Articles | Volume 7, issue 1
SOIL, 7, 241–253, 2021
https://doi.org/10.5194/soil-7-241-2021
SOIL, 7, 241–253, 2021
https://doi.org/10.5194/soil-7-241-2021

Original research article 18 Jun 2021

Original research article | 18 Jun 2021

Improved calibration of the Green–Ampt infiltration module in the EROSION-2D/3D model using a rainfall-runoff experiment database

Hana Beitlerová et al.

Related authors

Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment
David Zumr, Tomáš Dostál, Jan Devátý, Petr Valenta, Pavel Rosendorf, Alexander Eder, and Peter Strauss
Hydrol. Earth Syst. Sci., 21, 5681–5691, https://doi.org/10.5194/hess-21-5681-2017,https://doi.org/10.5194/hess-21-5681-2017, 2017
Short summary

Related subject area

Soil and methods
Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021,https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Are researchers following best storage practices for measuring soil biochemical properties?
Jennifer M. Rhymes, Irene Cordero, Mathilde Chomel, Jocelyn M. Lavallee, Angela L. Straathof, Deborah Ashworth, Holly Langridge, Marina Semchenko, Franciska T. de Vries, David Johnson, and Richard D. Bardgett
SOIL, 7, 95–106, https://doi.org/10.5194/soil-7-95-2021,https://doi.org/10.5194/soil-7-95-2021, 2021
Quantifying and correcting for pre-assay CO2 loss in short-term carbon mineralization assays
Matthew A. Belanger, Carmella Vizza, G. Philip Robertson, and Sarah S. Roley
SOIL, 7, 47–52, https://doi.org/10.5194/soil-7-47-2021,https://doi.org/10.5194/soil-7-47-2021, 2021
Short summary
Predicting the spatial distribution of soil organic carbon stock in Swedish forests using remotely sensed and site-specific variables
Kpade O. L. Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun
SOIL Discuss., https://doi.org/10.5194/soil-2020-75,https://doi.org/10.5194/soil-2020-75, 2020
Revised manuscript accepted for SOIL
Short summary
The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020,https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary

Cited articles

Akaike, H.: Factor analysis and AIC, Psychometrika, 52, 317–332, https://doi.org/10.1007/BF02294359, 1987. a
Campbell, G. S.: Soil physics with BASIC: transport models for soil-plant systems, 1st Edn., Elsevier, Amsterdam, The Netherlands, New York, USA, 149 pp., 1985. a
Devátý, J., Beitlerová, H., and Lenz, J.: An open rainfall-runoff measurement database, in: EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9148, https://doi.org/10.5194/egusphere-egu2020-9148, 2020. a
Dingman, S. L.: Physical hydrology, 3rd Edn., Waveland Press, Inc., Long Groove, Illinois, USA, 2015. a
Download
Short summary
This study presents transfer functions for a calibration parameter of the Green–Ampt infiltration module of the EROSION-2D/3D model, which are significantly improving the model performance compared to the current state. The relationships found between calibration parameters and soil parameters however put the Green–Ampt implementation in the model and the state-of-the-art parametrization method in question. A new direction of the infiltration module development is proposed.