Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-451-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-451-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy
CORRESPONDING AUTHOR
Sols, Eaux et Productions Intégrées, Département Durabilité, Systèmes et Prospectives, Walloon Agricultural Research Center, Gembloux, Belgium
Earth and Life Institute, Environmental Sciences, Université
Catholique de Louvain, Louvain-la-Neuve, Belgium
Nils Borchard
Competence Center Agriculture,
German Agricultural Society (DLG e.V.), Frankfurt, Germany
Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
Jens Leifeld
Climate and Agriculture Group, Agroscope, Zurich, Switzerland
Environmental Geosciences, Universität Basel, Basel, Switzerland
Related authors
Manon S. Ferdinand, Brieuc F. Hardy, and Philippe V. Baret
EGUsphere, https://doi.org/10.5194/egusphere-2025-2700, https://doi.org/10.5194/egusphere-2025-2700, 2025
Short summary
Short summary
We assessed three soil quality indicators across Walloon Conservation Agriculture (CA) fields, accounting for practice diversity within four CA-types. Soil indicators varied significantly among CA-types. Inclusion of temporary grasslands in the crop sequence emerged as the most influential factor. Our findings show that CA effects depend on the combination of practices, highlighting the need for a systemic, context-based evaluation of soil quality.
Frédéric Marie Vanwindekens and Brieuc François Hardy
SOIL, 9, 573–591, https://doi.org/10.5194/soil-9-573-2023, https://doi.org/10.5194/soil-9-573-2023, 2023
Short summary
Short summary
Structural stability is critical for sustainable agricultural soil management. We invented a simple test to measure soil structural stability. The QuantiSlakeTest consists of a dynamic weighting of a dried soil sample in water. The test is rapid, does not require expensive equipment and provides a high density of information on soil structural properties. With an open-access programme for data management under development, the test has strong potential for adoption by a large community of users.
Manon S. Ferdinand, Brieuc F. Hardy, and Philippe V. Baret
EGUsphere, https://doi.org/10.5194/egusphere-2025-2700, https://doi.org/10.5194/egusphere-2025-2700, 2025
Short summary
Short summary
We assessed three soil quality indicators across Walloon Conservation Agriculture (CA) fields, accounting for practice diversity within four CA-types. Soil indicators varied significantly among CA-types. Inclusion of temporary grasslands in the crop sequence emerged as the most influential factor. Our findings show that CA effects depend on the combination of practices, highlighting the need for a systemic, context-based evaluation of soil quality.
Luisa I. Minich, Dylan Geissbühler, Stefan Tobler, Annegret Udke, Alexander S. Brunmayr, Margaux Moreno Duborgel, Ciriaco McMackin, Lukas Wacker, Philip Gautschi, Negar Haghipour, Markus Egli, Ansgar Kahmen, Jens Leifeld, Timothy I. Eglinton, and Frank Hagedorn
EGUsphere, https://doi.org/10.5194/egusphere-2025-2267, https://doi.org/10.5194/egusphere-2025-2267, 2025
Short summary
Short summary
We developed a framework using rates and 14C-derived ages of soil-respired CO2 and its sources (autotrophic, heterotrophic) to identify carbon cycling pathways in different land-use types. Rates, ages and sources of respired CO2 varied across forests, grasslands, croplands, and managed peatlands. Our results suggest that the relationship between rates and ages of respired CO2 serves as a robust indicator of carbon retention or destabilization from natural to disturbed systems.
Frédéric Marie Vanwindekens and Brieuc François Hardy
SOIL, 9, 573–591, https://doi.org/10.5194/soil-9-573-2023, https://doi.org/10.5194/soil-9-573-2023, 2023
Short summary
Short summary
Structural stability is critical for sustainable agricultural soil management. We invented a simple test to measure soil structural stability. The QuantiSlakeTest consists of a dynamic weighting of a dried soil sample in water. The test is rapid, does not require expensive equipment and provides a high density of information on soil structural properties. With an open-access programme for data management under development, the test has strong potential for adoption by a large community of users.
Cited articles
Antal, M. J. and Grønli, M.: The Art, Science, and Technology of Charcoal
Production, Ind. Eng. Chem. Res., 42, 1619–1640,
https://doi.org/10.1021/ie0207919, 2003.
Ascough, P. L., Bird, M. I., Francis, S. M., Thornton, B., Midwood, A. J.,
Scott, A. C., and Apperley, D.: Variability in oxidative degradation of
charcoal: Influence of production conditions and environmental exposure,
Geochim. Cosmochim. Ac., 75, 2361–2378, https://doi.org/10.1016/j.gca.2011.02.002,
2011.
Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A.: The
Pyrogenic Carbon Cycle, Annu. Rev. Earth Planet. Sci., 43,
273–298, https://doi.org/10.1146/annurev-earth-060614-105038, 2015.
Borchard, N., Ladd, B., Eschemann, S., Hegenberg, D., Möseler, B. M., and
Amelung, W.: Black carbon and soil properties at historical charcoal
production sites in Germany, Geoderma, 232, 236–242,
https://doi.org/10.1016/j.geoderma.2014.05.007, 2014.
Brodowski, S., Rodionov, A., Haumaier, L., Glaser, B., and Amelung, W.:
Revised black carbon assessment using benzene polycarboxylic acids, Org.
Geochem., 36, 1299–1310, 2005.
Burgeon, V., Fouché, J., Leifeld, J., Chenu, C., and Cornélis, J. T.:
Organo-mineral associations largely contribute to the stabilization of
century-old pyrogenic organic matter in cropland soils, Geoderma, 388, 114841, https://doi.org/10.1016/j.geoderma.2020.114841, 2021.
Cheng, C.-H., Lehmann, J., and Engelhard, M. H.: Natural oxidation of black
carbon in soils: Changes in molecular form and surface charge along a
climosequence, Geochim. Cosmochim. Ac., 72, 1598–1610,
https://doi.org/10.1016/j.gca.2008.01.010, 2008.
Cohen-Ofri, I., Weiner, L., Boaretto, E., Mintz, G., and Weiner, S.: Modern
and fossil charcoal: aspects of structure and diagenesis, J. Archaeol. Sci.,
33, 428–439, https://doi.org/10.1016/j.jas.2005.08.008, 2006.
Czimczik, C. I. and Masiello, C. A.: Controls on black carbon storage in
soils, Global Biogeochem. Cy., 21, GB3005, https://doi.org/10.1029/2006GB002798,
2007.
De la Rosa, J. M., Knicker, H., López-Capel, E., Manning, D. A. C.,
González-Perez, J. A., and González-Vila, F. J.: Direct Detection of
Black Carbon in Soils by Py-GC/MS, Carbon-13 NMR Spectroscopy and
Thermogravimetric Techniques, Soil Sci. Soc. Am. J., 72, 258,
https://doi.org/10.2136/sssaj2007.0031, 2008.
Dehkordi, R. H., Burgeon, V., Fouche, J., Gomez, E. P., Cornelis, J. T.,
Nguyen, F., Denis, A., and Meersmans, J.: Using UAV collected RGB and
multispectral images to evaluate winter wheat performance across a site
characterized by century-old biochar patches in Belgium, Remote Sens.,
12, 2504, https://doi.org/10.3390/RS12152504, 2020.
Dell'Abate, M. T., Benedetti, A., Trinchera, A., and Dazzi, C.: Humic
substances along the profile of two Typic Haploxerert, Geoderma, 107,
281–296, https://doi.org/10.1016/S0016-7061(01)00153-7, 2002.
Elmquist, M., Gustafsson, O., and Andersson, P.: Quantification of
sedimentary black carbon using the chemothermal oxidation method: an
evaluation of ex situ pretreatments and standard additions approaches,
Limnol. Oceanogr.-Meth., 2, 417–427, 2004.
Emrich, W.: Handbook of Charcoal Making, D. Reidel Publishing Company,
Dordrecht, The Netherlands, ISBN 978-90-481-8411-8,
https://doi.org/10.1007/978-94-017-0450-2, 1985.
Evrard, R.: Forges anciennes, Editions Solédi, Liège, Belgium,
1956.
Fabbri, D., Torri, C., and Spokas, K. A.: Analytical pyrolysis of synthetic
chars derived from biomass with potential agronomic application (biochar).
Relationships with impacts on microbial carbon dioxide production, J. Anal.
Appl. Pyrolysis, 93, 77–84, https://doi.org/10.1016/j.jaap.2011.09.012, 2012.
Fernández, J. M., Plante, A. F., Leifeld, J., and Rasmussen, C.:
Methodological considerations for using thermal analysis in the
characterization of soil organic matter, J. Therm. Anal. Calorim., 104,
389–398, https://doi.org/10.1007/s10973-010-1145-6, 2010.
Forbes, M. S., Raison, R. J., and Skjemstad, J. O.: Formation, transformation
and transport of black carbon (charcoal) in terrestrial and aquatic
ecosystems, Sci. Total Environ., 370, 190–206,
https://doi.org/10.1016/j.scitotenv.2006.06.007, 2006.
Glaser, B. and Birk, J. J.: State of the scientific knowledge on properties
and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de
Índio), Geochim. Cosmochim. Ac., 82, 39–51,
https://doi.org/10.1016/j.gca.2010.11.029, 2012.
Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W.: Black carbon in
soils: the use of benzenecarboxylic acids as specific markers, Org.
Geochem., 29, 811–819, 1998.
Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W.: The “Terra Preta”
phenomenon: a model for sustainable agriculture in the humid tropics,
Naturwissenschaften, 88, 37–41, https://doi.org/10.1007/s001140000193, 2001.
Glaser, B., Lehmann, J., and Zech, W.: Ameliorating physical and chemical
properties of highly weathered soils in the tropics with charcoal – a
review, Biol. Fertil. Soils, 35, 219–230, https://doi.org/10.1007/s00374-002-0466-4,
2002.
Goldberg, E. D.: Black carbon in the environment, John Wiley & Sons, New
York, ISBN 0471819794, 1985.
Gustafsson, Ö., Bucheli, T. D., Kukulska, Z., Andersson, M., Largeau,
C., Rouzaud, J. N., Reddy, C. M., and Eglinton, T. I.: Evaluation of a
protocol for the quantification of black carbon in sediments., Global
Biogeochem. Cy., 15, 881–890, 2001.
Hammes, K., Schmidt, M. W. I., Smernik, R. J., Currie, L. A., Ball, W. P.,
Nguyen, T. H., Louchouarn, P., Houel, S., Gustafsson, Ö., Elmquist, M.,
Cornelissen, G., Skjemstad, J. O., Masiello, C. a., Song, J., Peng, P.,
Mitra, S., Dunn, J. C., Hatcher, P. G., Hockaday, W. C., Smith, D. M.,
Hartkopf-Fröder, C., Böhmer, A., Lüer, B., Huebert, B. J.,
Amelung, W., Brodowski, S., Huang, L., Zhang, W., Gschwend, P. M.,
Flores-Cervantes, D. X., Largeau, C., Rouzaud, J.-N., Rumpel, C.,
Guggenberger, G., Kaiser, K., Rodionov, A., Gonzalez-Vila, F. J.,
Gonzalez-Perez, J. A., De la Rosa, J. M., Manning, D. A. C.,
López-Capél, E., and Ding, L.: Comparison of quantification methods
to measure fire-derived (black/elemental) carbon in soils and sediments
using reference materials from soil, water, sediment and the atmosphere,
Global Biogeochem. Cy., 21, GB3016, https://doi.org/10.1029/2006GB002914, 2007.
Hardy, B., Cornelis, J.-T., Houben, D., Lambert, R., and Dufey, J. E.: The
effect of pre-industrial charcoal kilns on chemical properties of forest
soil of Wallonia, Belgium, [data set], Eur. J. Soil Sci., 67, 206–216,
https://doi.org/10.1111/ejss.12324, 2016.
Hardy, B., Cornelis, J.-T., Houben, D., Leifeld, J., Lambert, R., and Dufey,
J.: Evaluation of the long-term effect of biochar on properties of temperate
agricultural soil at pre-industrial charcoal kiln sites in Wallonia,
Belgium, Eur. J. Soil Sci., 68, 80–89, https://doi.org/10.1111/ejss.12395, 2017a.
Hardy, B., Leifeld, J., Knicker, H., Dufey, J. E., Deforce, K., and
Cornélis, J. T.: Long term change in chemical properties of
preindustrial charcoal particles aged in forest and agricultural temperate
soil, [data set], Org. Geochem., 107, 33–45, https://doi.org/10.1016/j.orggeochem.2017.02.008,
2017b.
Harvey, O. R., Kuo, L.-J., Zimmerman, A. R., Louchouarn, P., Amonette, J. E.,
and Herbert, B. E.: An index-based approach to assessing recalcitrance and
soil carbon sequestration potential of engineered black carbons (biochars),
Environ. Sci. Technol., 46, 1415–21, https://doi.org/10.1021/es2040398, 2012.
Hernandez-Soriano, M. C., Kerré, B., Goos, P., Hardy, B., Dufey, J., and
Smolders, E.: Long-term effect of biochar on the stabilization of recent
carbon: soils with historical inputs of charcoal, GCB Bioenergy, 8, 371–381,
https://doi.org/10.1111/gcbb.12250, 2015.
Hirsch, F., Schneider, A., Bauriegel, A., Raab, A., and Raab, T.: Formation,
classification, and properties of soils at two relict charcoal hearth sites
in Brandenburg, Germany, Front. Environ. Sci., 6,
https://doi.org/10.3389/fenvs.2018.00094, 2018.
Hoyois, G.: L'Ardenne et l'Ardennais, L'Evolution Economique et Sociale
d'une région, Tome 2, Bruxelles-Paris: Éditions universitaires;
Gembloux: J. Duculot, imprimeur-éditeur, 1953.
Hu, Y., Wang, Z., Cheng, X., Liu, M., and Ma, C.: Effects of catalysts on
combustion characteristics and kinetics of coal-char blends, IOP Conf. Ser.
Earth Environ. Sci., 133, 012023, https://doi.org/10.1088/1755-1315/133/1/012023, 2018.
IUSS Working Group WRB: World reference base for soil resources 2014,
International soil classification system for naming soils and creating
legends for soil maps, World Soil Resources Reports No 106, Food
and Agriculture Organization of the United Nations, Rome, Italy, ISBN 978-92-5-108369-7, 2014.
Kalinichev, A. G. and Kirkpatrick, R. J.: Molecular dynamics simulation of
cationic complexation with natural organic matter, Eur. J. Soil Sci., 58,
909–917, https://doi.org/10.1111/j.1365-2389.2007.00929.x, 2007.
Kappenberg, A., Bläsing, M., Lehndorff, E., and Amelung, W.: Black carbon
assessment using benzene polycarboxylic acids: Limitations for organic-rich
matrices, Org. Geochem., 94, 47–51,
doi:doi:https://doi.org/10.1016/j.orggeochem, 2016.
Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M.: Dynamic molecular
structure of plant biomass-derived black carbon (biochar), Environ. Sci.
Technol., 44, 1247–53, https://doi.org/10.1021/es9031419, 2010.
Kerré, B., Bravo, C. T., Leifeld, J., Cornelissen, G., and Smolders, E.:
Historical soil amendment with charcoal increases sequestration of
non-charcoal carbon: a comparison among methods of black carbon
quantification, Eur. J. Soil Sci., 67, 324–331, https://doi.org/10.1111/ejss.12338,
2016.
Kerré, B., Willaert, B., and Smolders, E.: Lower residue decomposition in
historically charcoal-enriched soils is related to increased adsorption of
organic matter, Soil Biol. Biochem., 104, 1–7,
https://doi.org/10.1016/j.soilbio.2016.10.007, 2017.
Knicker, H.: Pyrogenic organic matter in soil: Its origin and occurrence,
its chemistry and survival in soil environments, Quat. Int., 243,
251–263, https://doi.org/10.1016/j.quaint.2011.02.037, 2011.
Kucerík, J., Kovár, J., and Pekar, M.: Thermoanalytical
investigation of lignite humic acids fractions, J. Therm. Anal. Calorim.,
76, 55–65, https://doi.org/10.1023/B:JTAN.0000027803.24266.48, 2004.
Laird, D. A.: The charcoal vision: a win-win-win scenario for simultaneously
producing bioenergy, permanently sequestering carbon, while improving soil
and water quality, Agron. J., 100, 178–181, https://doi.org/10.2134/agronj2007.0161,
2008.
Lasota, J., Błońska, E., Babiak, T., Piaszczyk, W., Stępniewska,
H., Jankowiak, R., Boroń, P., and Lenart-Boroń, A.: Effect of
Charcoal on the Properties, Enzyme Activities and Microbial Diversity of
Temperate Pine Forest Soils, Forests, 12, 1488, https://doi.org/10.3390/f12111488,
2021.
Lehmann, J.: Bio-energy in the black, Front. Ecol. Environ., 5, 381–387,
2007.
Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi,
J., Schäfer, T., Wirick, S., and Jacobsen, C.: Near-edge X-ray absorption
fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of
organic carbon forms in soil: Application to black carbon particles, Global
Biogeochem. Cy., 19, GB1013, https://doi.org/10.1029/2004GB002435, 2005.
Leifeld, J.: Thermal stability of black carbon characterised by oxidative
differential scanning calorimetry, Org. Geochem., 38, 112–127,
https://doi.org/10.1016/j.orggeochem.2006.08.004, 2007.
Leifeld, J., Heiling, M., and Hajdas, I.: Age and thermal stability of
particulate organic matter fractions indicate the presence of black carbon
in soil, Radiocarbon, 57, 99–107, https://doi.org/10.2458/azu, 2015.
Leifeld, J., Alewell, C., Bader, C., Krüger, J. P., Mueller, C. W.,
Sommer, M., Steffens, M., and Szidat, S.: Pyrogenic Carbon Contributes
Substantially to Carbon Storage in Intact and Degraded Northern Peatlands,
L. Degrad. Dev., 29, 2082–2091, https://doi.org/10.1002/ldr.2812, 2018.
Li, J., Li, B., and Zhang, X. C.: Comparative studies of thermal degradation
between Larch lignin and Manchurian Ash lignin, Polym. Degrad. Stab., 78,
279–285, 2002.
Liang, B., Lehmann, J., Sohi, S. P., Thies, J. E., O'Neill, B., Trujillo,
L., Gaunt, J., Solomon, D., Grossman, J., Neves, E. G., and Luizão, F.
J.: Black carbon affects the cycling of non-black carbon in soil, Org.
Geochem., 41, 206–213, https://doi.org/10.1016/j.orggeochem.2009.09.007, 2010.
Mao, J.-D., Johnson, R. L., Lehmann, J., Olk, D. C., Neves, E. G., Thompson,
M. L., and Schmidt-Rohr, K.: Abundant and stable char residues in soils:
implications for soil fertility and carbon sequestration, Environ. Sci.
Technol., 46, 9571–9576, https://doi.org/10.1021/es301107c, 2012.
Masiello, C. A.: New directions in black carbon organic geochemistry, Mar.
Chem., 92, 201–213, https://doi.org/10.1016/j.marchem.2004.06.043, 2004.
Mastrolonardo, G., Calderaro, C., Cocozza, C., Hardy, B., Dufey, J., and
Cornelis, J. T.: Long-term effect of charcoal accumulation in hearth soils
on tree growth and nutrient cycling, Front. Environ. Sci., 7, 1–15,
https://doi.org/10.3389/fenvs.2019.00051, 2019.
McBeath, A. V. and Smernik, R. J.: Variation in the degree of aromatic
condensation of chars, Org. Geochem., 40, 1161–1168,
https://doi.org/10.1016/j.orggeochem.2009.09.006, 2009.
McBeath, A. V., Wurster, C. M., and Bird, M. I.: Influence of feedstock
properties and pyrolysis conditions on biochar carbon stability as
determined by hydrogen pyrolysis, Biomass Bioener., 73, 155–173,
https://doi.org/10.1016/j.biombioe.2014.12.022, 2015.
Mukherjee, S. and Kumar, M.: Cycling of black carbon and black nitrogen in
the hydro-geosphere: Insights on the paradigm, pathway, and processes, Sci.
Total Environ., 770, 144711,
https://doi.org/10.1016/j.scitotenv.2020.144711., 2021.
Nguyen, T. H., Brown, R., and Ball, W. P.: An evaluation of thermal
resistance as a measure of black carbon content in diesel soot, wood char,
and sediment, Org. Geochem., 35, 217–234,
https://doi.org/10.1016/j.orggeochem.2003.09.005, 2004.
Peltre, C., Fernández, J. M., Craine, J. M., and Plante, A. F.:
Relationships between Biological and Thermal Indices of Soil Organic Matter
Stability Differ with Soil Organic Carbon Level, Soil Sci. Soc. Am. J.,
77, 2020, https://doi.org/10.2136/sssaj2013.02.0081, 2013.
Plante, a. F., Pernes, M., and Chenu, C.: Changes in clay-associated organic
matter quality in a C depletion sequence as measured by differential thermal
analyses, Geoderma, 129, 186–199, https://doi.org/10.1016/j.geoderma.2004.12.043,
2005.
Plante, A. F., Fernández, J. M., and Leifeld, J.: Application of thermal
analysis techniques in soil science, Geoderma, 153, 1–10,
https://doi.org/10.1016/j.geoderma.2009.08.016, 2009.
Plante, A. F., Fernández, J. M., Haddix, M. L., Steinweg, J. M., and
Conant, R. T.: Biological, chemical and thermal indices of soil organic
matter stability in four grassland soils, Soil Biol. Biochem., 43,
1051–1058, https://doi.org/10.1016/j.soilbio.2011.01.024, 2011.
Plante, A. F., Beaupré, S. R., Roberts, M. L., and Baisden, T.:
Distribution of Radiocarbon Ages in Soil Organic Matter by Thermal
Fractionation, Radiocarbon, 55, 1077–1083,
https://doi.org/10.1017/s0033822200058215, 2013.
Pollet, S., Chabert, A., Burgeon, V., Cornélis, J.-T., Fouché, J.,
Gers, C., Hardy, B., and Pey, B.: Limited effects of century-old biochar on
taxonomic and functional diversities of collembolan communities across
land-uses, Soil Biol. Biochem., 164, 108484,
https://doi.org/10.1016/j.soilbio.2021.108484, 2022.
Preston, C. M. and Schmidt, M. W. I.: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions, Biogeosciences, 3, 397–420, https://doi.org/10.5194/bg-3-397-2006, 2006.
Reisser, M., Purves, R. S., Schmidt, M. W. I., and Abiven, S.: Pyrogenic
Carbon in Soils: A Literature-Based Inventory and a Global Estimation of Its
Content in Soil Organic Carbon and Stocks, Front. Earth Sci., 4,
1–14, https://doi.org/10.3389/feart.2016.00080, 2016.
Roth, P. J., Lehndorff, E., Brodowski, S., Bornemann, L.,
Sanchez-García, L., Gustafsson, Ö., and Amelung, W.: Differentiation
of charcoal, soot and diagenetic carbon in soil: Method comparison and
perspectives, Org. Geochem., 46, 66–75,
https://doi.org/10.1016/j.orggeochem.2012.01.012, 2012.
Sagrilo, E., Jeffery, S., Hoffland, E., and Kuyper, T. W.: Emission of CO2
from biochar-amended soils and implications for soil organic carbon, GCB
Bioener., 7, 1294–1304, https://doi.org/10.1111/gcbb.12234, 2014.
Samojlik, T., Jȩdrzejewska, B., Michniewicz, M., Krasnodȩbski, D., Dulinicz,
M., Olczak, H., Karczewski, A., and Rotherham, I. D.: Tree species used for
low-intensity production of charcoal and wood-tar in the 18th-century Białowieza Primeval Forest, Poland, Phytocoenologia, 43, 1–12,
https://doi.org/10.1127/0340-269X/2013/0043-0511, 2013.
Sanderman, J. and Grandy, A. S.: Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times, SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020, 2020.
Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., de
la Rosa, J. M., Preston, C. M., and Dittmar, T.: Towards a global assessment
of pyrogenic carbon from vegetation fires, Glob. Chang. Biol., 22,
76–91, https://doi.org/10.1111/gcb.12985, 2016.
Schenkel, Y., Bertaux, P., Vanwijnsberghe, S., and Carre, J.: An evaluation
of the mound kiln carbonization technique, Biomass Bioenerg., 14,
505–516, 1998.
Schmidt, H. P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D.,
Sánchez Monedero, M. A., and Cayuela, M. L.: Biochar in agriculture – A
systematic review of 26 global meta-analyses, GCB Bioenerg., 13,
1708–1730, https://doi.org/10.1111/gcbb.12889, 2021.
Schmidt, M. W. I. and Noack, A. G.: Black carbon in soils and sediments:
Analysis, distribution, implications, and current challenges, Global
Biogeochem. Cy., 14, 777–793, https://doi.org/10.1029/1999GB001208, 2000.
Schmidt, M. W. I., Skjemstad, J. O., Czimczik, C. I., Glaser, B., Prentice,
K. M., Gelinas, Y., and Kuhlbusch, T. A. J.: Comparative analysis of black
carbon in soils, Global Biogeochem. Cy., 15, 163–167, 2001.
Schneider, A., Hirsch, F., Raab, A., and Raab, T.: Dye tracer visualization
of infiltration patterns in soils on relict charcoal hearths, Front.
Environ. Sci., 6, 1–14, https://doi.org/10.3389/fenvs.2018.00143, 2018.
Schneider, M. P. W., Hilf, M., Vogt, U. F., and Schmidt, M. W. I.: The
benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 ∘C and 1000 ∘C, Org. Geochem., 41, 1082–1088,
https://doi.org/10.1016/j.orggeochem.2010.07.001, 2010.
Schnitzer, M., Turner, R. C., and Hoffman, I.: A thermo-gravimetric study of
organic matter of representative Canadian podzol soils, Can. J. Soil Sci.,
44, 7–13, 1964.
Sherrod, L. A., Dunn, G., Peterson, G. A., and Kolberg, R. L.: Inorganic
Carbon Analysis by Modified Pressure-Calcimeter Method, Soil Sci. Soc. Am.
J., 66, 299–305, 2002.
Solomon, D., Lehmann, J., Thies, J., Schäfer, T., Liang, B., Kinyangi,
J., Neves, E., Petersen, J., Luizão, F., and Skjemstad, J.: Molecular
signature and sources of biochemical recalcitrance of organic C in Amazonian
Dark Earths, Geochim. Cosmochim. Ac., 71, 2285–2298,
https://doi.org/10.1016/j.gca.2007.02.014, 2007.
Tan, K. H., Hajek, B. F., and Barshad, I.: Thermal analysis techniques., in
Methods of Soil Analysis, Part I. Physical and Mineralogical Methods,
Agronomy Monograph, Vol. 9, edited by: Klute, A., American
Society of Agronomy, Madison, WI Todor., 151–183, 1986.
Uehara, G. and Gillman, P. G.: The Mineralogy, Chemistry, and Physics of
Tropical Soils with Variable Charge Clays, Editor: Boulder, C.,
Westview Press, Ann Arbor, MI, ISBN 0891584846, 1981.
Wang, J., Xiong, Z., and Kuzyakov, Y.: Biochar stability in soil:
Meta-analysis of decomposition and priming effects, GCB Bioenerg., 8,
512–523, https://doi.org/10.1111/gcbb.12266, 2016.
Wiedemeier, D. B., Abiven, S., Hockaday, W. C., Keiluweit, M., Kleber, M.,
Masiello, C. A., McBeath, A. V., Nico, P. S., Pyle, L. A., Schneider, M. P.
W., Smernik, R. J., Wiesenberg, G. L. B., and Schmidt, M. W. I.: Aromaticity
and degree of aromatic condensation of char, Org. Geochem., 78, 135–143,
https://doi.org/10.1016/j.orggeochem.2014.10.002, 2015a.
Wiedemeier, D. B., Brodowski, S., and Wiesenberg, G. L. B.: Pyrogenic
molecular markers: Linking PAH with BPCA analysis, Chemosphere, 119,
432–437, https://doi.org/10.1016/j.chemosphere.2014.06.046, 2015b.
Wolf, M., Lehndorff, E., Wiesenberg, G. L. B., Stockhausen, M., Schwark, L.,
and Amelung, W.: Towards reconstruction of past fire regimes from
geochemical analysis of charcoal, Org. Geochem., 55, 11–21,
https://doi.org/10.1016/j.orggeochem.2012.11.002, 2013.
Zanutel, M., Garré, S., and Bielders, C. L.: Long-term effect of biochar
on physical properties of agricultural soils with different textures at
pre-industrial charcoal kiln sites in Wallonia (Belgium), Eur. J. Soil Sci., 73, 1–17, https://doi.org/10.1111/ejss.13157, 2021.
Short summary
Soil amendment with artificial black carbon (BC; biomass transformed by incomplete combustion) has the potential to mitigate climate change. Nevertheless, the accurate quantification of BC in soil remains a critical issue. Here, we successfully used dynamic thermal analysis (DTA) to quantify centennial BC in soil. We demonstrate that DTA is largely under-exploited despite providing rapid and low-cost quantitative information over the range of soil organic matter.
Soil amendment with artificial black carbon (BC; biomass transformed by incomplete combustion) has...