Articles | Volume 4, issue 1
https://doi.org/10.5194/soil-4-1-2018
https://doi.org/10.5194/soil-4-1-2018
Original research article
 | 
10 Jan 2018
Original research article |  | 10 Jan 2018

Evaluation of digital soil mapping approaches with large sets of environmental covariates

Madlene Nussbaum, Kay Spiess, Andri Baltensweiler, Urs Grob, Armin Keller, Lucie Greiner, Michael E. Schaepman, and Andreas Papritz

Related authors

Mapping soil micronutrient concentration at national-scale: an illustration of a decision process framework
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Madlene Nussbaum, Alice E. Milne, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2022-583,https://doi.org/10.5194/egusphere-2022-583, 2022
Preprint archived
Short summary
Uncertainty indication in soil function maps – transparent and easy-to-use information to support sustainable use of soil resources
Lucie Greiner, Madlene Nussbaum, Andreas Papritz, Stephan Zimmermann, Andreas Gubler, Adrienne Grêt-Regamey, and Armin Keller
SOIL, 4, 123–139, https://doi.org/10.5194/soil-4-123-2018,https://doi.org/10.5194/soil-4-123-2018, 2018
Short summary
Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models
Madlene Nussbaum, Lorenz Walthert, Marielle Fraefel, Lucie Greiner, and Andreas Papritz
SOIL, 3, 191–210, https://doi.org/10.5194/soil-3-191-2017,https://doi.org/10.5194/soil-3-191-2017, 2017
Short summary
Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
M. Nussbaum, A. Papritz, A. Baltensweiler, and L. Walthert
Geosci. Model Dev., 7, 1197–1210, https://doi.org/10.5194/gmd-7-1197-2014,https://doi.org/10.5194/gmd-7-1197-2014, 2014

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022,https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022,https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary

Cited articles

Adhikari, K., Kheir, R., Greve, M., Bøcher, P., Malone, B., Minasny, B., McBratney, A., and Greve, M.: High-resolution 3-D mapping of soil texture in Denmark, Soil Sci. Soc. Am. J., 77, 860–876, https://doi.org/10.2136/sssaj2012.0275, 2013.
AGR: Geoprodukt Geologische Rohstoffkarte ADT, Metadaten komplett, Amt für Gemeinden und Raumordnung des Kantons Bern, www.be.ch/geoportal (last access: 4 April 2017), 2015.
Aitchison, J.: The statistical analysis of compositional data, Chapman & Hall, ISBN: 0-412-28060-4, 416 pp., 1986.
ALN: Historische Feuchtgebiete der Wildkarte 1850, Amt für Landschaft und Natur des Kantons Zürich, http://www.aln.zh.ch/internet/baudirektion/aln/de/naturschutz/naturschutzdaten/geodaten.html (last access: 29 March 2017), 2002.
ALN: Geologische Karte des Kantons Zürich nach Hantke et al. 1967, GIS-ZH Nr. 41, Amt für Landschaft und Natur des Kantons Zürich, http://www.gis.zh.ch/Dokus/Geolion/gds_41.pdf (last access: 15 February 2015), 2014a.
Short summary
This paper presents an extensive evaluation of digital soil mapping (DSM) tools. Recently, large sets of environmental covariates (e.g. from analysis of terrain on multiple scales) have become more common for DSM. Many DSM studies, however, only compared DSM methods using less than 30 covariates or tested approaches on few responses. We built DSM models from 300–500 covariates using six approaches that are either popular in DSM or promising for large covariate sets.