Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-567-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-567-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Luminescence dating approaches to reconstruct the formation of plaggic anthrosols
Soil Geography and Landscape Group, Environmental Sciences Group, Wageningen University, Wageningen, 6700AA, the Netherlands
Netherlands Centre for Luminescence Dating, Wageningen University, Wageningen, 6700AA, the Netherlands
Roy van Beek
Soil Geography and Landscape Group, Environmental Sciences Group, Wageningen University, Wageningen, 6700AA, the Netherlands
Cultural Geography Group, Environmental Sciences Group, Wageningen University, Wageningen, 6700AA, the Netherlands
Elizabeth L. Chamberlain
Soil Geography and Landscape Group, Environmental Sciences Group, Wageningen University, Wageningen, 6700AA, the Netherlands
Netherlands Centre for Luminescence Dating, Wageningen University, Wageningen, 6700AA, the Netherlands
Tony Reimann
Institutes of Geography, University of Cologne, Cologne, 50674, Germany
Harm Smeenge
Bosgroepen, Ede, 6717LL, the Netherlands
Annika van Oorschot
Soil Geography and Landscape Group, Environmental Sciences Group, Wageningen University, Wageningen, 6700AA, the Netherlands
Jakob Wallinga
Soil Geography and Landscape Group, Environmental Sciences Group, Wageningen University, Wageningen, 6700AA, the Netherlands
Netherlands Centre for Luminescence Dating, Wageningen University, Wageningen, 6700AA, the Netherlands
Related authors
No articles found.
Linda Andrea Elisabeth Maßon, Svenja Riedesel, Stephan Opitz, Anja Zander, Anthony Bell, Hanna Cieszynski, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-806, https://doi.org/10.5194/egusphere-2025-806, 2025
Short summary
Short summary
We evaluate different methods for the potassium (K) concentration determination in feldspars and the impact of the K-concentrations on dose rate calculations for feldspar luminescence dating. Our results show discrepancies between published and our measured K-concentrations. Therefore, we emphasise to measure K-concentrations via bulk measurements and single-grain techniques to obtain more accurate results.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
Anna-Maartje de Boer, Wolfgang Schwanghart, Jürgen Mey, Basanta Raj Adhikari, and Tony Reimann
Geochronology, 6, 53–70, https://doi.org/10.5194/gchron-6-53-2024, https://doi.org/10.5194/gchron-6-53-2024, 2024
Short summary
Short summary
This study tested the application of single-grain feldspar luminescence for dating and reconstructing sediment dynamics of an extreme mass movement event in the Himalayan mountain range. Our analysis revealed that feldspar signals can be used to estimate the age range of the deposits if the youngest subpopulation from a sample is retrieved. The absence of clear spatial relationships with our bleaching proxies suggests that sediments were transported under extremely limited light exposure.
Jürgen Mey, Wolfgang Schwanghart, Anna-Maartje de Boer, and Tony Reimann
Geochronology, 5, 377–389, https://doi.org/10.5194/gchron-5-377-2023, https://doi.org/10.5194/gchron-5-377-2023, 2023
Short summary
Short summary
This study presents the results of an outdoor flume experiment to evaluate the effect of turbidity on the bleaching of fluvially transported sediment. Our main conclusions are that even small amounts of sediment lead to a substantial change in the intensity and frequency distribution of light within the suspension and that flow turbulence is an important prerequisite for bleaching grains during transport.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Moritz Nykamp, Jacob Hardt, Philipp Hoelzmann, Jens May, and Tony Reimann
E&G Quaternary Sci. J., 70, 1–17, https://doi.org/10.5194/egqsj-70-1-2021, https://doi.org/10.5194/egqsj-70-1-2021, 2021
Cited articles
AHN: Over AHN, https://www.ahn.nl/over-ahn-0 (last access: 14 November 2023), 2023.
Aitken, M. J.: Introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence, Oxford University Press, Oxford, ISBN 0-19-854092-2, 1998.
Arnoldussen, S.: The Fields that Outlived the Celts: The Use-histories of Later Prehistoric Field Systems (Celtic Fields or Raatakkers) in the Netherlands, P. Prehist. Soc., 84, 303–327, https://doi.org/10.1017/ppr.2018.5, 2018.
Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for feldspar IRSL using SAR, Radiat. Meas., 37, 487–492, https://doi.org/10.1016/S1350-4487(03)00018-0, 2003.
Bateman, M. D., Boulter, C. H., Carr, A. S., Frederick, C. D., Peter, D., and Wilder, M.: Preserving the palaeoenvironmental record in Drylands: Bioturbation and its significance for luminescence-derived chronologies, Sediment. Geol., 195, 5–19, https://doi.org/10.1016/j.sedgeo.2006.07.003, 2007.
Blume, H.-P. and Leinweber, P.: Plaggen Soils: landscape history, properties, and classification, J. Plant Nutr. Soil Sc., 167, 319–327, https://doi.org/10.1002/jpln.200420905, 2004.
Bokhorst, M. P., Duller, G. A. T., and Van Mourik, J. M.: Optical dating of a Fimic Anthrosol in the southern Netherlands, J. Archaeol. Sci., 32, 547–553, https://doi.org/10.1016/j.jas.2003.11.011, 2005.
Bøtter-Jensen, L., Bulur, E., Duller, G. A. T., and Murray, A. S.: Advances in luminescence instrument systems, Radiat. Meas., 32, 523–528, https://doi.org/10.1016/S1350-4487(00)00039-1, 2000.
Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T., and Murray, A. S.: Developments in radiation, stimulation and observation facilities in luminescence measurements, Radiat. Meas., 37, 535–541, https://doi.org/10.1016/S1350-4487(03)00020-9, 2003.
Briggs, J. M., Spielmann, K. A., Schaafsma, H., Kintigh, K. W., Kruse, M., Morehouse, K., and Schollmeyer, K.: Why ecology needs archaeologists and archaeology needs ecologists, Front. Ecol. Environ., 4, 180–188, https://doi.org/10.1890/1540-9295(2006)004[0180:WENAAA]2.0.CO;2, 2006.
Brill, D., Reimann, T., Wallinga, J., May, S. M., Engel, M., Riedesel, S., and Brückner, H.: Testing the accuracy of feldspar single grains to date late Holocene cyclone and tsunami deposits, Quat. Geochronol., 48, 91–103, https://doi.org/10.1016/j.quageo.2018.09.001, 2018.
BRO: About the key registry, BRO, https://basisregistratieondergrond.nl/english/about-key-registry/ (last access: 23 April 2023), 2023.
Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and Sohbati, R.: A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments, Boreas, 41, 435–451, https://doi.org/10.1111/j.1502-3885.2012.00248.x, 2012.
Buylaert, J. P., Murray, A. S., Gebhardt, A. C., Sohbati, R., Ohlendorf, C., Thiel, C., Wastegård, S., and Zolitschka, B.: Luminescence dating of the PASADO core 5022-1D from Laguna Potrok Aike (Argentina) using IRSL signals from feldspar, Quaternary Sci. Rev., 71, 70–80, https://doi.org/10.1016/j.quascirev.2013.03.018, 2013.
Chamberlain, E. L., Wallinga, J., Reimann, T., Goodbred, S. L., Steckler, M. S., Shen, Z., and Sincavage, R.: Luminescence dating of delta sediments: Novel approaches explored for the Ganges–Brahmaputra–Meghna Delta, Quat. Geochronol., 41, 97–111, https://doi.org/10.1016/j.quageo.2017.06.006, 2017.
Chamberlain, E. L., Wallinga, J., and Shen, Z.: Luminescence age modeling of variably-bleached sediment: Model selection and input, Radiat. Meas., 120, 221–227, https://doi.org/10.1016/j.radmeas.2018.06.007, 2018.
Cheng, T., Zhang, D., Zhao, H., Yang, S., and Li, B.: Bleachability of pIRIR signal from single-grain K-feldspar, Quat. Geochronol., 71, 101321, https://doi.org/10.1016/j.quageo.2022.101321, 2022.
Choi, J., van Beek, R., Chamberlain, L., Reimann, T., Smeenge, H., van Oorschot, A., and Wallinga, J.: Dataset underlying the publication: Luminescence dating approaches to reconstruct the formation of plaggic anthrosols. Version 1, 4TU.ResearchData [data set], https://doi.org/10.4121/4ad5c9b3-f0f1-4757-b845-681268a707e4.v1, 2024.
Cunningham, A. C. and Wallinga, J.: Selection of integration time intervals for quartz OSL decay curves, Quat. Geochronol., 5, 657–666, https://doi.org/10.1016/j.quageo.2010.08.004, 2010.
Cunningham, A. C. and Wallinga, J.: Realizing the potential of fluvial archives using robust OSL chronologies, Quat. Geochronol., 12, 98–106, https://doi.org/10.1016/j.quageo.2012.05.007, 2012.
Cunningham, A. C., Wallinga, J., and Minderhoud, P. S. J.: Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating, Geochronometria, 38, 424–431, https://doi.org/10.2478/s13386-011-0048-z, 2011.
Cunningham, A. C., Wallinga, J., Hobo, N., Versendaal, A. J., Makaske, B., and Middelkoop, H.: Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics, Earth Surf. Dynam., 3, 55–65, https://doi.org/10.5194/esurf-3-55-2015, 2015.
de Bakker, H. and Schelling, J.: Systeem van bodemclassificatie voor Nederland: de hogere niveaus, Tweede, gewijzigde druk, Centrum voor Landbouwpublikaties en Landbouwdocumentatie, Wageningen, 1989.
Deeben, J., van Doesburg, J., and Groenewoudt, B. J.: Een inleiding op essen, plaggendekken en enkeergronden in het historische cultuurlandschap, in: Essen in zicht: Essen en plaggendekken in Nederland: onderzoek en beleid, edited by: van Doesburg, J., de Boer, M., Deeben, J., and Groenewoudt, B. J., Nederlandse Archeologische Rapporten, 34, Rijksdienst voor Archeologie, Cultuurlaandschap en Monumenten, Amerfoort, 9–20, ISBN 9789057991165, 2007.
Delcourt, P. A., Haccou, P., and Delcourt, H. R.: Prehistoric Native Americans and ecological change: human ecosystems in eastern North America since the Pleistocene, Cambridge University Press, Cambridge, ISBN 0 521 66270 2, 2004.
Denevan, W. M.: The Pristine Myth: The Landscape of the Americas in 1492, Ann. Assoc. Am. Geogr., 82, 369–385, https://doi.org/10.1111/j.1467-8306.1992.tb01965.x, 1992.
Duller, G. A. T.: Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating, Boreas, 37, 589–612, https://doi.org/10.1111/j.1502-3885.2008.00051.x, 2008.
Dyer, C., Thoen, E., and Williamson, T.: Conclusion: the rationale of open fields, in: Peasants and their fields: The rationale of open-field agriculture, c. 700–1800, edited by: Dyer, C. and Williamson, T., Brepols, Turnhout, 257–275, ISBN 9782503576015, 2018.
Edelman, C. H.: Soils of the Netherlands, North-Holland Publishing Company, Amsterdam, OCLC: 905456262, 1950.
Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Klein Goldewijk, K., and Verburg, P. H.: Used planet: A global history, P. Natl. Acad. Sci. USA, 110, 7978–7985, https://doi.org/10.1073/pnas.1217241110, 2013.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.: Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Austrailia: Part I, experimental design and statistical models, Archaeometry, 41, 339–364, https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Giani, L., Makowsky, L., and Mueller, K.: Plaggic Anthrosol: Soil of the Year 2013 in Germany: An overview on its formation, distribution, classification, soil function and threats, J. Plant Nutr. Soil Sc., 177, 320–329, https://doi.org/10.1002/jpln.201300197, 2014.
Godfrey-Smith, D. I., Huntley, D. J., and Chen, W. H.: Optical dating studies of quartz and feldspar sediment extracts, Quaternary Sci. Rev., 7, 373–380, https://doi.org/10.1016/0277-3791(88)90032-7, 1988.
Gray, H. J., Keen-Zebert, A., Furbish, D. J., Tucker, G. E., and Mahan, S. A.: Depth-dependent soil mixing persists across climate zones, P. Natl. Acad. Sci. USA, 117, 8750–8756, https://doi.org/10.1073/pnas.1914140117, 2020.
Groenewoudt, B., Lubberink, S.: Essen en plaggendekken in Oost-Nederland vanuit een archeologisch perspectief, in: Essen in zicht. Essen en plaggendekken in Nederland: onderzoek en beleid, edited by: van Doesburg, J., de Boer, M., Deeben, J., Groenewoudt, B. J., and de Groot, T., Nederlandse Archeologische Rapporten 34, Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, Amersfoort, 53–77, ISBN 9789057991165, 2007.
Groenman-van Waateringe, W.: Palynology and archaeology: the history of a plaggen soil from the Veluwe, The Netherlands, Rev. Palaeobot. Palyno., 73, 87–98, https://doi.org/10.1016/0034-6667(92)90047-K, 1992.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors: update, Ancient TL, 29, 5–8, 2011.
Guyez, A., Bonnet, S., Reimann, T., Carretier, S., and Wallinga, J.: A Novel Approach to Quantify Sediment Transfer and Storage in Rivers—Testing Feldspar Single-Grain pIRIR Analysis and Numerical Simulations, J. Geophys. Res.-Earth, 128, e2022JF006727, https://doi.org/10.1029/2022JF006727, 2023.
Huisman, D. J. and Raemaekers, D. C. M.: Systematic cultivation of the Swifterbant wetlands (The Netherlands). Evidence from Neolithic tillage marks (c. 4300–4000 cal. BC), J. Archaeol. Sci., 49, 572–584, https://doi.org/10.1016/j.jas.2014.05.018, 2014.
Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W.: Optical dating of sediments, Nature, 313, 105–107, https://doi.org/10.1038/313105a0, 1985.
Kaplan, J. O., Krumhardt, K. M., and Zimmermann, N.: The prehistoric and preindustrial deforestation of Europe, Quaternary Sci. Rev. 28, 3016–3034, https://doi.org/10.1016/j.quascirev.2009.09.028, 2009.
Kars, R. H., Reimann, T., and Wallinga, J.: Are feldspar SAR protocols appropriate for post-IR IRSL dating?, Quat. Geochronol., 22, 126–136, https://doi.org/10.1016/j.quageo.2014.04.001, 2014a.
Kars, R. H., Reimann, T., Ankjærgaard, C., and Wallinga, J.: Bleaching of the post-IR IRSL signal: new insights for feldspar luminescence dating, Boreas, 43, 780–791, https://doi.org/10.1111/bor.12082, 2014b.
Koster, E. A.: The “European Aeolian Sand Belt”: Geoconservation of Drift Sand Landscapes, Geoheritage, 1, 93–110, https://doi.org/10.1007/s12371-009-0007-8, 2009.
Kristensen, J. A., Thomsen, K. J., Murray, A. S., Buylaert, J.-P., Jain, M., and Breuning-Madsen, H.: Quantification of termite bioturbation in a savannah ecosystem: Application of OSL dating, Quat. Geochronol., 30, 334–341, https://doi.org/10.1016/j.quageo.2015.02.026, 2015.
Li, B., Jacobs, Z., Roberts, R. G., and Li, S.-H.: Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence, Geochronometria, 41, 178–201, https://doi.org/10.2478/s13386-013-0160-3, 2014.
Maeght, J.-L., Rewald, B., and Pierret, A.: How to study deep roots—and why it matters, Front. Plant Sci., 4, 299, https://doi.org/10.3389/fpls.2013.00299, 2013.
McKey, D.: Making the most of grasslands and heathlands, Revue d'ethnoecologie, 20, 1–24, https://doi.org/10.4000/ethnoecologie.8120, 2021.
Mejdahl, V.: Thermoluminescence dating: beta-dose attenuation in quartz grains, Archaeometry, 21, 61–72, 1979.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose protocol: potential for improvements in reliability, Radiat. Meas., 37, 377–381, https://doi.org/10.1016/S1350-4487(03)00053-2, 2003.
Murray, A. S., Thomsen, K. J., Masuda, N., Buylaert, J. P., and Jain, M.: Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals, Radiat. Meas., 47, 688–695, https://doi.org/10.1016/j.radmeas.2012.05.006, 2012.
Olley, J. M., Roberts, R. G., Yoshida, H., and Bowler, J. M.: Single-grain optical dating of grave-infill associated with human burials at Lake Mungo, Australia, Quaternary Sci. Rev., 25, 2469–2474, https://doi.org/10.1016/j.quascirev.2005.07.022, 2006.
Pape, J. C.: Plaggen soils in the Netherlands, Geoderma, 4, 229–255, https://doi.org/10.1016/0016-7061(70)90005-4, 1970.
Pierik, H. J., van Lanen, R. J., Gouw-Bouman, M. T., Groenewoudt, B. J., Wallinga, J., and Hoek, W. Z.: Controls on late-Holocene drift-sand dynamics: The dominant role of human pressure in the Netherlands, Holocene, 28, 1361–1381, 2018.
Poręba, G. J., Śnieszko, Z., and Moska, P.: Influence of pedon history and washing nature on luminescence dating of Holocene colluvium on the example of research on the Polish loess areas, Quatern. Int., 296, 61–67, https://doi.org/10.1016/j.quaint.2012.05.032, 2013.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations, Radiat. Meas., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Reimann, T. and Tsukamoto, S.: Dating the recent past (< 500 years) by post-IR IRSL feldspar – Examples from the North Sea and Baltic Sea coast, Quat. Geochronol., 10, 180–187, https://doi.org/10.1016/j.quageo.2012.04.011, 2012.
Reimann, T., Thomsen, K. J., Jain, M., Murray, A. S., and Frechen, M.: Single-grain dating of young sediments using the pIRIR signal from feldspar, Quat. Geochronol., 11, 28–41, https://doi.org/10.1016/j.quageo.2012.04.016, 2012.
Reimann, T., Notenboom, P. D., De Schipper, M. A., and Wallinga, J.: Testing for sufficient signal resetting during sediment transport using a polymineral multiple-signal luminescence approach, Quat. Geochronol., 25, 26–36, https://doi.org/10.1016/j.quageo.2014.09.002, 2015.
Reimann, T., Román-Sánchez, A., Vanwalleghem, T., and Wallinga, J.: Getting a grip on soil reworking – Single-grain feldspar luminescence as a novel tool to quantify soil reworking rates, Quat. Geochronol., 42, 1–14, https://doi.org/10.1016/j.quageo.2017.07.002, 2017.
Renes, H.: Grainlands. The landscape of open fields in a European perspective, Landscape History, 31, 37–70, https://doi.org/10.1080/01433768.2010.10594621, 2010.
Renes, J.: '… this made the countrie to remayne champion, and without enclosures or hedging': Open-field landscapes and research in the Netherlands and in Europe, in: Peasants and their fields: the rationale of open-field agriculture, c. 700–1800, edited by: Dyer, C. and Williamson, T., Brepols, Turnhout, 121–162, ISBN 9782503576015, 2018.
Román-Sánchez, A., Reimann, T., Wallinga, J., and Vanwalleghem, T.: Bioturbation and erosion rates along the soil-hillslope conveyor belt, part 1: Insights from single-grain feldspar luminescence, Earth Surf. Proc. Land., 44, 2051–2065, https://doi.org/10.1002/esp.4628, 2019.
Smedley, R. K., Duller, G. A. T., Pearce, N. J. G., and Roberts, H. M.: Determining the K-content of single-grains of feldspar for luminescence dating, Radiat. Meas., 47, 790–796, https://doi.org/10.1016/j.radmeas.2012.01.014, 2012.
Smedley, R. K., Buylaert, J. P., and Újvári, G.: Comparing the accuracy and precision of luminescence ages for partially-bleached sediments using single grains of K-feldspar and quartz, Quat. Geochronol., 53, 101007, https://doi.org/10.1016/j.quageo.2019.101007, 2019.
Smeenge, H.: Historische landschapsecologie van Noordoost-Twente: Acht interdisciplinaire studies op het snijvlak van aardkunde, ecologie en cultuurhistorie (ca. 13.000 BP–heden), University of Groningen, Groningen, ISBN 978-94-034-2831-4, 2020.
Spek, T.: Het Drentse esdorpenlandschap; een historisch-geografische studie, Wageningen University, Wageningen, ISBN 9053452621, 2004.
Spooner, N. A.: The anomalous fading of infrared-stimulated luminescence from feldspars, Radiat. Meas., 23, 625–632, https://doi.org/10.1016/1350-4487(94)90111-2, 1994.
Taylor, C. C.: Archaeology and the origins of open-field agriculture, in: The Origins of Open Field Agriculture, edited by: Rowley, T. Croom Helm, London, 13–21, ISBN 978-0-367-22090-7, 1981.
Thomsen, K. J., Murray, A. S., and Bøtter-Jensen, L.: Sources of variability in OSL dose measurements using single grains of quartz, Radiat. Meas., 39, 47–61, https://doi.org/10.1016/j.radmeas.2004.01.039, 2005.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts, Radiat. Meas., 43, 1474–1486, https://doi.org/10.1016/j.radmeas.2008.06.002, 2008.
Thomsen, K. J., Murray, A., and Jain, M.: The dose dependency of the over-dispersion of quartz OSL single grain dose distributions, Radiat. Meas., 47, 732–739, https://doi.org/10.1016/j.radmeas.2012.02.015, 2012.
Truelsen, J. L. and Wallinga, J.: Zeroing of the OSL signal as a function of grain size: investigating bleaching and thermal transfer for a young fluvial sample, Geochronometria, 22, 1–8, 2003.
van Beek, R., Gouw-Bouman, M. T. I. J., and Bos, J. A. A.: Mapping regional vegetation developments in Twente (the Netherlands) since the Late Glacial and evaluating contemporary settlement patterns, Neth. J. Geosci., 94, 229–255, https://doi.org/10.1017/njg.2014.40, 2015.
van der Meij, W. M., Reimann, T., Vornehm, V. K., Temme, A. J. A. M., Wallinga, J., van Beek, R., and Sommer, M.: Reconstructing rates and patterns of colluvial soil redistribution in agrarian (hummocky) landscapes, Earth Surf. Proc. Land., 44, 2408–2422, https://doi.org/10.1002/esp.4671, 2019.
van Mourik, J. M., Slotboom, R. T., and Wallinga, J.: Chronology of plaggic deposits; palynology, radiocarbon and optically stimulated luminescence dating of the Posteles (NE-Netherlands), CATENA, 84, 54–60, https://doi.org/10.1016/j.catena.2010.09.006, 2011.
van Mourik, J. M., Seijmonsbergen, A. C., Slotboom, R. T., and Wallinga, J.: Impact of human land use on soils and landforms in cultural landscapes on aeolian sandy substrates (Maashorst, SE-Netherlands), Quatern. Int., 265, 74–89, https://doi.org/10.1016/j.quaint.2011.06.053, 2012.
van Oorschot, A.: Quantifying reworking and accumulation rates in a plaggic anthrosol using feldspar single-grain luminescence dating, Wageningen University, Wageningen, 2018.
Vandenberghe, D. A. G., Derese, C., Kasse, C., and van den Haute, P.: Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence, Quaternary Sci. Rev., 68, 96–113, https://doi.org/10.1016/j.quascirev.2013.02.009, 2013.
von Suchodoletz, H., van Meer, M., Kühn, P., Wiedner, K., Schunke, T., and Reimann, T.: Deciphering timing and rates of Central German Chernozem/Phaeozem formation through high resolution single-grain luminescence dating, Sci. Rep.-UK, 13, 4769, https://doi.org/10.1038/s41598-023-32005-9, 2023.
Wallinga, J.: Optically stimulated luminescence dating of fluvial deposits: a review, Boreas, 31, 303–322, https://doi.org/10.1111/j.1502-3885.2002.tb01076.x, 2002.
Wallinga, J., Murray, A., and Wintle, A.: The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar, Radiat. Meas., 32, 529–533, https://doi.org/10.1016/S1350-4487(00)00091-3, 2000.
Wallinga, J., Sevink, J., Van Mourik, J., and Reimann, T.: Luminescence dating of soil archives, in: Reading the soil archives: unraveling the geoecological code of palaeosols and sediment cores, edited by: van Mourik, J. and van der Meer, J., Developments in quaternary science, Elsevier, Amsterdam, 115–162, ISBN 978-0-444-64108-3, 2019.
Wintle, A. G.: Anomalous Fading of Thermo-luminescence in Mineral Samples, Nature, 245, 143–144, https://doi.org/10.1038/245143a0, 1973.
Yates, L. A., Aandahl, Z., Brook, B. W., Jacobs, Z., Li, B., David, B., and Roberts, R. G.: A new OSL dose model to account for post-depositional mixing of sediments, Quat. Geochronol., 81, 101502, https://doi.org/10.1016/j.quageo.2024.101502, 2024.
Short summary
This research applies luminescence dating methods to a plaggic anthrosol in the eastern Netherlands to understand the formation history of the soil. To achieve this, we combined both quartz and feldspar luminescence dating methods. We developed a new method for feldspar to largely avoid the problem occurring from poorly bleached grains by examining two different signals from a single grain. Through our research, we were able to reconstruct the timing and processes of plaggic anthrosol formation.
This research applies luminescence dating methods to a plaggic anthrosol in the eastern...