Articles | Volume 7, issue 2
https://doi.org/10.5194/soil-7-377-2021
https://doi.org/10.5194/soil-7-377-2021
Original research article
 | 
06 Jul 2021
Original research article |  | 06 Jul 2021

Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data

Kpade O. L. Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun

Related authors

Delineating the distribution of mineral and peat soils at the landscape scale in northern boreal regions
Anneli M. Ågren, Eliza Maher Hasselquist, Johan Stendahl, Mats B. Nilsson, and Siddhartho S. Paul
SOIL, 8, 733–749, https://doi.org/10.5194/soil-8-733-2022,https://doi.org/10.5194/soil-8-733-2022, 2022
Short summary
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022,https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020,https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019,https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022,https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022,https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary

Cited articles

Andersson, M., Carlsson, M., Ladenberger, A., Morris, G., Sadeghi, M., and Uhlbäck, J.: Geokemisk Atlas Över Sverige-Geochemical Atlas of Sweden, Sveriges Geologiska Undersökning, Uppsala, Sweden, 2014. 
Angelstam, P. and Pettersson, B.: Principles of present Swedish forest biodiversity management, Ecol. Bull., 46, 191–203, 1997. 
Auffret, A. G., Kimberley, A., Plue, J., Skånes, H., Jakobsson, S., Waldén, E., Wennbom, M., Wood, H., Bullock, J. M., Cousins, S. A., and Gartz, M.: HistMapR: Rapid digitization of historical land-use maps in R, Methods Ecol. Evol., 8, 1453–1457, 2017. Auffret, A. G., Kimberley, A., Plue, J., Skånes, H., Jakobsson, S., Waldén, E., Wennbom, M., Wood, H., Bullock, J. M., Cousins, S. A. O., Gartz, M., Hooftman, D. A. P., and Tränk, L.: Data from: HistMapR: Rapid digitization of historical land-use maps in R, Stockholm University [data set], https://doi.org/10.17045/sthlmuni.4649854.v2, 2017b. 
Beguin, J., Fuglstad, G.-A., Mansuy, N., and Paré, D.: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches, Geoderma, 306, 195–205, 2017. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
Forests store large amounts of carbon in soils. Implementing suitable measures to improve the sink potential of forest soils would require accurate data on the carbon stored in forest soils and a better understanding of the factors affecting this storage. This study showed that the prediction of soil carbon stock in Swedish forest soils can increase in accuracy when one divides a big region into smaller areas in combination with information collected locally and derived from satellites.