Articles | Volume 4, issue 1
https://doi.org/10.5194/soil-4-1-2018
https://doi.org/10.5194/soil-4-1-2018
Original research article
 | 
10 Jan 2018
Original research article |  | 10 Jan 2018

Evaluation of digital soil mapping approaches with large sets of environmental covariates

Madlene Nussbaum, Kay Spiess, Andri Baltensweiler, Urs Grob, Armin Keller, Lucie Greiner, Michael E. Schaepman, and Andreas Papritz

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after minor revisions (review by Editor) (05 Sep 2017) by Bas van Wesemael
AR by Madlene Nussbaum on behalf of the Authors (11 Oct 2017)  Author's response   Manuscript 
ED: Publish as is (08 Nov 2017) by Bas van Wesemael
ED: Publish as is (24 Nov 2017) by Johan Six (Executive editor)
AR by Madlene Nussbaum on behalf of the Authors (25 Nov 2017)
Short summary
This paper presents an extensive evaluation of digital soil mapping (DSM) tools. Recently, large sets of environmental covariates (e.g. from analysis of terrain on multiple scales) have become more common for DSM. Many DSM studies, however, only compared DSM methods using less than 30 covariates or tested approaches on few responses. We built DSM models from 300–500 covariates using six approaches that are either popular in DSM or promising for large covariate sets.