Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-141-2023
https://doi.org/10.5194/soil-9-141-2023
Original research article
 | 
03 Mar 2023
Original research article |  | 03 Mar 2023

Wetting and drying cycles, organic amendments, and gypsum play a key role in structure formation and stability of sodic Vertisols

Sara Niaz, J. Bernhard Wehr, Ram C. Dalal, Peter M. Kopittke, and Neal W. Menzies

Related subject area

Soils and managed ecosystems
Quality assessment of meta-analyses on soil organic carbon
Julia Fohrafellner, Sophie Zechmeister-Boltenstern, Rajasekaran Murugan, and Elena Valkama
SOIL, 9, 117–140, https://doi.org/10.5194/soil-9-117-2023,https://doi.org/10.5194/soil-9-117-2023, 2023
Short summary
The role of long-term mineral and manure fertilization on P species accumulation and phosphate-solubilizing microorganisms in paddy red soils
Shuiqing Chen, Jusheng Gao, Huaihai Chen, Zeyuan Zhang, Jing Huang, Lefu Lv, Jinfang Tan, and Xiaoqian Jiang
SOIL, 9, 101–116, https://doi.org/10.5194/soil-9-101-2023,https://doi.org/10.5194/soil-9-101-2023, 2023
Short summary
Soil depth as a driver of microbial and carbon dynamics in a planted forest (Pinus radiata) pumice soil
Alexa K. Byers, Loretta G. Garrett, Charlotte Armstrong, Fiona Dean, and Steve A. Wakelin
SOIL, 9, 55–70, https://doi.org/10.5194/soil-9-55-2023,https://doi.org/10.5194/soil-9-55-2023, 2023
Short summary
Transforming living labs into lighthouses: a promising policy to achieve land-related sustainable development
Johan Bouma
SOIL, 8, 751–759, https://doi.org/10.5194/soil-8-751-2022,https://doi.org/10.5194/soil-8-751-2022, 2022
Short summary
What comes after the Sun? On the integration of soil biogeochemical pre-weathering into microplastic experiments
Frederick Büks and Martin Kaupenjohann
SOIL, 8, 373–380, https://doi.org/10.5194/soil-8-373-2022,https://doi.org/10.5194/soil-8-373-2022, 2022
Short summary

Cited articles

Abiven, S., Menasseri, S., and Chenu, C.: The effects of organic inputs over time on soil aggregate stability – A literature analysis, Soil Biol. Biochem., 41, 1–12, 2009. 
Bennett, J. M., Cattle, S., Singh, B., and Quilty, J.: Influence of gypsum enhanced chicken-manure-and-wheat-straw compost on amelioration of an irrigated sodic brown vertisol–laboratory experiment, Arid Land Res. Manag., 29, 415–431, 2015. 
Borken, W. and Matzner, E. J.: Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils, Glob. Change Biol., 15, 808–824, 2009. 
Bossuyt, H., Denef, K., Six, J., Frey, S., Merckx, R., Paustian, K.: Influence of microbial populations and residue quality on aggregate stability, Appl. Soil Ecol., 16, 195–208, https://doi.org/10.1016/S0929-1393(00)00116-5, 2001. 
Brangarí, A. C., Lyonnard, B., and Rousk, J.: Soil depth and tillage can characterize the soil microbial responses to drying-rewetting, Soil Biol. Biochem., 173, 108806, https://doi.org/10.1016/j.soilbio.2022.108806, 2022. 
Download
Short summary
Sodic soils affect ~580 Mha in semi-arid and arid regions of the world. These soils have a weak structure. This laboratory study evaluated treatments to overcome the weak aggregate structure in two sodic Vertisols by applying organic amendments, gypsum, and wetting–drying cycles. We conclude that sodic soils need to be treated with gypsum to flocculate clay and organic amendments (lucerne or chicken manure) to form aggregates, whereas drying cycles aid in small macroaggregates formation.