisation will
be more accurate than when only taking a few very precise
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measurements. This is the rationale for the characterisation
of soil properties in space and time with sensing (Viscarra
Rossel et al., 2011). The soil covariates in the model are de-
rived from digital soil maps and not from measured soil sam-
ples. The reason is that using measured data would increase
the cost of the approach significantly, making the approach
less attractive. We note that the uncertainty in the spectro-
transfer estimates caused by using the digital soil map pre-
dictors will propagate to the spectrotransfer functions and
thereby lower the precision of the estimates.

We do not expect that the spectrotransfer method will pro-
duce estimates that are as accurate as more conventional
molecular methods, even with further improvements in mod-
elling and better covariates. This is because we understand
that the modelling of living organisms is dynamic and hugely
complex. Fungi vary over space and time (Duan et al., 2018),
often showing that their prevalence in different habitats dif-
fers seasonally (Talley et al., 2002). The inconsistent corre-
lations of fungi with climate and plant hosts observed in var-
ious ecosystems may be due to seasonal variation and spatial
heterogeneity across single time point studies (Kivlin and
Hawkes, 2016). Thus, temporal sampling is needed to cap-
ture the seasonal dynamics of microbial communities.

Our research uses soil fungal measurements at a single
point in time and there are likely to be many undetermined
controlling factors, including seasonal variability and com-
plex biological interactions. Despite this drawback, our ap-
proach allows us to infer the distribution of soil fungal com-
munities and diversity more simply and at a lesser cost, to
help better understand the diversity and biogeography of soil
fungi in different habitats. Thus, our approach shows promise
and could complement molecular methods. We hope that our
study will stimulate further research towards achieving more
widespread characterisation of fungal abundance and diver-
sity, which will help to deepen our understanding of fungal
biology, biogeography and their environmental controls. Dif-
ferent spectra, new sensing technologies and improved meth-
ods could also improve the spectrotransfer approach.

Out of the seven statistical and machine learning mod-
els tested, the optimised 1D-CNNs were the most successful
at estimating fungal phyla relative abundance and diversity,
consistently producing the highest cross-validation R2 val-
ues. The reason might be that the 1D-CNNs can automati-
cally “learn” the non-linear and complex relations between
the soil fungal variables and the covariables. The models ex-
tract large features during convolution and adjust the weights
of each covariate during the model iterations, which are also
back-propagated (Lecun et al., 2015). Although 1D-CNNs
have been used for the spectroscopy modelling of soil physic-
ochemical properties (Ng et al., 2019; Tsakiridis et al., 2020;
Shen and Viscarra Rossel, 2021), to our best knowledge, this
present study is the first to develop spectrotransfer functions
for estimating soil fungal abundance and diversity.

Our results shown that the 1D-CNN spectroscopic models
(with only vis–NIR spectra) could explain, on average, 40 %

of the variation in the relative abundance of fungal phyla and
community diversity (R2 values of 0.30–0.45). This is be-
cause these spectra characterise the soil’s organic and min-
eral composition, which serves to supply energy and the el-
ements that fungi use to promote vital activities (Müller,
2015). Microbial activities are closely associated with the
types and amounts of organic matter and our results indicate
that the most important vis–NIR wavelengths in the mod-
elling of fungal relative abundance and community diversity
corresponds to functional groups in the different types of or-
ganic compounds in the soils (Viscarra Rossel and Hicks,
2015) (Fig. 5 and Table S2 in Supplement).

The 1D-CNN spectrotransfer functions (with vis–NIR
spectra and other soil and environmental data) improved the
modelling. This suggests that other variables that represent
climate, soil nutrients, pH and vegetation are important pre-
dictors of fungal growth. Their use in the spectrotransfer
functions provided additional and supplementary informa-
tion for the modelling. On average, these models could ex-
plain 60 % of the variation of fungal phyla relative abundance
and diversity (R2 values of 0.45–0.73).

The soil organic and mineral composition, represented by
the vis–NIR spectra, were the most important predictors in
the models for fungal relative abundance and community di-
versity. Additionally, total organic carbon and pH were im-
portant predictors of fungal diversity and the relative abun-
dance of Ascomycota and Basidiomycota. Although most
soil fungi do not require strict pH ranges for habitation and
growth (Rousk et al., 2009; Zhao and Shen, 2018), some
basophilic or acidophilic fungi are sensitive to changes in
pH (Gai et al., 2006), and saprophytic fungi are thought
to be more sensitive to soil pH compared to other fungi
(Kivlin and Hawkes, 2016). Soil bulk density was an im-
portant predictor of fungal diversity and the relative abun-
dance of Glomeromycota. Many fungi, including those that
form arbuscular mycorrhiza, such as Glomeromycota, infect
plants roots achieving mutualistic symbiosis (Schubler et al.,
2001). Denser soil bulk density could reduce the availability
of soil nutrients and water, leading to poor development of
plant roots and a smaller infection rate for the symbiosis. PI
and evapotranspiration were the most important climatic pre-
dictors of fungal abundance and diversity in the models. PI
represents the soil-water balance, which has been shown to
affect soil microbial growth in various studies (Bachar et al.,
2010; Blankinship et al., 2011; Maestre et al., 2015; Del-
gadobaquerizo et al., 2018b) because soil-water stress could
strongly restrict microbial activity and distribution by con-
trolling the availability of soil nutrients, pH and oxygen (Del-
gadobaquerizo et al., 2018b). NPP and Fpar-e were important
predictors of fungal diversity and the relative abundance of
the five dominant phyla. Larger values of NPP and Fpar-e
occur due to greater biomass production and thus more ac-
cumulation of litter and coarse organic matter in soil. Soil
fungi are some of the decomposers of litter and soil organic
matter, including cellulose and lignin, which are often resis-
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tant to bacterial decomposition (Treseder and Lennon, 2015;
Nicolas et al., 2019).

5 Conclusions

Our study contributes to the development of methods that
could complement, not replace, molecular approaches for
characterising and better understanding the diversity and bio-
geography of soil fungi. We have shown that deep learning
spectrotransfer functions are a promising new method for es-
timating soil fungal communities’ relative abundance and di-
versity. The optimised 1D-CNNs outperformed the six other
machine learning algorithms tested for estimating the rela-
tive abundance of fungal phyla and diversity. The spectro-
transfer functions (with vis–NIR spectra and soil and envi-
ronmental data) produced more accurate estimates (R2 0.45–
0.73) than the spectroscopic models (only vis–NIR spectra;
R2 0.36–0.55) and models with only the soil and environ-
mental data (R2 0.38–0.60). In addition to the soil organic
and mineral composition, represented by vis–NIR spectra,
other edaphic, climatic and biotic factors including soil nutri-
ents, pH, bulk density, potential evapotranspiration, the soil-
water balance and net primary productivity were important
predictors in the modelling. We hope that our study will pro-
vide food-for-thought for further research on the measure-
ment and estimation of fungal abundance and diversity. We
believe that improvements will be possible as new technolo-
gies and methodologies develop that will also help to deepen
our understanding of fungal biology and biogeography.
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