Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-649-2020
https://doi.org/10.5194/soil-6-649-2020
Review article
 | 
17 Dec 2020
Review article |  | 17 Dec 2020

Global concentrations of microplastics in soils – a review

Frederick Büks and Martin Kaupenjohann

Related authors

The incubation history of soil samples strongly affects the occlusion of particulate organic matter
Frederick Büks, Sabine Dumke, and Julia König
EGUsphere, https://doi.org/10.5194/egusphere-2025-771,https://doi.org/10.5194/egusphere-2025-771, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023,https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
What comes after the Sun? On the integration of soil biogeochemical pre-weathering into microplastic experiments
Frederick Büks and Martin Kaupenjohann
SOIL, 8, 373–380, https://doi.org/10.5194/soil-8-373-2022,https://doi.org/10.5194/soil-8-373-2022, 2022
Short summary
Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021,https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?
Frederick Büks, Nicolette Loes van Schaik, and Martin Kaupenjohann
SOIL, 6, 245–267, https://doi.org/10.5194/soil-6-245-2020,https://doi.org/10.5194/soil-6-245-2020, 2020
Short summary

Related subject area

Soils and managed ecosystems
Experimental drought and soil amendments affect grassland above- and belowground vegetation but not soil carbon stocks
Daniela Guasconi, Sara A. O. Cousins, Stefano Manzoni, Nina Roth, and Gustaf Hugelius
SOIL, 11, 233–246, https://doi.org/10.5194/soil-11-233-2025,https://doi.org/10.5194/soil-11-233-2025, 2025
Short summary
Effects of moss restoration on surface runoff and initial soil erosion in a temperate vineyard
Corinna Gall, Silvana Oldenburg, Martin Nebel, Thomas Scholten, and Steffen Seitz
SOIL, 11, 199–212, https://doi.org/10.5194/soil-11-199-2025,https://doi.org/10.5194/soil-11-199-2025, 2025
Short summary
On the risks of good intentions and poor evidence – comment on “Back to the future? Conservative grassland management can preserve soil health in the changing landscapes of Uruguay” by Säumel et al. (2023)
José Paruelo, Luis López-Mársico, Pablo Baldassini, Felipe Lezama, Bruno Bazzoni, Luciana Staiano, Agustin Nuñez, Anaclara Guido, Cecilia Ríos, Andrea Tommasino, Federico Gallego, Fabiana Pezzani, Gonzalo Camba Sans, Andrés Quincke, Santiago Baeza, Gervasio Piñeiro, and Walter Baethgen
SOIL, 11, 193–198, https://doi.org/10.5194/soil-11-193-2025,https://doi.org/10.5194/soil-11-193-2025, 2025
Short summary
The impact of agriculture on tropical mountain soils in the western Peruvian Andes: a pedo-geoarchaeological study of terrace agricultural systems in the Laramate region (14.5° S)
Fernando Leceta, Christoph Binder, Christian Mader, Bertil Mächtle, Erik Marsh, Laura Dietrich, Markus Reindel, Bernhard Eitel, and Julia Meister
SOIL, 10, 727–761, https://doi.org/10.5194/soil-10-727-2024,https://doi.org/10.5194/soil-10-727-2024, 2024
Short summary
Luminescence dating approaches to reconstruct the formation of plaggic anthrosols
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024,https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary

Cited articles

Allen, S., Allen, D., Phoenix, V. R., Le Roux, G., Jiménez, P. D., Simonneau, A., Binet, S., and Galop, D.: Atmospheric transport and deposition of microplastics in a remote mountain catchment, Nat. Geosci., 12, 339–344, https://doi.org/10.1038/s41561-019-0335-5, 2019. 
Barnes, D. K., Galgani, F., Thompson, R. C., and Barlaz, M.: Accumulation and fragmentation of plastic debris in global environments, Phil. Trans. R. Soc. B, 364, 1985–1998, https://doi.org/10.1098/rstb.2008.0205, 2009. 
Battulga, B., Kawahigashi, M., and Oyuntsetseg, B.: Distribution and composition of plastic debris along the river shore in the Selenga River basin in Mongolia, Environ. Sci. Pollut. Res., 26, 14059–14072, https://doi.org/10.1007/s11356-019-04632-1, 2019. 
Bläsing, M. and Amelung, W.: Plastics in soil: Analytical methods and possible sources, Sci. Total Environ., 612, 422–435, https://doi.org/10.1016/j.scitotenv.2017.08.086, 2018. 
Büks, F., Loes van Schaik, N., and Kaupenjohann, M.: What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?, SOIL, 6, 245–267, https://doi.org/10.5194/soil-6-245-2020, 2020a. 
Short summary
Laboratory experiments that assess microplastic (MP) impact on the terrestrial environment require information on common soil MP concentrations. We reviewed item numbers and mass concentrations recorded in 23 studies, with 223 sampling sites in total with respect to the underlying entry pathways, land uses and vicinities. Common values included amounts of up to 13 000 items kg−1 and 4.5  mg kg−1 dry soil. Based on the collected data, we identified problems in past field studies.
Share