Articles | Volume 7, issue 2
SOIL, 7, 377–398, 2021
https://doi.org/10.5194/soil-7-377-2021
SOIL, 7, 377–398, 2021
https://doi.org/10.5194/soil-7-377-2021
Original research article
06 Jul 2021
Original research article | 06 Jul 2021

Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data

Kpade O. L. Hounkpatin et al.

Related authors

Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022,https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Delineating the distribution of mineral and peat soils at the landscape scale in northern boreal regions
Anneli M. Ågren, Eliza Maher Hasselquist, Johan Stendahl, Mats B. Nilsson, and Siddhartho S. Paul
EGUsphere, https://doi.org/10.5194/egusphere-2022-79,https://doi.org/10.5194/egusphere-2022-79, 2022
Short summary
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020,https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019,https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary

Related subject area

Soil and methods
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary
Thermal signature and quantification of charcoal in soil by differential scanning calorimetry and BPCA markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL Discuss., https://doi.org/10.5194/soil-2021-146,https://doi.org/10.5194/soil-2021-146, 2022
Revised manuscript accepted for SOIL
Short summary
An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture
Elad Levintal, Yonatan Ganot, Gail Taylor, Peter Freer-Smith, Kosana Suvocarev, and Helen E. Dahlke
SOIL, 8, 85–97, https://doi.org/10.5194/soil-8-85-2022,https://doi.org/10.5194/soil-8-85-2022, 2022
Short summary
Performance of three machine learning algorithms for predicting soil organic carbon in German agricultural soil
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL Discuss., https://doi.org/10.5194/soil-2021-107,https://doi.org/10.5194/soil-2021-107, 2021
Revised manuscript under review for SOIL
Short summary
Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021,https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary

Cited articles

Andersson, M., Carlsson, M., Ladenberger, A., Morris, G., Sadeghi, M., and Uhlbäck, J.: Geokemisk Atlas Över Sverige-Geochemical Atlas of Sweden, Sveriges Geologiska Undersökning, Uppsala, Sweden, 2014. 
Angelstam, P. and Pettersson, B.: Principles of present Swedish forest biodiversity management, Ecol. Bull., 46, 191–203, 1997. 
Auffret, A. G., Kimberley, A., Plue, J., Skånes, H., Jakobsson, S., Waldén, E., Wennbom, M., Wood, H., Bullock, J. M., Cousins, S. A., and Gartz, M.: HistMapR: Rapid digitization of historical land-use maps in R, Methods Ecol. Evol., 8, 1453–1457, 2017. Auffret, A. G., Kimberley, A., Plue, J., Skånes, H., Jakobsson, S., Waldén, E., Wennbom, M., Wood, H., Bullock, J. M., Cousins, S. A. O., Gartz, M., Hooftman, D. A. P., and Tränk, L.: Data from: HistMapR: Rapid digitization of historical land-use maps in R, Stockholm University [data set], https://doi.org/10.17045/sthlmuni.4649854.v2, 2017b. 
Beguin, J., Fuglstad, G.-A., Mansuy, N., and Paré, D.: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches, Geoderma, 306, 195–205, 2017. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
Forests store large amounts of carbon in soils. Implementing suitable measures to improve the sink potential of forest soils would require accurate data on the carbon stored in forest soils and a better understanding of the factors affecting this storage. This study showed that the prediction of soil carbon stock in Swedish forest soils can increase in accuracy when one divides a big region into smaller areas in combination with information collected locally and derived from satellites.