Articles | Volume 6, issue 1
https://doi.org/10.5194/soil-6-89-2020
https://doi.org/10.5194/soil-6-89-2020
Short communication
 | 
04 Mar 2020
Short communication |  | 04 Mar 2020

A new model for intra- and inter-institutional soil data sharing

José Padarian and Alex B. McBratney

Related authors

PEATGRIDS: Mapping thickness and carbon stock of global peatlands via digital soil mapping
Marliana Tri Widyastuti, Budiman Minasny, José Padarian, Federico Maggi, Matt Aitkenhead, Amélie Beucher, John Connolly, Dian Fiantis, Darren Kidd, Yuxin Ma, Fraser Macfarlane, Ciaran Robb, Rudiyanto, Budi Indra Setiawan, and Muh Taufik
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-333,https://doi.org/10.5194/essd-2024-333, 2024
Revised manuscript under review for ESSD
Short summary
Mapping near real-time soil moisture dynamics over Tasmania with transfer learning
Marliana Tri Widyastuti, José Padarian, Budiman Minasny, Mathew Webb, Muh Taufik, and Darren Kidd
EGUsphere, https://doi.org/10.5194/egusphere-2024-2253,https://doi.org/10.5194/egusphere-2024-2253, 2024
Short summary
Additional soil organic carbon storage potential in global croplands
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73,https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
Game theory interpretation of digital soil mapping convolutional neural networks
José Padarian, Alex B. McBratney, and Budiman Minasny
SOIL, 6, 389–397, https://doi.org/10.5194/soil-6-389-2020,https://doi.org/10.5194/soil-6-389-2020, 2020
Short summary
Machine learning and soil sciences: a review aided by machine learning tools
José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 6, 35–52, https://doi.org/10.5194/soil-6-35-2020,https://doi.org/10.5194/soil-6-35-2020, 2020
Short summary

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022,https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022,https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary

Cited articles

Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., and Reinsch, T. G.: Global soil characterization with VNIR diffuse reflectance spectroscopy, Geoderma, 132, 273–290, 2006. a
Dworkin, M.: SHA-3 standard: Permutation-based hash and extendable-output functions, Federal Information Processing Standards, available at: https://doi.org/10.6028/NIST.FIPS.202 (last access: 1 March 2020), 2015. a
Grinand, C., Arrouays, D., Laroche, B., and Martin, M. P.: Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context, Geoderma, 143, 180–190, 2008. a
Grunwald, S.: Environmental soil-landscape modeling: Geographic information technologies and pedometrics, CRC Press, 2016. a
Download
Short summary
Data sharing and collaboration are critical to solving large-scale problems. The prevailing soil data-sharing model is of a centralized nature and, consequently, results in the participants ceding control and governance over their data to the lead party. Here we explore the use of a distributed ledger (blockchain) to solve the aforementioned issues. We also describe the potential use case of developing a global soil spectral library between multiple, international institutions.