Supplement of SOIL, 10, 567–586, 2024 https://doi.org/10.5194/soil-10-567-2024-supplement © Author(s) 2024. CC BY 4.0 License. ## Supplement of # Luminescence dating approaches to reconstruct the formation of plaggic anthrosols Jungyu Choi et al. Correspondence to: Jungyu Choi (jungyu.choi@wur.nl) The copyright of individual parts of the supplement might differ from the article licence. Section S1: Data for dose rate calculations Section S2: Luminescence dating protocols Section S3: Radial plots of single-grain feldspar pIRIR measurements. Section S4: Age model results obtained from IRSL $_{50}$ signals Section S5: Radial plots of single-aliquot quartz OSL measurements ### Section S1. Data for dose rate calculations **Table S1. Data for dose rate calculations** | Sample | Depth (cm) | Water
Content
(%) | Organic
Content
(%) | ²³⁸ U
(Bq/kg) | ²³² Th
(Bq/kg) | ⁴⁰ K
(Bq/kg) | Beta (Gy/ka)* | Gamma
(Gy/ka)* | Cosmic
(Gy/ka) | Dose rate
(Quartz)
(Gy/ka) | Dose rate
(Feldspar)
(Gy/ka)** | |-------------|------------|-------------------------|---------------------------|-----------------------------|------------------------------|----------------------------|-----------------|-------------------|-------------------|----------------------------------|--------------------------------------| | NCL-1117134 | 22 | 12.0 ± 3.0 | 3.9 ± 1.0 | 11.9 ± 0.2 | 10.1 ± 0.6 | 211.7 ± 5.5 | 0.56 ± 0.03 | 0.32 ± 0.02 | 0.27 ± 0.01 | 1.16 ± 0.04 | 2.10 ± 0.10 | | NCL-1117133 | 31 | 12.9 ± 3.2 | 3.3 ± 0.8 | 9.6 ± 0.2 | 9.9 ± 0.5 | 192.8 ± 4.8 | 0.49 ± 0.03 | 0.29 ± 0.02 | 0.26 ± 0.01 | 1.05 ± 0.03 | 1.99 ± 0.10 | | NCL-1117132 | 41 | 14.5 ± 3.6 | 3.8 ± 0.9 | 10.6 ± 0.2 | 10.4 ± 0.5 | 212.3 ± 5.1 | 0.53 ± 0.03 | 0.31 ± 0.02 | 0.25 ± 0.01 | 1.09 ± 0.04 | 2.03 ± 0.10 | | NCL-1117131 | 50 | 14.2 ± 3.5 | 3.3 ± 0.8 | 11.3 ± 0.2 | 11.2 ± 0.5 | 221.1 ± 5.2 | 0.55 ± 0.03 | 0.33 ± 0.02 | 0.24 ± 0.01 | 1.13 ± 0.04 | 2.07 ± 0.10 | | NCL-1117130 | 60 | 11.5 ± 2.9 | 3.3 ± 0.8 | 12.4 ± 0.2 | 11.1 ± 0.5 | 228.2 ± 5.8 | 0.58 ± 0.03 | 0.33 ± 0.02 | 0.23 ± 0.01 | 1.15 ± 0.04 | 2.09 ± 0.10 | | NCL-1117129 | 70 | 12.2 ± 3.1 | 3.3 ± 0.8 | 12.6 ± 0.2 | 10.8 ± 0.5 | 229.7 ± 5.4 | 0.59 ± 0.03 | 0.35 ± 0.02 | 0.23 ± 0.01 | 1.17 ± 0.04 | 2.11 ± 0.10 | | NCL-1117128 | 81 | 14.3 ± 3.6 | 3.8 ±0.9 | 12.6 ± 0.2 | 11.3 ± 0.5 | 232.2 ± 5.8 | 0.58 ± 0.03 | 0.35 ± 0.02 | 0.22 ± 0.01 | 1.17 ± 0.04 | 2.11 ± 0.10 | | NCL-1117127 | 96 | 12.3 ± 3.1 | 2.9 ± 0.7 | 11.0 ± 0.2 | 10.7 ± 0.5 | 211.9 ± 5.0 | 0.60 ± 0.03 | 0.36 ± 0.02 | 0.22 ± 0.01 | 1.18 ± 0.03 | 2.12 ± 0.10 | | NCL-1117126 | 101 | 11.5 ± 2.9 | 2.9 ± 0.7 | 10.3 ± 0.2 | 9.3 ± 0.5 | 208.5 ± 4.2 | 0.53 ± 0.03 | 0.30 ± 0.02 | 0.21 ± 0.01 | 1.06 ± 0.03 | 2.00 ± 0.10 | | NCL-1117125 | 112 | 7.8 ± 2.0 | 1.7 ± 0.4 | 8.1 ± 0.2 | 6.7 ± 0.4 | 202.7 ± 4.8 | 0.52 ± 0.03 | 0.29 ± 0.01 | 0.21 ± 0.01 | 1.03 ± 0.03 | 1.97 ± 0.10 | | NCL-1117124 | 123 | 6.2 ± 1.6 | 1.5 ± 0.4 | 7.9 ± 0.2 | 7.3 ± 0.5 | 212.9 ± 5.1 | 0.56 ± 0.03 | 0.31 ± 0.02 | 0.21 ± 0.01 | 1.08 ± 0.03 | 2.02 ± 0.10 | | NCL-1117123 | 142 | 5.8 ± 1.4 | 1.6 ± 0.4 | 7.7 ± 0.2 | 8.3 ± 0.5 | 227.8 ± 5.3 | 0.60 ± 0.03 | 0.34 ± 0.02 | 0.20 ± 0.01 | 1.15 ± 0.03 | 2.09 ± 0.10 | | NCL-1117122 | 165 | 5.4 ± 1.4 | 1.2 ± 0.3 | 7.7 ± 0.2 | 8.9 ± 0.5 | 254.7 ± 5.7 | 0.66 ± 0.03 | 0.35 ± 0.02 | 0.20 ± 0.01 | 1.21 ± 0.04 | 2.15 ± 0.10 | ^{*} Water and grain size attenuated ^{**} Internal dose rate calculated as 0.89 ± 0.09 Gy/ka based on the assumptions of internal concentrations of K (12.5 \pm 0.5 %/ppm) and Rb (400 \pm 100 %/ppm) ### Section S2. Luminescence dating protocols Table S2. Luminescence dating protocol used for small-aliquot quartz OSL measurements. | Step | Action | Measured | |---------|--|-----------| | 1 | Beta dose (or Natural dose) | | | 2 | 10s preheat to 200°C | | | 3* | 20s blue stimulation at 125 °C | L_n/L_i | | 4 | Beta test dose | | | 5 | 10s preheat to 180°C | | | 6* | 20s blue stimulation at 125 °C | T_n/T_i | | 7 | 40s blue bleach at 210°C | | | 8 | Repeat step 1-7 for a range of doses (incl. zero and repeat dose) | | | Extra 1 | Repeat step 1-7 with added infrared bleach at 30°C prior to step 3 | | ^{*} The first 0-0.5 s integration interval was used for analysis, and the subsequent 0.5-1.76 integration interval was used for early background subtraction. Table S3. Luminescence dating protocol used for single-grain feldspar pIRIR measurements. | Step | Action | Measured | |------|---|---------------------------------------| | 1 | Beta dose (or Natural dose) | | | 2 | 120s preheat to 200°C | | | 3* | 2s single-grain IR laser stimulation at 50°C | L_n , L_i (IRSL ₅₀) | | 4* | 2s single-grain IR laser stimulation at 175°C | L_n , L_i (pIRIR ₁₇₅) | | 5 | Beta test dose | | | 6 | 120s preheat to 200°C | | | 7* | 2s single-grain IR laser stimulation at 50°C | T_n , T_i (IRSL ₅₀) | | 8* | 2s single-grain IR laser stimulation at 175°C | T_n , T_i (pIRIR ₁₇₅) | | 9 | 300s IR stimulation at 210 °C | | | 10 | Repeat step 1-9 for a range of doses (incl. zero and repeat dose) | | ^{*} The 0.17-0.23 s integration interval was used for analysis, and the 1.29-1.62 s integration interval was used for background subtraction. ### Section S3. Radial plots of single-grain feldspar pIRIR measurements Figure S1. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117122. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. Figure S2. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117123. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. pIRIR BsMAM [sigma_b = 0.35 ± 0.03] = 3.38 ± 0.55 Gy filtered pIRIR BsMAM [sigma_b = 0.20 ± 0.04] = 2.16 ± 0.40 Gy Figures S3. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117124. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. Figure S4. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117125. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. pIRIR BsMAM [sigma_b = 0.35 ± 0.03] = 1.51 ± 0.06 Gy filtered pIRIR BsMAM [sigma_b = 0.20 ± 0.04] = 1.31 ± 0.06 Gy Figure S5. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117126. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. Figure S6. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117127. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. pIRIR BsMAM [sigma_b = 0.35 ± 0.03] = 1.09 ± 0.04 Gy filtered pIRIR BsMAM [sigma_b = 0.20 ± 0.04] = 0.89 ± 0.05 Gy Figure S7. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117128. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. Figure S8. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117129. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. pIRIR BsMAM [sigma_b = 0.35 ± 0.03] = 1.09 ± 0.04 Gy filtered pIRIR BsMAM [sigma_b = 0.20 ± 0.04] = 0.77 ± 0.07 Gy Figure S9. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117130. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. Figure S10. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117131. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. pIRIR BsMAM [sigma_b = 0.35 \pm 0.03] = 0.70 \pm 0.06 Gy filtered pIRIR BsMAM [sigma_b = 0.20 \pm 0.04] = 0.50 \pm 0.03 Gy Figure S11. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117132. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. Figure S12. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117133. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. pIRIR BsMAM [sigma_b = 0.35 ± 0.03] = 0.28 ± 0.05 Gy filtered pIRIR BsMAM [sigma_b = 0.20 ± 0.04] = 0.23 ± 0.07 Gy Figure S13. Radial plot of equivalent dose obtained from single-grain feldspar pIRIR measurement of NCL-1117134. The black dotted line indicates the BsMAM result of the total dataset, and the red dotted line indicates the BsMAM result of the filtered dataset. The σ_b values applied for each BsMAM are indicated in the figure. ### Section S4. Age model results obtained from IRSL₅₀ signals Table S4. Results of age models applied to D_e obtained from IRSL₅₀ signals. Note that the ages are rounded to decades. The σ_b applied to the BsMAM are equivalent to their pIRIR₁₇₅ counterparts. | Sample | Depth (cm) | Dose rate
(Gy/ka) | CAM
(Gy) | OD
(%) | CAM
(a) | $\begin{array}{c} BsMAM \\ (Gy) \\ \sigma_b = 0.35 \pm \\ 0.03 \end{array}$ | $\begin{array}{c} BsMAM\\ (a)\\ \sigma_b = 0.35 \pm 0.03 \end{array}$ | CAM
Filtered
(Gy) | OD
Filtered
(%) | CAM
Filtered
(a) | $BsMAM$ Filtered (Gy) $\sigma_b = 0.20 \pm 0.04$ | $BsMAM$ Filtered (a) $\sigma_b = 0.20 \pm 0.04$ | |-------------|------------|----------------------|------------------|-----------|--------------------------------|---|---|-------------------------|-----------------------|--------------------------------|--|---| | NCL-1117134 | 22 | 2.10 ± 0.10 | 0.20 ± 0.08 | 72 ± 6 | 90 ± 40
(1920 ± 40 CE) | 0.14 ± 0.01 | 70 ± 10
(1950 ± 10 CE) | 0.20 ± 0.14 | 51 ± 12 | 90 ± 70
(1920 ± 70 CE) | 0.12 ± 0.04 | 60 ± 20
(1960 ± 20 CE) | | NCL-1117133 | 31 | 1.99 ± 0.10 | 0.41 ± 0.06 | 73 ± 5 | 210 ± 30
(1810 ± 30 CE) | 0.38 ± 0.01 | 190 ± 10
(1830 ± 10 CE) | 0.39 ± 0.14 | 71 ± 10 | 200 ± 70
(1820 ± 70 CE) | 0.32 ± 0.04 | 160 ± 20
(1860 ± 20 CE) | | NCL-1117132 | 41 | 2.03 ± 0.10 | 0.47 ± 0.07 | 63 ± 5 | 230 ± 30
(1790 ± 30 CE) | 0.42 ± 0.02 | 210 ± 20
(1810 ± 20 CE) | 0.42 ± 0.11 | 47 ± 8 | 210 ± 60
(1810 ± 60 CE) | 0.38 ± 0.02 | 190 ± 20
(1830 ± 20 CE) | | NCL-1117131 | 50 | 2.07 ± 0.10 | 0.54 ± 0.05 | 48 ± 3 | 260 ± 30
(1760 ± 30 CE) | 0.52 ± 0.02 | 250 ± 20
(1770 ± 20 CE) | 0.49 ± 0.05 | 22 ± 4 | 240 ± 30
(1780 ± 30 CE) | 0.46 ± 0.03 | 220 ± 20
(1800 ± 20 CE) | | NCL-1117130 | 60 | 2.09 ± 0.10 | 0.65 ± 0.05 | 50 ± 4 | 310 ± 30
(1700 ± 30 CE) | 0.62 ± 0.03 | 300 ± 20
(1720 ± 20 CE) | 0.76 ± 0.07 | 28 ± 5 | 360 ± 40
(1660 ± 40 CE) | 0.63 ± 0.09 | 300 ± 50
(1710 ± 50 CE) | | NCL-1117129 | 70 | 2.11 ± 0.10 | 0.71 ± 0.03 | 38 ± 2 | 340 ± 20
(1680 ± 20 CE) | 0.68 ± 0.02 | 320 ± 20
(1700 ± 20 CE) | 0.72 ± 0.04 | 31 ± 3 | 340 ± 30
(1680 ± 30 CE) | 0.64 ± 0.05 | 300 ± 30
(1710 ± 30 CE) | | NCL-1117128 | 81 | 2.11 ± 0.10 | 0.76 ± 0.03 | 35 ± 2 | 360 ± 20
(1660 ± 20 CE) | 0.74 ± 0.03 | 350 ± 20
(1670 ± 20 CE) | 0.83 ± 0.04 | 24 ± 3 | 400 ± 30
(1620 ± 30 CE) | 0.78 ± 0.04 | 370 ± 30
(1650 ± 30 CE) | | NCL-1117127 | 96 | 2.12 ± 0.10 | 1.01 ± 0.05 | 56 ± 4 | 480 ± 30
(1540 ± 30 CE) | 0.91 ± 0.03 | 430 ± 20
(1590 ± 20 CE) | 1.08 ± 0.07 | 43 ± 5 | 510 ± 40
(1510 ± 40 CE) | 0.96 ± 0.04 | 460 ± 30
(1560 ± 30 CE) | | NCL-1117126 | 101 | 2.00 ± 0.10 | 1.10 ± 0.04 | 46 ± 3 | 550 ± 40
(1470 ± 40 CE) | 1.05 ± 0.04 | 530 ± 30
(1490 ± 30 CE) | 1.15 ± 0.04 | 17 ± 3 | 570 ± 40
(1440 ± 40 CE) | 1.12 ± 0.07 | 560 ± 40
(1460 ± 40 CE) | | NCL-1117125 | 112 | 1.97 ± 0.10 | 1.60 ± 0.06 | 60 ± 5 | 810 ± 50
(1200 ± 50 CE) | 1.33 ± 0.07 | 680 ± 50
(1340 ± 50 CE) | 1.67 ± 0.10 | 55 ± 7 | 850 ± 70
(1170 ± 70 CE) | 1.31 ± 0.12 | 670 ± 70
(1350 ± 70 CE) | | NCL-1117124 | 123 | 2.02 ± 0.10 | 4.86 ± 0.06 | 75 ± 4 | 2410 ± 120
(390 ± 120 BCE) | 2.74 ± 0.26 | 1360 ± 150
(660 ± 150 CE) | 5.52 ± 0.11 | 71 ± 8 | 2740 ± 150
(720 ± 150 BCE) | 2.77 ± 0.33 | 1380 ± 180
(640 ± 180 CE) | | NCL-1117123 | 142 | 2.09 ± 0.10 | 12.21 ± 0.04 | 52 ± 3 | 5840 ± 290
(3830 ± 290 BCE) | 7.96 ± 1.04 | 3810 ± 530
(1790 ± 530 BCE) | 12.46 ± 0.08 | 50 ± 6 | 5960 ± 290
(3940 ± 290 BCE) | 6.29 ± 0.94 | 3010 ± 470
(990 ± 470 BCE) | | NCL-1117122 | 165 | 2.15 ± 0.10 | 15.37 ± 0.03 | 33 ± 2 | 7140 ± 340
(5120 ± 340 BCE) | 15.05 ± 0.74 | 6990 ± 490
(4970 ± 490 BCE) | 16.82 ± 0.05 | 29 ± 3 | 7810 ± 370
(5790 ± 370 BCE) | 14.57 ± 3.11 | 6760 ± 1480
(4750 ± 1480 BCE) | ### Section S5. Radial plots of single-aliquot quartz OSL measurements Figure S14. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117122. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. Figure S15. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117123. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. ### CAM = 3.71 ± 0.26 Gy (OD = 42 ± 5 %) BsMAM [sigma_b = 0.20 ± 0.06] = 2.66 ± 0.43 Gy --- CAM --- BsMAM 13.8 12 10 8 Standardised estimate 6 D_e [Gy] 2 1.62 Relative standard error (%) 10 5 3.3 2.5 0 10 20 30 40 Precision Figure S16. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117124. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. Figure S17. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117125. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. ### CAM = 0.87 ± 0.05 Gy (OD = 30 ± 4 %) BsMAM [sigma_b = 0.20 ± 0.06] = 0.80 ± 0.04 Gy --- CAM --- BsMAM Standardised estimate D₆ [Gy] 0.5 Relative standard error (%) 20 10 6.7 5 3.3 4 0 5 30 10 15 20 25 Precision Figure S18. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117126. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. Figure S19. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117127. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. # CAM = 0.54 ± 0.02 Gy (OD = 12 ± 4 %) BsMAM [sigma_b = 0.20 ± 0.06] = 0.54 ± 0.03 Gy --- CAM --- BsMAM <.1.2 8.0 0.6 D [Gy] NCL-1117128 2 0 -2 Figure S20. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117127. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. Figure S21. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117129. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. ### CAM = 0.44 ± 0.02 Gy (OD = 13 ± 3 %) BsMAM [sigma_b = 0.20 ± 0.06] = 0.43 ± 0.02 Gy --- CAM --- BsMAM <.0.966 < 0.8 Standardised estimate 0.6 2 D₆ [Gy] 0 -2 0.2 0.118 Relative standard error (%) 50 25 16.7 12.5 10 8.3 7.1 0 2 6 4 8 10 12 14 Precision Figure S22. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117130. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. Figure S23. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117131. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. ### CAM = 0.37 ± 0.03 Gy (OD = 44 ± 6 %) BsMAM [sigma_b = 0.20 ± 0.06] = 0.29 ± 0.01 Gy --- CAM --- BsMAM Standardised estimate 0.5 D_e [Gy] Relative standard error (%) 10 5 3.3 2.5 2 1.7 0 10 60 20 30 40 50 Precision Figure S24. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117132. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. Figure S25. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117133. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. # CAM = 0.12 ± 0.02 Gy (OD = 58 ± 11 %) BsMAM [sigma_b = 0.20 ± 0.06] = 0.07 ± 0.006 Gy --- CAM ---- BsMAM Relative standard error (%) 20 10 6.7 5 10 Precision 0 5 NCL-1117134 Figure S26. Radial plot of equivalent dose obtained from single-aliquot quartz OSL measurement of NCL-1117134. The black dotted line indicates the CAM result, and the blue dotted line indicates the BsMAM result. 20 15