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Many thanks you for your detailed and very helpful feedback. We comment on your
review in the subsequent text (P: page, L: line). Our answers to minor, more specific
comments were directly added to the supplement to this document with our sugges-
tions for changes of the manuscript.
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Benefit of large sets of covariates (comment P2L21)

P2 L21: You state that you presume DSM will benefit from a large number of covariates.
Why then do you aim to find models which eliminate covariates? This presumption
seems at odds with the entire premise of this paper. For modelling datasets of this
size, the advantage to feature elimination is to avoid over-fitting but above all to enable
model interpretation. The time advantages tend to be small (i.e. irrelevant) given the
computing power available in desktop computers these days.

Numerous studies cited in the introduction of the manuscript demonstrated the benefit
of using large sets of covariates for DSM. But there are still strong reasons for favour-
ing parsimonious models: We obviously agree that ease of interpretation of modelled
effects and avoiding of over-fitting are arguments in favour of such models. However,
we do not fully agree on your opinion that computational gains are irrelevant. This is
likely the case for fitting models, but it is clearly not true for pre-processing covariates
prior to computing predictions. The respective effort depends linearly on the number
of covariates in the models. It makes a difference if the data of 300 or only 20 covari-
ates must be pre-processed. Hence, ease of interpretation, avoiding over-fitting and
optimization of computational efforts for computing predictions are the main incentives
for building parsimonious models from large sets of covariates. Selecting covariates a
priori based on expert knowledge has been shown to be inferior to model-based co-
variate selection (Brungard et al. 2015). Hence, a challenge for DSM remains to select
the relevant covariates for each soil property, soil depth and study region.

Time aspect in soil legacy data (P7L15)

P7 L15: which statistical models did you use to harmonise your data temporally? Your
description implies that you fit your models to all data from all years, using the year
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as a categorical predictor variable in the respective model, but predicted only for re-
cent years. However, this will not account for temporal changes in a response variable.
To do this, you would have to fit models to predict current response based on past
measurements (y(t=current) f(y(t=past)) and then predict the current y at each lo-
cation as a function of past collected data. Obviously, this can only be down where
re-sampling of the same sites between sampling campaigns has taken place. This
harmonised data set can then be used to train models of the current data for DSM
purposes. Merely including a year in the code for a model will not do this, because
you will still train the model on outdated data, which may be spatio-temporally distinct
(i.e. models will train on one location sampled in 1996 adjacent to another location
sampled in 2006, which will affect the spatial predictions but not account for tempo-
ral differences between sampling campaigns). If you do not have enough re-sampled
sites, you could create separate models for each sampling campaign and then look at
correlation between model predictions between years to derive your correction models
and harmonise your dataset.

Our wording “temporal changes” was admittedly somewhat misleading (we will mend
this in the revised manuscript): We did not attempt to model the temporal evolution of
soil properties by time series models because we did either not have repeated samples
at the same locations at all (Berne region), or we did not have enough data to calibrate
such models in a meaningful way (Greifensee, ZH forests). We do not believe that
a time series modelling approach would improve the correction for time. The sites
were chosen by purposive sampling (see comment below) and do therefore not give
unbiased estimates for each sampling period. Moreover, the maps would be calibrated
on rather small data sets for each sampling period.

We added — as you correctly describe in your comment — therefore a categorical co-
variate that grouped the data by sampling year and type of observation (field estimates,
measurements, predictions by pedotransfer function). We agree that this approach
is far from satisfactory and does not allow us to distinguish between real temporal
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changes of soil properties and analytical artifacts caused by changes in procedures,
fluctuations between laboratories, between sample batches, etc. Our correction ac-
counts for the lumped effect of all these causes. Our objective was to adjust the data to
a common level, irrespective of the cause of the discrepancies. In doing so, we implic-
itly assume that all the fluctuations are analytical artifacts, and soil properties do not
change over time. This assumption is likely reasonable for physical properties like soil
texture, gravel content and soil depth, but it might be questionable for SOM and pH. But
also for these chemical properties, fluctuations by analytical artifacts are by no means
negligible (unpublished study of data gathered for the soil monitoring programme of the
Canton of Zurich). If we would not have adjusted the data — as it is usually done when
legacy data are used for DSM — then the modelled spatial patterns would be partly
induced by temporal effects, either caused by real changes or analytical artifacts. We
do not know how large these effects would be. However, we know that the legacy data
correction was for many responses an important covariate.

Soil texture – separate model for sand

P10 L4ff: Why not model sand individually, or compute either clay or silt to sum up to
100 %. This modelling approach seems arbitrary to me.

This was remarked by referee 1 as well, hence we repeat our arguments here:

You suggested to model sand content separately instead of just computing it as the
remainder of the sum of clay and silt content to 100 %. We agree that it would be
nice to predict sand content with meaningful estimates of prediction uncertainty. Nev-
ertheless, we refrained from separately modelling sand content because a substantial
part of the soil texture data were field estimates by soil surveyors. For field estimates,
sand content is computed as the remainder of the sum of the estimated clay and silt
content to 100 % (Brunner et al. 1997, Jaeggli et al. 1998). Furthermore, soil func-
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tion assessment (Greiner et al. 2017) relies on clay and silt content as input. Hence,
uncertainty assessment for soil functions using soil texture data does not depend on
predictive distributions for sand content.

Covariate importance

P13 L8 and L12: Variable importance > 0 does not necessarily mean that the variable
is relevant to the model. A variable is relevant if variable importance is greater than ex-
pected variable importance for a random model (cf relative variable importance, Hobley
et al. 2015, Plant and Soil).

We agree that covariate importance of > 0 does not mean that a covariate is indeed
important. To evaluate how effectively RT and BRT reduce the covariate set, we had
to count how many covariates had been used at least once for a fitted model. This
number is by definition equal to the number of covariates with importance > 0. But this
criterion was not used to select any covariates during model building by RF or BRT. And
by the way: Selecting non-relevant covariates by the relative covariate importance (1

p
for p covariates, Hobley et al. 2015) seems arbitrary to us. We prefer to use recursive
backward elimination (Brungard et al. 2015) for covariate selection for RF and BRT.

Evaluation of overfitting

P18 L8ff: The general definition of overfitting is not that cross-validation error differs
from external validation error, but that during model construction, the fit improves with
increasing model complexity (R2-fit evaluated on the training dataset) despite a lack of
improvement of predictive performance (R2-prediction evaluated on the test dataset)
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cf. Hasties et al. As such, I am neither surprised nor concerned by difference between
cross-validation RMSE and external validation RMSE and I would attribute this to dif-
ferences between evaluation and fit datasets, not to overfitting. Looking at the statistics
in Tables S3-S7, there were several validation datasets whose range lay outside that
of the training dataset (e.g. gravel below 10 cm depth, SOM in top 10 cm, pH below 30
cm depth). This will detrimentally affect the tree based methods, because that cannot
interpolate to data outside their range, whereas the other models can (though as you
point out, they can interpolate to nonsensical data e.g. negative textural proportions).
Thus, it is highly likely that these results reflect differences in the training and test data.
In fact, you did not assess overfitting because you do not report the improvement in
R2-prediction as a function of R2-fit. This section should be cut.

We acknowledge that our use of the term “over-fitting” is not in accordance with its
strict definition by Hastie et al. (2009). However, we do not agree with your view that
the differences in SSmse, observed between cross-validation and independent valida-
tion, must be attributed solely to random variation between calibration and validation
sets. Figure 7 of our manuscripts shows that for the very large majority of the evaluated
cases, cross-validation SSmse were smaller than validation SSmse. As we split the data
sets by weighted random sampling one would expect a more even distribution of pos-
itive and negative differences of SSmse. Furthermore, we believe that cross-validation
MSE does not provide an unbiased estimate of the expected test error Err (Hastie et al.
2009, eq. 7.16) for the calibration sets because we used cross-validation on the same
data to tune all the parameters of the various methods or to select covariates.

We will therefore not drop this section but we will carefully revise in the spirit of the
above thoughts, thereby acknowledging that our definition of over-fitting is more general
than Hastie et al.’s.
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Revision of introduction and methodology

I found the Introduction somewhat poorly constructed. The introduction you frame the
state of knowledge and identify the gaps, lastly stating how you try to fill the knowledge
gap(s). Some of the paragraphs are without clear structure or connections between
the sentences. A paragraph should start with an introductory sentence to the topic,
provide supporting information, and finish with a concluding sentence. They should
not be lists of information. Paragraphs should clearly fit within the introductory purpose
of framing the knowledge gaps or methods of the current paper. See e.g. P3 L18-24
(connection between sentences, is there a point to this information?) and P3 L25-29
(why is this relevant? You use neither svm nor ann!) for examples or poor paragraph
construction. Furthermore, there is cut-over between the Introduction and the Model
descriptions (Section 3). I suggest you re-read these sections, cut out repetition and
irrelevant information and tighten the Introduction to frame the importance of your study
within the field.

The descriptions of the models (Methodology section 3.1-3.6) are at times vague and
generally appear better suited as introductory remarks rather than methods. Consider
restructuring.

We agree on your comments on the introduction. We will revise the introduction ac-
cordingly and we will consider restructuring the methods section before resubmission.
Moreover, we will revise the language of the manuscript.
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Answer to further minor comments

Purposive sampling (P6L15-17)

P6 L17: ”The sites for WSL were chosen purposively according to the aims of the
project”. Vague and borderline tautology. I would hope that all sites for scientific studies
are chosen on purpose!

The wording ". . . sites were selected purposively . . . " and "... were chosen purposively
..." is used in textbooks and research articles (Brus et al. 2011, Webster and Lark
2013; Webster and Oliver 2007, p. 45). In purposive sampling, locations for soil inves-
tigations are selected by an experienced soil surveyor where he or she thinks that the
site best represents the local conditions. It is — opposed to random sampling — a non-
probability sampling strategy and sometimes called targeted sampling. We suggest to
slightly change the text and to add a reference.

Soil function assessment (Table 1)

P4 L17 and Table 1: I do not know how you know that these properties are required for
assessing regulation, habitat and production functions. This is also for the caption to
Table 1 (Basic soil properties needed). How did you assess the requirement to include
these properties? SD is not defined in the Caption of Table 1.

One work-package of the PMSoil project — in which frame the work for our manuscript
was done — reviewed methods for a thematic broad assessment of soil functions
(Greiner et al. 2017). Based on this review we chose a comprehensive set of soil
functions that was (spatially) assessed in the 3 study regions. A subset of the soil
properties needed in this assessment are listed in Table 1 of our manuscript.
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Covariate interpretation (section 4.3.2)

Section 4.3.2: You only give one example of covariate interpretation. I realise that given
the number of models and covariates you cannot interpret everything, but for me the
main advantage to covariate reduction is to enable model interpretation (for a dataset
you size the time factor between different model runs is insignificant). I would either
expand this section to include more examples or cut it completely.

We agree on your comment that discussing two covariates of one model does not allow
insight in the structure of the 48 models, each containing numerous covariates. But
detailed interpretation of covariate effects for all models would clearly be beyond the
scope of this manuscript. By discussing the two covariates we intended to demonstrate
the possible options of covariate interpretation (partial residual and dependence plots
for a continuous and a categorical covariate). To our knowledge partial dependence
plots were rarely presented for tree based methods in digital soil mapping studies (an
exception is Behrens et al. 2014). Hence, we prefer to leave this section unchanged
as an illustration of suitable tools for inspection of covariate effects.

Predictive skill (Figure 6)

Figure 6: The y-axis is not labelled correctly (what do the numbers mean?). You imply
in your methods that SSMSE is less than or equal to 1, but the values reported here are
all above 1 (reported as %). ”Covariate topic” is unclear.

Thank you for pointing out the missing y-axis labels. The units do not represent the
SSmse, but the "predictive skill" of a covariate. Computational details are given in the
caption of the figure. Covariate topic or theme refers to the content of the covariate
(climate, vegetation, soil etc.). We refer in the figure caption to Table 3 where the
datasets are listed under the same thematic names.
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Please also note the supplement to this comment:
https://www.soil-discuss.net/soil-2017-14/soil-2017-14-AC2-supplement.pdf

Interactive comment on SOIL Discuss., https://doi.org/10.5194/soil-2017-14, 2017.

C11


