Articles | Volume 7, issue 1
https://doi.org/10.5194/soil-7-179-2021
https://doi.org/10.5194/soil-7-179-2021
Original research article
 | 
11 Jun 2021
Original research article |  | 11 Jun 2021

Impact of freeze–thaw cycles on soil structure and soil hydraulic properties

Frederic Leuther and Steffen Schlüter

Related authors

Soil water retention and hydraulic conductivity measured in a wide saturation range
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023,https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
X-ray microtomography analysis of soil structure deformation caused by centrifugation
S. Schlüter, F. Leuther, S. Vogler, and H.-J. Vogel
Solid Earth, 7, 129–140, https://doi.org/10.5194/se-7-129-2016,https://doi.org/10.5194/se-7-129-2016, 2016
Short summary

Related subject area

Soils and water
Optimized fertilization using online soil nitrate data
Yonatan Yekutiel, Yuval Rotem, Shlomi Arnon, and Ofer Dahan
SOIL, 10, 335–347, https://doi.org/10.5194/soil-10-335-2024,https://doi.org/10.5194/soil-10-335-2024, 2024
Short summary
Depth-extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing using the SMAR model
Daniel Rasche, Theresa Blume, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2024-170,https://doi.org/10.5194/egusphere-2024-170, 2024
Short summary
Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol
Shouhao Li, Shuiqing Chen, Shanshan Bai, Jinfang Tan, and Xiaoqian Jiang
SOIL, 10, 49–59, https://doi.org/10.5194/soil-10-49-2024,https://doi.org/10.5194/soil-10-49-2024, 2024
Short summary
Perspectives on the misconception of levitating soil aggregates
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024,https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
Birhanu Iticha, Luke M. Mosley, and Petra Marschner
SOIL, 10, 33–47, https://doi.org/10.5194/soil-10-33-2024,https://doi.org/10.5194/soil-10-33-2024, 2024
Short summary

Cited articles

Altermann, M., Rinklebe, J., Merbach, I., Körschens, M., Langer, U., and Hofmann, B.: Chernozem – soil of the year 2005, J. Plant Nutr. Soil Sci., 168, 725–740, 2005. 
Ashworth, E. N. and Abeles, F. B.: Freezing behavior of water in small pores and the possible role in the freezing of plant tissues, Plant Physiol., 76, 201–204, 1984. 
Bolt, G. H. and Miller, R. D.: Calculation of total and component potentials of water in soil, T. Am. Geophys. Un., 39, 917–928, https://doi.org/10.1029/TR039i005p00917, 1958. 
Buades, A., Coll, B., and Morel, J.-M.: Non-local means denoising, Image Processing On Line, 1, 208–212, 2011. 
Chamberlain, E. J. and Gow, A. J.: Effect of Freezing and Thawing on the Permeability and Structure of Soils, in: Developments in Geotechnical Engineering, edited by: Jessberger, H. L., Elsevier, Amsterdam, the Netherlands, 73–92, 1979. 
Download
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.