Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-573-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-573-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The QuantiSlakeTest, measuring soil structural stability by dynamic weighing of undisturbed samples immersed in water
Frédéric Marie Vanwindekens
CORRESPONDING AUTHOR
Department of Sustainability, Systems & Prospective – Unit of Soil, Water and Integrated Crop Production, Walloon Agricultural Research Centre, Rue du Bordia, 4, 5030 Gembloux, Belgium
Brieuc François Hardy
CORRESPONDING AUTHOR
Department of Sustainability, Systems & Prospective – Unit of Soil, Water and Integrated Crop Production, Walloon Agricultural Research Centre, Rue du Bordia, 4, 5030 Gembloux, Belgium
Related authors
No articles found.
Manon S. Ferdinand, Brieuc F. Hardy, and Philippe V. Baret
EGUsphere, https://doi.org/10.5194/egusphere-2025-2700, https://doi.org/10.5194/egusphere-2025-2700, 2025
Short summary
Short summary
We assessed three soil quality indicators across Walloon Conservation Agriculture (CA) fields, accounting for practice diversity within four CA-types. Soil indicators varied significantly among CA-types. Inclusion of temporary grasslands in the crop sequence emerged as the most influential factor. Our findings show that CA effects depend on the combination of practices, highlighting the need for a systemic, context-based evaluation of soil quality.
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022, https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Short summary
Soil amendment with artificial black carbon (BC; biomass transformed by incomplete combustion) has the potential to mitigate climate change. Nevertheless, the accurate quantification of BC in soil remains a critical issue. Here, we successfully used dynamic thermal analysis (DTA) to quantify centennial BC in soil. We demonstrate that DTA is largely under-exploited despite providing rapid and low-cost quantitative information over the range of soil organic matter.
Cited articles
Alewell, C., Borrelli, P., Meusburger, K., and Panagos, P.: Using the USLE: Chances, challenges and limitations of soil erosion modelling, International Soil and Water Conservation Research, 7, 203–225, https://doi.org/10.1016/j.iswcr.2019.05.004, 2019. a
Anjos, L., Gaistardo, C., Deckers, J., Dondeyne, S., Eberhardt, E., Gerasimova, M., Harms, B., Jones, A., Krasilnikov, P., Reinsch, T., Vargas, R., and Zhang, G.: World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps, edited by: Schad, P., Van Huyssteen, C., and Micheli, E., FAO, Rome (Italy), http://www.fao.org/3/a-i3794e.pdf (last access: 24 October 2023), 2015. a
Antoine, P., Catt, J., Lautridou, J.-P., and Sommé, J.: The loess and coversands of northern France and southern England, J. Quaternary Sci., 18, 309–318, https://doi.org/10.1002/jqs.750, 2003. a, b
Association Française de Normalisation: Qualité du sol – Détermination de la distribution granulométrique des particules du sol – Méthode à la pipette, Standard NF-X31-107, Association Française de Normalisation, https://www.boutique.afnor.org/fr-fr/ (last access: 24 October 2023), 2003. a
Association Française de Normalisation: Sludge, treated biowaste, soil and waste – Determination of total organic carbon (TOC) by dry combustion, Standard NF-EN-15936, Association Française de Normalisation, https://www.boutique.afnor.org/fr-fr/norme/ (last access: 24 October 2023), 2012. a
Bagnall, D. K. and Morgan, C. L.: SLAKES and 3D Scans characterize management effects on soil structure in farm fields, Soil Till. Res., 208, 104893, https://doi.org/10.1016/j.still.2020.104893, 2021. a
Barthès, B. and Roose, E.: Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels, Catena, 47, 133–149, https://doi.org/10.1016/S0341-8162(01)00180-1, 2002. a
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. a
Bielders, C. L., Ramelot, C., and Persoons, E.: Farmer perception of runoff and erosion and extent of flooding in the silt-loam belt of the Belgian Walloon Region, Environ. Sci. Policy, 6, 85–93, https://doi.org/10.1016/S1462-9011(02)00117-X, 2003. a, b
Brubaker, B., Holzhey, C., and Brasher, B.: Estimating the water-dispersible clay content in soils, Soil Sci. Soc. Am. J., 56, 1226–1232, 1992. a
Buysse, P., Roisin, C., and Aubinet, M.: Fifty years of contrasted residue management of an agricultural crop: Impacts on the soil carbon budget and on soil heterotrophic respiration, Agr. Ecosyst. Environ., 167, 52–59, https://doi.org/10.1016/j.agee.2013.01.006, 2013a. a, b
Buysse, P., Schnepf-Kiss, A. C., Carnol, M., Malchair, S., Roisin, C., and Aubinet, M.: Fifty years of crop residue management have a limited impact on soil heterotrophic respiration, Agr. Forest Meteorol., 180, 102–111, https://doi.org/10.1016/j.agrformet.2013.05.004, 2013b. a, b, c
Castaldi, F., Chabrillat, S., Chartin, C., Genot, V., Jones, A. R., and van Wesemael, B.: Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database, Eur. J. Soil Sci., 69, 592–603, https://doi.org/10.1111/ejss.12553, 2018. a
Chabert, A. and Sarthou, J. P.: Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services, Agr. Ecosyst. Environ., 292, 106815, https://doi.org/10.1016/j.agee.2019.106815, 2020. a
Chan, K. Y. and Mullins, C. E.: Slaking characteristics of some Australian and British soils, Eur. J. Soil Sci., 45, 273–283, https://doi.org/10.1111/j.1365-2389.1994.tb00510.x, 1994. a
Chenu, C., Le Bissonnais, Y., and Arrouays, D.: Organic Matter Influence on Clay Wettability and Soil Aggregate Stability, Soil Sci. Soc. Am. J., 64, 1479–1486, https://doi.org/10.2136/sssaj2000.6441479x, 2000. a, b, c
Chervet, A., Ramseier, L., Sturny, W. G., Zuber, M., Stettler, M., Weisskopf, P., Zihlmann, U., Martínez, I., and Keller, T.: Rendements et paramètres du sol après 20 ans de semis direct et de labour, Recherche agronomique suisse, 7, 216–223, 2016. a
Czyż, E. A. and Dexter, A. R.: Mechanical dispersion of clay from soil into water: Readily-dispersed and spontaneously-dispersed clay, Int. Agrophys., 29, 31–37, https://doi.org/10.1515/intag-2015-0007, 2015. a
Dexter, A. R., Richard, G., Arrouays, D., Czyz, E. A., Jolivet, C., and Duval, O.: Complexed organic matter controls soil physical properties, Geoderma, 144, 620–627, https://doi.org/10.1016/j.geoderma.2008.01.022, 2008. a, b, c, d
D'Haene, K., Sleutel, S., De Neve, S., Gabriels, D., and Hofman, G.: The effect of reduced tillage agriculture on carbon dynamics in silt loam soils, Nutr. Cycl. Agroecosys., 84, 249–265, https://doi.org/10.1007/s10705-008-9240-9, 2009. a
Droeven, G., Rixhon, L., Crohain, A., and Raimond, Y.: Evolution à long terme de la teneur en humus, de la stabilite structurale et du rendement des cultures sous l'influence de differents modes de restitution de matières organiques sur sols limoneux. Rapport interne, Tech. rep., Centre wallon de Recherches Agronomique, Gembloux, Belgium, 1980. a
Dufey, J. E., Halen, H., and Frankart, R.: Evolution de la stabilité structurale du sol sous l'influence des racines de trèfle (Trifolium pratense L.) et de ray-grass (Lolium multiflorum Lmk.). Observations pendant et après culture, Agronomie, 6, 811–817, https://doi.org/10.1051/agro:19860905, 1986. a
Fajardo, M., McBratney, A. B., Field, D. J., and Minasny, B.: Soil slaking assessment using image recognition, Soil Till. Res., 163, 119–129, https://doi.org/10.1016/j.still.2016.05.018, 2016. a
Francis, R., Wuddivira, M. N., Darsan, J., and Wilson, M.: Soil slaking sensitivity as influenced by soil properties in alluvial and residual humid tropical soils, J. Soil. Sediment., 19, 1937–1947, 2019. a
Fukumasu, J., Jarvis, N., Koestel, J., Kätterer, T., and Larsbo, M.: Relations between soil organic carbon content and the pore size distribution for an arable topsoil with large variations in soil properties, Eur. J. Soil Sci., 73, e13212, https://doi.org/10.1111/ejss.13212, 2022. a
Goidts, E. and van Wesemael, B.: Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955–2005), Geoderma, 141, 341–354, https://doi.org/10.1016/j.geoderma.2007.06.013, 2007. a, b
Hadas, A.: Long-term tillage practice effects on soil aggregation modes and strength, Soil Sci. Soc. Am. J., 51, 191–197, 1987. a
Haynes, R.: Effect of sample pretreatment on aggregate stability measured by wet sieving or turbidimetry on soils of different cropping history, J. Soil Sci., 44, 261–270, https://doi.org/10.1111/j.1365-2389.1993.tb00450.x, 1993. a
Holland, J. M.: The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence, Ag. Ecosyst. Environ., 103, 1–25, https://doi.org/10.1016/j.agee.2003.12.018, 2004. a
Imeson, A. and Vis, M.: Assessing soil aggregate stability by waterdrop impact and utrasonic dispersion, Geoderma, 34, 185–200, https://doi.org/10.1016/0016-7061(84)90038-7, 1984. a
International Organization for Standardization: Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis), Standard NF-ISO-10694, International Organization for Standardization, https://www.iso.org/fr/standard/18782.html (last access: 24 October 2023), 1995. a
International Organization for Standardization: Soil quality – determination of pH, Standard ISO-10390, International Organization for Standardization, https://www.iso.org/fr/standard/40879.html (last access: 24 October 2023), 2005. a
International Organization for Standardization: Soil quality Measurement of the stability of soil aggregates subjected to the action of water, Standard ISO/FDIS10930:2011, International Organization for Standardization, https://www.iso.org/fr/standard/18782.html (last access: 24 October 2023), 2012. a, b
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp., https://doi.org/10.1017/CBO9781107415379, 2014. a
Jones, E. J., Filippi, P., Wittig, R., Fajardo, M., Pino, V., and McBratney, A. B.: Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape, SOIL, 7, 33–46, https://doi.org/10.5194/soil-7-33-2021, 2021. a, b
Kemper, W. D. and Rosenau, R. C.: Aggregate stability and size distribution, in: Methods of soil analysis, part 1. Agronomy monographs no. 9, edited by: Klute, A. S. A., John Wiley & Sons, Ltd, https://doi.org/10.2136/sssabookser5.1.2ed.c17, Madison, 1986. a, b
Koestel, J., Fukumasu, J., Garland, G., Larsbo, M., and Nimblad Svensson, D.: Approaches to delineate aggregates in intact soil using X-ray imaging, Geoderma, 402, 115360, https://doi.org/10.1016/j.geoderma.2021.115360, 2021. a
Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F., and van Kessel, C.: The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems, Soil Sci. Soc. Am. J., 69, 1078–1085, https://doi.org/10.2136/sssaj2004.0215, 2005. a
Lal, R.: Soil Structure and Sustainability, J. Sustain. Agr., 1, 67–92, https://doi.org/10.1300/J064v01n04_06, 1991. a
Langohr, R.: L'anthropisation du paysage pédologique agricole de la Belgique depuis le Néolithique ancien: apports de l'archéopédologie, Etude Et Gestion Des Sols, 8, 103–118, 2001. a
Le Bissonnais, Y. and Le Souder, C.: Measurement of aggregate stability for the assessment of soil crustability and erodibility, Étude et Gestion des Sols, 2, 43–56, 1995. a
Levy, G. J. and Mamedov, A. I.: High-Energy-Moisture-Characteristic Aggregate Stability as a Predictor for Seal Formation, Soil Sci. Soc. Am. J., 66, 1603–1609, https://doi.org/10.2136/sssaj2002.1603, 2002. a
Loch, R. J. and Foley, J. L.: Measurement of aggregate breakdown under rain: Comparison with tests of water stability and relationships with field measurements of infiltration, Aust. J. Soil Res., 32, 701–720, https://doi.org/10.1071/SR9940701, 1994. a
Luo, L., Lin, H., and Schmidt, J.: Quantitative Relationships between Soil Macropore Characteristics and Preferential Fow and Transport, Soil Sci. Soc. Am. J., 74, 1929–1937, 2010. a
Maugnard, A., Bielders, C., Bock, L., Colinet, G., Cordonnier, H., Degré, A., Demarcin, P., Dewez, A., Feltz, N., Legrain, X., Pineux, N., and Mokadem, A. I.: Cartographie du risque d'érosion hydrique à l'échelle parcellaire en soutien à la politique agricole wallonne (Belgique), Etudes et Gestion des Sols, 20, 127–141, 2013. a
Mbagwu, J. S. and Auerswald, K.: Relationship of percolation stability of soil aggregates to land use, selected properties, structural indices and simulated rainfall erosion, Soil Till. Res., 50, 197–206, https://doi.org/10.1016/S0167-1987(99)00006-9, 1999. a
Meersmans, J., Van Wesemael, B., De Ridder, F., Dotti, M. F., De Baets, S., and Van Molle, M.: Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960-2006, Glob. Change Biol., 15, 2739–2750, https://doi.org/10.1111/j.1365-2486.2009.01855.x, 2009. a
Meersmans, J., Van Wesemael, B., Goidts, E., Van Molle, M., De Baets, S., and De Ridder, F.: Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960-2006, Glob. Change Biol., 17, 466–479, https://doi.org/10.1111/j.1365-2486.2010.02183.x, 2011. a
Paradelo, R., van Oort, F., Barré, P., Billiou, D., and Chenu, C.: Soil organic matter stabilization at the pluri-decadal scale: Insight from bare fallow soils with contrasting physicochemical properties and macrostructures, Geoderma, 275, 48–54, https://doi.org/10.1016/j.geoderma.2016.04.009, 2016. a, b
Prout, J. M., Shepherd, K. D., McGrath, S. P., Kirk, G. J., and Haefele, S. M.: What is a good level of soil organic matter? An index based on organic carbon to clay ratio, Eur. J. Soil Sci., 72, 2493–2503, https://doi.org/10.1111/ejss.13012, 2020. a, b, c, d
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 24 October 2023), 2023. a
Regelink, I. C., Stoof, C. R., Rousseva, S., Weng, L., Lair, G. J., Kram, P., Nikolaidis, N. P., Kercheva, M., Banwart, S., and Comans, R. N.: Linkages between aggregate formation, porosity and soil chemical properties, Geoderma, 247–248, 24–37, https://doi.org/10.1016/j.geoderma.2015.01.022, 2015. a
Remy, J.-C. and Marin-Laflèche, A.: L'analyse de terre : réalisation d'un programme d'interprétation automatique, Ann. Agron., 25, 607–632, 1974. a
Roisin, C.: Essai permanent sur la gestion de la matière organique. Etat des lieux, résultats et réflexions, Tech. rep., Centre wallon de Recherches Agronomiques, Gembloux, Belgium, 2018. a
Roisin, C.: Essai Longue durée sur la gestion de la fumure P-K. Etat des lieux, résultats et réflexions, Tech. rep., Centre wallon de Recherches Agronomiques, Gembloux, Belgium, 2019. a
Seitz, S., Goebes, P., Puerta, V. L., Pereira, E. I. P., Wittwer, R., Six, J., van der Heijden, M. G., and Scholten, T.: Conservation tillage and organic farming reduce soil erosion, Agron. Sustain. Dev., 39, 4, https://doi.org/10.1007/s13593-018-0545-z, 2019. a
Shi, P., Castaldi, F., van Wesemael, B., and Van Oost, K.: Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt, Geoderma, 357, 113958, https://doi.org/10.1016/j.geoderma.2019.113958, 2020. a
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics, Soil Till. Res., 79, 7–31, https://doi.org/10.1016/j.still.2004.03.008, 2004. a, b
Van Camp, G., Gentile, A., Bujarrabal, B., Jones, R., Montanarella, L., Olazabal, C., and Selvaradjou, S.: Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection, Tech. Rep. JRC28868, EUR 21319 EN, EC, https://publications.jrc.ec.europa.eu/repository/handle/JRC28868 (last access: 24 October 2023), 2004. a
Vancampenhout, K., Langohr, R., Slaets, J., Buurman, P., Swennen, R., and Deckers, J.: Paleo-pedological record of the Rocourt Pedosequence at Veldwezelt–Hezerwater (Belgian Pleistocene loess belt): Part 1—Evolution of the parent material, Catena, 107, 118–129, 2013. a
Vanwindekens, F. M.: Présentation du Slaking Lab et introduction à Slaker (partie 1), YouTube [video], https://youtu.be/J4k1M01jXPQ (last access: 23 October 2023), 2021a. a
Vanwindekens, F. M.: Présentation du Slaking Lab et introduction à Slaker (partie 2), YouTube [video supplement], https://youtu.be/1gOAyz9y-lI (last access: 23 October 2023), 2021b. a
Vanwindekens, F.: slaker – Conduct, analyze and visualize QuantiSlake tests, Zenodo [data set], https://doi.org/10.5281/zenodo.10030342, 2023. a
Vanwindekens, F. M. and Hardy, B.: QST – open data of the article Vanwindekens and Hardy (2022) (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7142458, 2022. a
Vanwindekens, F. M. and Hardy, B. F.: Full git repository – QuantiSlakeTest – qst-openscience, GitLab [data set], https://gitlab.com/FrdVnW/qst-openscience (last access: 24 October 2023), 2023a.
Vanwindekens, F. M. and Hardy, B. F.: Notebook with codes, figures and tables – qst-openscience, GitLab [code], https://frdvnw.gitlab.io/qst-openscience/ (last access: 24 October 2023), 2023b.
Vanwindekens, F. M., Hardy, B. F., and SlakingLab community: Data repository in the SlakingLab community on Zenodo, Zenodo [data set], https://doi.org/10.5281/zenodo.7142458, 2022.
Vanwindekens, F. and Roisin, C.: slaker: Conduct and visualize QuantiSlakeTest of soil samples, r package version 0.2, GitLab [code], https://gitlab.com/FrdVnW/slaker (last access: 24 October 2023), 2022. a
Wuddivira, M. N., Stone, R. J., and Ekwue, E. I.: Clay, Organic Matter, and Wetting Effects on Splash Detachment and Aggregate Breakdown under Intense Rainfall, Soil Sci. Soc. Am. J., 73, 226–232, https://doi.org/10.2136/sssaj2008.0053, 2009. a
Zhu, Y., Marchuk, A., and McLean Bennett, J.: Rapid Method for Assessment of Soil Structural Stability by Turbidimeter, Soil Sci. Soc. Am. J., 80, 1629–1637, https://doi.org/10.2136/sssaj2016.07.0222, 2016. a
Short summary
Structural stability is critical for sustainable agricultural soil management. We invented a simple test to measure soil structural stability. The QuantiSlakeTest consists of a dynamic weighting of a dried soil sample in water. The test is rapid, does not require expensive equipment and provides a high density of information on soil structural properties. With an open-access programme for data management under development, the test has strong potential for adoption by a large community of users.
Structural stability is critical for sustainable agricultural soil management. We invented a...