
Department of Environmental System D-USYS
Soil and Terrestrial Environmental Physics STEP

ETH Zurich
Ms. Madlene Nussbaum
PhD student 
Universitätsstrasse 16
8092 Zurich, Switzerland 

madlene.nussbaum@env.ethz.ch
www.step.ethz.ch

Mr. 
Bas van Wesemael
Handling Topical Editor
Journal SOIL 

Zurich, 11 October 2017        

Submission after minor revisions of manuscript No soil-2017-14 

Dear Editor 

Thank you for your positive answer and helpful comments to our manuscript named “Evaluation of digital soil 
mapping approaches with large sets of environmental covariates” (soil-2017-14).

We are pleased to resubmit the revised article. Point by point answers to the comments of the referees can be 
found in the public discussion of the manuscript. We refrained from repeating these answers here. The changes
implemented following your comments are included in the attached list. Moreover, after careful re-reading of the
manuscript we made small changes to improve readability (second part of attached list). Further enclosed, you 
find the marked-up version of the manuscript detailing all the changes.  

Many thanks for all your efforts to handle our manuscript. 

Yours sincerely,

Madlene Nussbaum

List of additional changes 
Document with changes (latexdiff)



Submission after minor revisions of manuscript No soil-2017-14 

Besides the proposed changes (see answers to referee 1 and 2) we revised the manuscript as follows (P: page,
L: line of the one-column discussion manuscript, first submission):

Answer to comments of the Topical Editor:

Response to reviewer 1.
Spatial distribution of uncertainty
I would urge you to at least include one or two sentences explaining why you chose not to present the spatial 
distribution of prediction uncertainty. 

In section 4.5 (P24 L27) we added “Given the large number of responses and methods requiring bootstrapping 
we were not able to compute and evaluate uncertainty for the presented models within reasonable time.”

Legacy data
The same applies to the comment on legacy data correction. Again you do not have to correct the data for legacy 
effects, but it is a bit late to bring up this issue in the conclusions. One or two sentences in the discussion section 
would be appropriate. 

In the discussion in section 4.3.1 on “covariate importance” (P20 L4-5) we mentioned that the legacy data 
correction was important for many responses. To clarify we added the term “legacy data correction” in brackets 
to the first sentence. 

Soil density
Regarding the comment on the soil density. I agree that this is not a well-defined term, and some confusion might 
arise with particle density. I would suggest using the term ‘fine fraction bulk density’. I fully understand that you, as 
many others, do not have measured rock fragment contents, and therefore use an approximation.

We agree that soil density / bulk density might be misleading. We replaced soil density / bulk density by “fine 
fraction bulk density” or we left the text as is if it was already “bulk density of the fine soil fraction (<= 2 mm)”. 

Reviewer 2
Large sets of co-variates
Could not you add a sentence on page 2 line 21 stressing the efficiency in terms of pre-processing the covariates. 
There will certainly be readers that reason in the same way as reviewer 2. 

Following the comments of referee 2 we revised the introduction and also considered your advice. 

Separate model for sand
Reviewer 1 also asked this question. Could not you add one or two sentences to justify why you did not choose to 
predict the sand content?

We expanded the sentence on P10 L5 to “Sand was computed as the remainder to 100 % because for field 
estimates -- a substantial part of the used texture data (Table S1 in Supplement) -- sand was obtained in the 
same way (Brunner et al., 1997; Jaeggli et al. 1998).”

Evaluation of overfitting
Please carefully review this section, as you suggested.

We revised the last paragraph of section 4.2.2 accordingly. 

Soil function assessment
Please add a phrase and a reference justifying the choice of the soil properties.

The references to justify the chosen soil properties for each soil function are fully cited in Table 1 of the 
manuscript. As it comes to the limitations of data availability within the current project we refer to Greiner et al. 
(2017) which reviewed the selected soil functions. Justification of the chosen soil properties for each selected 
soil function would be beyond the scope of the current manuscript. 

Covariate interpretation
Please make sure that the readers understand that this is only an example to illustrate the interpretation of covariates.

After the first sentence of section 4.3.2 we added “Given the number of models and covariates we chose a 
continuous and a factor covariate to illustrate the effects for one response.“
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Submission after minor revisions of manuscript No soil-2017-14 

Further author changes: 

• P1 L2: replaced “down to required soil depth” by “down to the required soil depth”

• P1 L3: replaced “at the desired” by “at desired”

• P1 L4, P6 L19, P7 L3: replaced “soil legacy data” by “legacy soil data”

• P1 L12, P10 L24: replaced “EDK” by “georob”

• P1 L17: removed “on average”

• P1 L19: replaced “than RF” by “than of RF”

• P1 L19: replaced “was only best” by “was best only”

• P1 L22: replaced “is applied MA” by “is applied and MA”

• P2 L1 – P4 L18: We revised the introduction according to the comments of the topical editor and of 
referee 2 and we improved language and readability in many parts. 

• P7 L10-11: removed “The w_i were normalized to sum to 1.” following the revision of manuscript soil-
2017-13

• P5 Table 1
Header: replaced “Static soil(sub)function” by “Soil (sub)function” as we do not discuss the difference of
static and dynamic soil functions. 
Caption: replaced “drainage class ... modelled in Nussbaum et al.” by “drainage class ... defined in 
Nussbaum et al.”
Table content, Habitat function: replaced “allowing a non-standard plant community” by “fostering rare 
plant communities”, replaced “capacity of a soil for” by “capacity for” 

• P4 L27: replaced “The majority of Berne study region (80 %)” by “The majority (80~\%) of the study 
region Berne”

• P4 L30: replaced “region comprise forested areas” by “region comprise of the forested areas”

• P6 L1: replaced “quarternary” by “pleistocene”

• P6 L2: removed “typical for the Swiss Plateau”

• P6 L10: replaced “local” by “small”

• P6 L14: replaced “comprised data” by “comprised of data”

• P6 L17-18: replaced “Collating these soil data from different sources implicated” by “Collating the data 
from the different sources showed”

• P7 L2: replaced “performance” by “all”

• P7 L4: replaced “hence the accuracy of the coordiantes is about +/- 25 m.” by “hence we estimated 
accuracy of coordinates to about +/- 25 m. “ following the revision of manuscript soil-2017-13

• P7 L5: replaced “to common depth of” by “to fixed-depth data for”

• P7 L7: replaced  “Values for depth t” by “Values o_t for depth t”  

• P7 L14: removed “over”

• P8 L4: replaced “data by” by “data from”

• P8 L8: removed “per depth”

• P8 L10: replaced “SOM content was” by “SOM contents were”

• P8 L12: replaced “likely” by “probably”
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Submission after minor revisions of manuscript No soil-2017-14 

• Sections 3.1 to 3.6 (starting on P10 L12): We refrained from including the first sections of each method 
description into the introduction. We preferred to keep the introduction short and concise. 

• P11 L2: replaced “besides” by “as well as”

• P11 L19: replaced “at reducing” by “to reduce”

• P11 L30: replaced “of all fitted n_tree trees” by “of all n_tree fitted trees”

• P12 L6: replaced “of several models to an ensemble” by “by several models”

• P14 L8: replaced “large number” by “large set”

• P14 L10: replaced “but remains relevant over all responses” by “but remained relevant when 
considering all responses”

• P14 L18: replaced “undoubtedly” by “unquestionably” 

• P20 L32-22: removed out of place sentence: “Recall that topsoil clay content could be predicted fairly 
well for the Greifensee study region (Table 4).”

• P25 L7: added “and model averaging (MA)”

• P25 L15: replaced “Admittedly, the best performing method frequently had not” by “The best performing
method frequently did not have “

• P25 L18: removed “likely”

• Figure 8: improved visual appearance and localization of the maps by adding topographical features 
and reducing dominance of hill-shaded relief.  

• Replaced “nonstationary” by “non-stationary”, “componentwise” by “component-wise” and “Supplement”
by “the Supplement” throughout the manuscript.
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Abstract.

Spatial assessment of soil functions requires maps of basic soil properties. Unfortunately, these are either missing for many

regions or are not available at the desired spatial resolution or down to
::
the

:
required soil depth. Field based generation of large

soil data sets and of conventional soil maps remains costly. Meanwhile, soil legacy
:::::
legacy

:::
soil

:
data and comprehensive sets of

spatial environmental data are available for many regions.5

Digital soil mapping (DSM) approaches – relating soil data (responses) to environmental data (covariates) – are facing the

challenge to build
:::
face

:::
the

:::::::::
challenge

::
of

:::::::
building statistical models from large sets of covariates originating for example from

airborne imaging spectroscopy or multi-scale terrain analysis. We evaluated six approaches for DSM in three study regions in

Switzerland (Berne, Greifensee, ZH forest) by mapping effective soil depth available to plants (SD), pH, soil organic matter

(SOM), effective cation exchange capacity (ECEC), clay, silt, gravel content and
:::
fine

:::::::
fraction bulk density for four soil layers10

::::
depth

:
(totalling 48 responses). Models were built from 300-500 environmental covariates by selecting linear models by 1)

grouped lasso and by
::
2) an ad-hoc stepwise procedure for 2) robust external-drift kriging (EDK

::::::
georob). For 3) geoadditive

models we selected penalized smoothing spline terms by componentwise
:::::::::::::
component-wise

:
gradient boosting (geoGAM). We

further used two tree-based methods: 4) boosted regression trees (BRT) and 5) Random Forest
::::::
random

:::::
forest

:
(RF). Lastly, we

computed 6) weighted model averages (MA) from predictions obtained from methods 1–5.15

Lasso, georob and geoGAM successfully selected strongly reduced sets of covariates (subsets of 3-6 % of all covariates).

Differences in predictive performance, tested on independent validation data, were mostly small and did not reveal a single

best method for 48 responses. Nevertheless, RF was on average often best among methods 1–5 (28 of 48 responses), but

was outcompeted by MA for 14 of these 28 responses. RF tended to over-fit the data. Performance of BRT was slightly

worse than RF. GeoGAM
::
of

:::
RF.

::::::::
geoGAM

:
performed poorly on some responses and was only best

:::
best

:::::
only for 7 of 4820

responses. Predictive precision
:::::::::
Prediction

:::::::
accuracy

:
of lasso was intermediate. All models generally had small bias. Only the

computationally very efficient lasso had slightly larger bias likely because it tended to under-fit the data. Summarizing, although
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differences were small, the frequencies of best and worst performance clearly favoured RF if a single method is applied
:::
and

MA if multiple prediction models can be developed.

1 Introduction

Human well-being depends on numerous services that soils provide in agriculture, forestry, natural hazards, water protection,

resources management and other environmental domains. The capacity of soils
:::
soil to deliver services is largely determined5

by its functions, e.g. regulation of water, nutrient and carbon cycles, filtering of compounds, production of food and biomass

or providing habitat for plant species biodiversity
:::::
plants and soil fauna (Haygarth and Ritz, 2009; Robinson et al., 2013). The

assessment of the multi-functionality of soils commonly depends on soil datasets of its
:::::::
depends

:::
on

:::::::::
availability

:::
of

:::::::
datasets

::
on

:
chemical, physical and biological

:::
soil

:
properties (Calzolari et al., 2016). Greiner et al. (2017) compiled a set of approved

assessment methods for soil functions from the applied soil science community that cover the multi-functionality of soils (Ta-10

ble 1). This set of soil functions can be assessed with 12 basic soil properties
:::
(see

::::::::
references

::
in
:::::
Table

::
1). Unfortunately, spatial

assessment of soil functions is often hindered because precise
:::::::
accurate

:
maps of soil properties are missing in many countries

of the world (Hartemink et al., 2013; Rossiter, 2016). However, for many regions legacy data on soil properties (responses)

and comprehensive spatial environmental data (covariates) are available and can be linked by digital soil mapping (DSM)

techniques (e.g. McBratney et al., 2003; Scull et al., 2003)
:::::::::
techniques

::::::::::::::::::::::::::::::::::::::::::::
(DSM, e.g. McBratney et al., 2003; Scull et al., 2003).15

Many recent DSM studies used relatively small sets of no more than 30 covariates

(e.g. Adhikari et al., 2013; Vaysse and Lagacherie, 2015; Were et al., 2015; Mulder et al., 2016; Lacoste et al., 2016)

Taghizadeh-Mehrjardi et al. 2016; Yang et al. 2016)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Li et al., 2011; Liess et al., 2012; Adhikari et al., 2013; Vaysse and Lagacherie, 2015; Were et al., 2015; Lacoste et al., 2016)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Mulder et al. 2016; Somarathna et al. 2016; Taghizadeh-Mehrjardi et al. 2016; Yang et al. 2016). Geodata availability and deemed20

importance often determine what covariates are used for DSM. However, Brungard et al. (2015) showed that a priori preselec-

tion of covariates using pedological expertise might result in a decreased precision
:::::::
accuracy

:
of soil class predictions. Using

comprehensive environmental geodata for DSM likely improves predictive precision
:::::::
improves

:::::::::
prediction

::::::::
accuracy because

soil forming factors are better covered using more
::::
likely

:::::
better

::::::::::
represented

:::
by

:
a
::::::
larger

::::::
number

:::
of covariates. Derivatives of

geological or legacy soil maps (Nussbaum et al., 2014), multi-scale terrain analysis (Behrens et al., 2010a, b, 2014; Miller25

et al., 2015), wide ranges of climatic parameters (Liddicoat et al., 2015) and imaging spectroscopy

(Mulder et al., 2011; Poggio et al., 2013; Fitzpatrick et al., 2016)
::::::::::::::
(multi-temporal)

:::::::
imaging

:::::::::::
spectroscopy

::::::::::::::::
(Mulder et al. 2011,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Poggio et al. 2013; Viscarra Rossel et al. 2015; Fitzpatrick et al. 2016; Hengl et al. 2017; Maynard and Levi 2017 all contribute

to generate high-dimensional sets of partly multi-collinear covariates. We presume
:::
One

::::::
usually

::::::::
presumes

:
that DSM techniques

benefit from such large number of covariates
::::
even

::
if

:
a
:::::::
method

::::::
selects

::::
only

:
a
:::::
small

::::::
subset

::
of

:::::::
relevant

:::::::::
covariates

:::
for

:::::::
creating30

::
the

::::::::::
predictions. A versatile DSM model building strategy faces therefore the challenge to deal

:::::::
therefore

::::
faces

:::
the

:::::::::
challenge

::
of

::::::
dealing with (very) large covariate

::::::::
covariates sets. If, in addition, many responses have to be mapped , such an

:
a
:::::
DSM approach

should

2



1. efficiently build models without much user interaction, even if there are more covariates p than observations n (n < p),

2. cope with numerous multi-collinear and likely noisy covariates,

3. result in predictions with good precision
:::::::
accuracy and

4. avoid over-fitting the calibration data.

Besides, the method should fulfil basic DSM requirements like modelling nonlinear and nonstationary
::::::::
non-linear

:::
and

::::::::::::
non-stationary5

relations between response and covariates, considering spatial autocorrelation, allowing to check pedological plausibility of the

relationships between soil properties and soil forming factors and modelling
::::::::
modelled

::::::::::
relationships

::::
and

:::::::::
quantifying

:
predictive

uncertainty.

DSM approaches used in the past can broadly be grouped in 1) linear regression models (LM), 2) variants of geosta-

tistical approaches, 3) generalized additive models (GAM), 4) methods based on single trees like classification and regres-10

sion trees (CART), 5) machine learning methods as support vector machines (SVM) or artificial neural networks (ANN), 6)

ensemble
::::::::
(ensemble)

:
machine learners like boosted regression trees (BRT) or random forest (RF), and 7

:
6) averaging predictions

of any of the mentioned methods (model averaging, MA).

LM (e.g. Meersmans et al., 2008; Wiesmeier et al., 2013) can not be fitted for n < p
:
, and estimates of coefficients become

unstable with collinear covariates. Liddicoat et al. (2015) and Fitzpatrick et al. (2016) used lasso (least absolute shrinkage15

and selection operator), a form of penalized LM suitable for large correlated covariate sets. Lasso models only linear relations

between response and covariates, but performs model building computationally very efficiently. Fitzpatrick et al. (2016) found

that
::::
lasso

::::::
clearly

:::::::::::
outperformed

:
different stepwise LM selection procedureswere clearly outperformed by lasso. Geostatistical

approaches are generally popular in DSM (McBratney et al., 2003), and they have clear advantages over other methods: They

allow for change-of-support
:
, and predictive uncertainty that follows straightforward

::::::
follows

::::::::::::::
straightforwardly

:
from the kriging20

variances. Similar to LM external-drift kriging (EDK) requires a parsimonious linear trend model. Nussbaum et al. (2014)

used lasso for initial covariate selection, but subsequent manual model building steps were needed. Lacoste et al. (2016) found

that even a computationally optimized form of kriging was not suitable for fitting small sets of covariates p on numerous

observations n. Nonlinear
::::::::
Non-linear

:
additive modelling through GAM also relies on covariate selection for stable trend es-

timation. Poggio et al. (2013) used a covariate selection procedure with a random component, and ? applied componentwise25

:::::::::::::::::::::::::
Nussbaum et al. (2017) applied

::::::::::::::
component-wise gradient boosting to preselect relevant covariates. Unless combined with ei-

ther lasso or boosting, large sets of covariates are difficult to process by LM, EDK or GAM. But these methods allow for simple

model interpretation by partial effects plots (Faraway, 2005, p. 73)

Generally, more complex approaches seem to yield more precise
:::::::
accurate predictions than simpler DSM methods

(Brungard et al., 2015)
:::::::::::::::::::::::::::::::::
(Liess et al., 2012; Brungard et al., 2015). Tree-based methods model effects

:::::
Effects

:
of interactions30

between covariates on responses . Single trees (CART, see references in McBratney et al., 2003)
:::
can

::
be

::::::::
modelled

::
by

:::::::::
tree-based

:::::::
methods,

:::
but

::::::
single

::::
trees

::::::::::::::::::::::::::::::::::::::::::
(CART, e.g. Liess et al., 2012; Heung et al., 2016) tend to be noisy (large variance), but have small

bias. Cubist, an extension of CART with LM at the terminal nodes of the tree, was so far mostly applied to small covariate sets
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(e.g. Adhikari et al., 2013; Lacoste et al., 2016; Mulder et al., 2016)
:::
only

:::::::::::
occasionally

::::::
applied

::
to

:::::
large

:::::::
covariate

::::
sets

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Viscarra Rossel et al., 2015; Miller et al., 2015). Forming ensembles of trees aims at reducing their variance . BRT combines

trees in a stagewise forward manner by componentwise gradient boosting, and RF averages de-correlated fully grown trees
::
to

:::::
reduce

:::::
their

:::::::
variance

:::
and

::::::
likely

::::::::::
outperforms

:::
its

:::::
single

::::::::::
components

::::::::::::::::
(Liess et al., 2012). RF seems stable for large sets of co-

variates (Behrens et al., 2010a, b, 2014) . BRTwas
::::
while

:::::
BRT, compared to RF by Yang et al. (2016)yielding similar model5

precision.

SVM outperformed LM and cubist in a study by Somarathna et al. (2016), where SVM were further improved by a spatial

ensemble approach. SVM and ANN were compared by Were et al. (2015) and Taghizadeh-Mehrjardi et al. (2016): They were

about equally good and outperformed the ensemble learner RF. Li et al. (2011), on the other hand, found RF to outcompete

SVM and were able to improve RF by residual kriging. Vaysse and Lagacherie (2015) also found that subsequent kriging of10

residuals improved RF
:
,
:::::
yields

::::::
similar

:::::
model

::::::::
accuracy.

Lastly, averaging
::::::::
Averaging

:
predictions from different models (MA) can be seen as a way of dimension reduction. Building

new models by combining predictions by several methods possibly reduces
::::::
follows

:::
the

:::::::
strategy

::
of

::::::::
ensemble

::::::::
learners,

:::::::
possibly

:::::::
reducing prediction variance (Hastie et al., 2009, pp. 288)

:
,
:::
but

:::
MA

::::
has

:::::
rarely

::::
been

::::
used

:::
for

::::
DSM. Malone et al. (2014) explored

different weighing strategies for MA, but it became not clear
:::
was

::::::
unclear

:
from the study whether MA was indeed better than15

predictions by a single method because predictions were not validated by independent data. Li et al. (2011) averaged only

predictions computed by the best performing (very similar) models, and this did result in no
::
not

:::::
result

::
in

:::
any

:
advantage of MA

over single models.

All of the
:::
The

::::::::::
comparative

:
studies mentioned above used only small sets of covariates (p < 30), tested only few

::
or

::::
very

::::::
similar

::::::::::::::::::::
(Fitzpatrick et al., 2016) approaches or, with exception of Vaysse and Lagacherie (2015), did not extend the evaluation20

to several soil properties or study regions. It is therefore currently not clear
::::::
unclear

:
how well models can be built form large

covariate sets by popular DSM methods. Empirical evidence is still too limited to rate DSM methods with respect to the criteria

1–4 listed above. In particular, it is not known whether methods can be identified that are more prone to over-fit soil data or

that yield precise
:::::::
accurate predictions more often than others.

The objectives of this study were to evaluate for a rather broad choice of currently often used DSM methods how well they25

cope with requirements 1–4 listed above. We compared in our study a) lasso, b) robust EDK (georob), c) spatial GAM with

model selection based on boosting (geoGAM), two ensemble tree-methods d) BRT and e) RF as well as f) weighted MA. In

more detail, our objectives were to

i) automatically build models by methods (a)–(e
:::
a)–e) and compute MA of (a)–(e

::::
a)–e) for numerous responses from large

sets of covariates (300–500),30

ii) evaluate predictive performance of these models with independent validation data,

iii) evaluate over-fitting behavior and practical usage of approaches,

iv) and, lastly, to briefly compare accuracies of DSM predictions and predictions derived from a legacy soil map 1:5 000.
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Table 1. Basic soil properties needed for spatial soil function assessment in the three study regionsof the PMSoil project, which was part

of the Swiss National Research Programme “Sustainable use of Soil as a Resource” (NRP68). Most soil functions required data on further,

expensive-to-measure soil properties that were inferred by pedotransfer functions (PTF) from the basic soil properties (see Greiner et al.,

2017, BD: soil
:::
fine

::::::
fraction

:::
bulk

:
density, SOM: soil organic matter,

::
SD:

:::
soil

:::::
depth

:::::::
available

::
to

:::::
plants, dw:

: depth of stagnic or gleyic horizon,

dc:
:
drainage class [dw and dc modelled

:::::
defined in ?

::::::::::::
Nussbaum et al., ?

::::
2017], BS: base saturation, ECEC: effective cation exchange capacity,

BC/Al: ratio of sum of basic cations to aluminium).

Static soil
:::
Soil

:
(sub)function cl

ay si
lt

gr
av

el
B

D

SO
M

pH E
C

E
C

B
S

B
C

/A
l

SD d
w d
c

Regulation function

Capacity of a soil for water infiltration and storage (Danner et al., 2003) * * * *3 * * *

Nutrient cycling (Lehmann et al., 2013) * * * *3 * * * *

Binding capacity for inorganic contaminants (DVWK, 1988) * * *3 * * *

Binding and decomposition capacity of a soil for organic contaminants (Litz, 1998) * * * *3 * * * * *

Filtering of pollutants and acidity buffering (Bechler and Toth, 2010) * * *3 * * * *

C storage (SOC-stock to 1 m soil depth, Greiner et al. unpublished) * *3 * *

Capacity for plant nutrient retention (against percolation and overland flow, Jäggli et al.,

1998)

* * * *3 * * * *

Acidity state of forest soils, resilience to acidification and risk of aluminum toxicity

(Zimmermann et al., 2011)

*1 * * * *2 *2

Habitat function

Soils with extreme properties allowing a non-standard plant community
::::::
fostering

::::
rare

::::
plant

:::::::::
communities

:
(Siemer et al., 2014)

* * *3 * * * *

Habitat for plants (Greiner et al., unpublished) * * *3 * * *

Production function

Agricultural production (Jäggli et al., 1998) * * * *3 * * * * *

1 Only 50 sites with gravel estimates available, mean content per soil layer
:::
depth

:
used.

2 Limited data for BS and BC/Al (topsoil 300, subsoil 210 sites), no independent validation possible, therefore not included in this publication.

3 For Berne and Greifensee computed by PTF which used SOM to predict BD.

We focused on three study regions in Switzerland: A forested region and two regions covering
:::
with

:
agricultural land, where

harmonized legacy soil data and in latter
::::::
regions airborne imaging spectrometer data were available. For the agricultural land

:
,

soil properties required for assessing regulation, habitat and production functions were mapped (Table 1). For forests,
:
we had

less diverse soil data and mapped only properties to assess acidification status (Zimmermann et al., 2011).
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Table 2. Description of three study regions (a: area, h: elevation, Swisstopo, 2013b; p: mean annual precipitation; t: mean annual temperature,

Zimmermann and Kienast, 1999).

name land use a [km2] h [m] p [mm] t [◦C]

Berne agriculture 235 430–910 960–1440 6.8–9.3

Greifensee agriculture 170 390–840 1040–1590 7.5–9.1

ZH forest forest 507 340–1170 880–1780 6.1–9.1

0 50 100 km

Jur
a

Berne
Alps

 GreifenseePlatea
u

     ZH forest

Data sources: Biogeographical regions © 2001 BAFU  /  Swiss Boundary, Lakes © 2012
BFS GEOSTAT  /  Boundries Europe: NUTS © 2010 EuroGeographics

Figure 1. Location of study regions Berne and Greifensee (agricultural soils) and Canton of Zurich (forest soils).

2 Materials

2.1 Study regions

We chose three study regions on the Swiss Plateau with contrasting patterns regarding land use, geology, soil types and avail-

ability of airborne remote sensing images (Fig. 1, Table 2). Agricultural land north of the city of Berne and around Lake

Greifensee in the (Canton of Zurich)
:

was selected within the outline of imaging spectroscopy data gathered by the APEX5

spectrometer in the years 2013 and 2014 (Schaepman et al., 2015). Agricultural land was defined as the area not covered by

any areal features extracted from the Swiss topographic landscape model (swissTLM3D, Swisstopo, 2013a), hence wetlands,

forests, parks, gardens and developed areas were excluded.

The majority of Berne study region (80 %)
::
of

:::
the

:::::
study

:::::
region

::::::
Berne

:
was covered by crop land and 15 % by permanent

grassland. In the Greifensee region crop land covered roughly half of the area and one third was permanent grassland. The10

remaining areas were orchards, vineyards, horticultural areas or mountain pastures (Hotz et al., 2005).

The third study region comprise
::
of

:::
the

:
forested areas of the Canton of Zurich (ZH forest)

:
,
::
as

:
derived from the

:::::::
forested

:::
area

:::
of

:::
the

:
topographic landscape model (swissTLM3D, Swisstopo, 2013a). Two thirds of the forested area are dominated
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by conifers (FSO, 2000b). In all three study regions soils formed mostly on weathered Molasse formations and quaternary

sediments dominantly from last glaciationtypical for the Swiss Plateau
:::::::::
pleistocene

::::::::
sediments

::::::::::
dominantly

::::::::
deposited

::::::
during

:::
the

:::
last

::::::::
glaciation. In the northeastern partJura foothills with limestone rocks ,

::::::::
limestone

::::
Jura

::::
hills

:
reach into ZH forest (Hantke,

1967). In the western part of the Berne study region
:
, alluvial plains with silty sediments or peat formations prevail (Swisstopo,

2005).5

Soils are rather young in all study regions (< 20000 years old) as they mostly formed after the end of the last glaciation.

Typical soils are Cambisols and Luvisols (calcaric to dystric), Gleysols and Fluvisols (reflecting frequent wet conditions) and

Histosols (on former peatlands). Shallower soils are often Regosols (FSO, 2000a).

2.2 Soil data

2.2.1 Origin of soil data and data harmonization10

We gathered and harmonized legacy soil data from various soil surveys performed between 1960 and 2014. In Berne data

was collected mostly before 1980 in local
:::::
small soil mapping projects for land improvement. Data for Greifensee and ZH

forest originate from long-term soil monitoring of the Canton of Zurich (KaBo), a soil pollutant survey (Wegelin, 1989),

field surveys for creating soil maps of the agricultural land (scale 1:5 000, Jäggli et al., 1998) or soil investigations in the

course of forest vegetation surveys by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL, Walthert15

et al., 2004). Hence, the compiled soil database comprised
::
of

:
data of soil properties that were measured or estimated for

pedogenic soil horizon at
:::::::
horizons

::
of

:
soil profiles or measured at fixed depth layers from bulked soil samples. Sites for

pollution surveying were chosen on a regular grid. The remaining sites were selected purposively
::
by

:::::::::
purposive

::::::::
sampling

:::::::::::::::::::::::::::
(Webster and Lark, 2013, p. 86) by field surveyors to best represent soils typical for the given landform. The sites of WSL

were chosen purposively
::
by

::::::::
purposive

::::::::
sampling according to the aims of the project. Collating these soil data from different20

sources implicated
::
the

::::
data

:::::
from

:::
the

:::::::
different

:::::::
sources

:::::::
showed that soil data were not directly comparable, and tailored har-

monisation procedures were required to provide consistent soil datasets. The heterogeneity of soil legacy data resulted among

others
::::::
legacy

:::
soil

::::
data

:::::::
resulted from several standards of soil description and soil classification, different data keys, different

analytical methods and in particular
:::::::::
particularly, often missing metadata for a proper interpretation of the datasets. Therefore,

we elaborated a general harmonisation scheme that covers performance
::
all steps required to merge different soil legacy

:::::
legacy25

:::
soil data into one common consistent database (Walthert et al., 2016). Sampling sites were recorded in the field on topographic

maps (scale 1:25 000), hence the accuracy of the coordinates is
::
we

::::::::
estimated

::::::::
accuracy

::
of

::::::::::
coordinates

::
to about ± 25 m.

Horizon-based (and non-fixed depth) soil property data was converted to common depth-layers of
:::::::::
fixed-depth

::::
data

:::
for 0–10,

10–30, 30–50 and 50–100 cm soil depth for Berne and Greifensee and of 0–20 and 40–60 cm depth for ZH forest. The latter

intervals were chosen because at the majority of forest sites only these layers
:::::
depths

:
had been sampled. Values for layer

::
ot:::

for30

::::
depth

:
t were computed from horizon (or layer) data of

::::::::::
fixed-depth)

::::
data oi by

ot =

h∑
i=1

wi oi, (1)
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with wi given by the product of the fraction of the thickness of horizon/layer
::::
fixed

::::
depth

:
i within t and its soil

::
the

::::
bulk

:
density

ρi . The wi were normalized to sum to 1.
::
of

:::
the

::::
soil

:::::::
fraction

::::
with

:::::::
particle

:::
size

:::
≤

:
2
:
mm

:
.
:
Because we lacked estimates of

volumetric gravel content for the majority of samples we assumed that it was constant. ρi was partly derived by pedotransfer

functions (PTF, Table S1 in
:::
the Supplement).

Soil properties were either measured by standard laboratory procedures, estimated in the field or calculated by pedotransfer5

functions (PTF ,
:::
PTF

::
(see overview in Table S1 in

::
the

:
Supplement). We accounted for temporal changes

:::::::::
fluctuations

:::
of

:::
the

::::::::::
observations

:
over the long period over which the data had been collected and for possible differences between laboratory

measurements, field estimates and PTF predictions by statistical modelling. We included categorical covariates (factors) in

the statistical models that coded separately for laboratory measurements, field estimates and PTF predictions the period when

the data had been gathered. For Berne three periods (years 1968–1974, 1975–1978 and 1979–2010) were coded separately10

for laboratory measurements and field estimates. For Greifensee and ZH forest coding required more care because we had

replicate samples from soil monitoring. Instead of only using mean or median values per site this coding allowed us to use all

individual observations. For Greifensee we coded the years of 1960–1989, 1990–1994 and 1995–1999 separately for laboratory

and field data and 2000–2014 for laboratory measurement only. For ZH forest we distinguished the periods 1985–1994, 1995–

1999, 2000–2004, 2005–2009, 2010–2014 for laboratory measurements and
:
a
:
further two levels for predictions by PTF or15

pH measurements on field-moist samples (see Table S1 in
:::
the Supplement). Older (or newer) data on pH, soil organic matter

(SOM) and effective cation exchange capacity (ECEC) than reported above was discarded. To compute model predictions for

mapping we used the most recent time period and laboratory measurements as reference level.

2.2.2 Soil properties

For the agricultural land (Berne, Greifensee) we modelled clay and silt, gravel content, pH, SOM and effective soil depth20

available to plants (SD) and for ZH forest ECEC, pH and
::::
bulk

:
density of the fine soil fraction (≤ 2 mm, BD). For Berne

and Greifensee (possibly incomplete) soil data was available for 1052 and 2050 sites respectively, and for ZH forest we had

2379 sites with soil data (Fig. S1 to S3 in
:::
the Supplement). We used roughly 20 % of the sampled sites for independent model

validation. Depending on data availability, this resulted in 120–300 validation sites that were chosen by weighted random

sampling. We ensured an even distribution of validation sites over the study regions by assigning to each site a sampling25

weight that was proportional to respectively the forested and agricultural area within its Dirichlet polygon (Dirichlet, 1850).

Models for properties of agricultural soils were calibrated with data of 700–900 sites. Only for
:::
For

:
SOM there were more

topsoil sites available (1140), but in the subsoil we had only data of
::::
from

:
400 (Greifensee) and 530 (Berne) sites, respectively.

For ZH forest topsoil chemical properties were available for 1055 (ECEC) to 1470 (pH) sites, but for subsoils data was

again scarce (ECEC 380 and pH 690 sites). For modelling BD we had only 550 (topsoil) to 370 (subsoil) sites. On average30

we calibrated the models with the following spatial data densities: Berne 2.9–3.6, Greifensee 4.2–5.1 and ZH forest 1.2–1.8

observations per km2.

Tables S3 to S7 in
:::
the Supplement report per depth layer descriptive statistics of all soil properties. In general, soils in the

Greifensee region were richer in clay (mean clay content 26 %) than in Berne (17–19 %) and had larger gravel content (8–13 %
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vs. 3–5 %). In both agricultural study regions, large SOM content was
:::::::
contents

::::
were

:
occasionally found (> 40 %) as drained

organic soils were sampled at some sites. Topsoil pH showed in Berne and Greifensee similar variation (mean of 6.3–6.7 and

standard deviation of 0.7–0.9), because agricultural management likely
:::::::
probably

:
evens out pedogenic differences. ZH forest

soils were more acid (mean topsoil pH 4.7) and pH varied more strongly (minimum pH 2.6).

2.3 Covariates for statistical modelling5

To represent soil forming factors we used data from 28 sources, totalling to roughly 480 covariates for Berne and Greifensee and

330 for ZH forest where APEX imaging spectrometer data was not available (Table 3 and Table S2 in
::
the

:
Supplement). Exact

numbers of covariates used depended on soil properties. When sampling density of soil data was small we excluded covariates

that showed hardly any spatial variation (e.g. coarse-gridded climate data) or that resulted only in few data points per factor

level. Wherever possible, we aggregated factor levels based on pedological knowledge to obtain at least 20 observations per10

level.

3 Methods

The large number of responses – 21 for each of Berne and Greifensee, 6 for ZH forest – and of covariates (Table 3) required

that statistical models could be automatically built without user interaction. Hence, we used five approaches: lasso (Sect. 3.1)

and robust external-drift kriging (georob, Sect. 3.2), geoadditive modelling (geoGAM, Sect. 3.3) as well as two tree-based15

machine learning procedures (boosted regression trees [BRT], Sect. 3.4 and random forest [RF], Sect. 3.5). The predictions by

the five methods were moreover combined by weighted averaging (MA, Sect. 3.6).
::
To

:::::
create

:::
the

::::
final

:::::
maps

:::
we

::::::::
predicted

::::
each

:::::::
response

::
at

:::
the

:::::
nodes

::
of

::
a

::
20

:
m

:::::
-grid.

For parametric methods (Sect. 3.1 to 3.3) we transformed strongly positively skewed responses Y (s)
::::
Y (s)

:
(see Tables S4,

S6 and S7 in
:::
the Supplement for skewness). Transformation by natural logarithm was applied to soil organic carbon (SOM)20

and effective cation exchange capacity (ECEC) while gravel content was transformed by square root (sqrt). Predictions of

log-transformed data were unbiasedly backtransformed according to Cressie (2006, Eq. (20), see also Nussbaum et al., 2017)

and for sqrt-transformed data we used

Ỹ (ss) = f̂(x(s))2 + σ̂2 −Var[f̂(x(s))] (2)

with f̂(x(s))2 being the prediction of the sqrt-transformed response, σ̂2 the estimated residual variance of the fitted model25

and Var[f̂(x(s))] the variance of f̂(x(s)) as provided again by the final model. Predictions by group lasso (Sect. 3.1) were

backtransformed by exp(·) or (·)2 because Var[f̂(x(s))] was not known.
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Table 3. Overview of geodata sets and derived covariates (for more information see Table S2 in
::
the

:
Supplement, r: pixel size for raster

datasets or scale for vector datasets, a: limited to study region Be: Berne, Gr: Greifensee or Zf: ZH forest, n: number of covariates per

dataset, NDVI: normalized differenced vegetation index, TPI: topographic position index, TWI: topographic wetness index, MRVBF: multi-

resolution valley bottom flatness).

geodata set r a n covariate examples

Soil physiographic units, historic wetlands,

presence of drainage networks or soil

amelioration

Soil overview map (FSO, 2000a) 1:200 000 8

Wetlands Wild maps (ALN, 2002) 1:50 000 Gr 1

Wetlands Siegfried maps (Wüst-Galley et al., 2015) 1:25 000 Gr 1

Agricultural suitability (LANAT, 2015) 1:25 000 Be 1

Anthropogenic soil interventions (AWEL, 2012) 1:5 000 Gr 1

Drainage networks (ALN, 2014b) 1:5 000 Gr 2

Parent material (aggregated) geological units, ice level

during last glaciation, aquifers, areas

suitable for gravel exploitation

Geological overview map (Swisstopo, 2005) 1:500 000 Be 4

Map of last glacial maximum (Swisstopo, 2009) 1:500 000 1

Geotechnical map (BFS, 2001; BAFU and GRID-Europe, 2010) 1:200 000 2

Geological map (ALN, 2014a) 1:50 000 7

Geological maps (Swisstopo, 2016), roughly harmonized 1:25 000 Be 1

Groundwater occurrence (AWEL, 2014; AWA, 2014b) 1:25 000 Gr 2

Hydrogeological infiltration zones (AWA, 2014a) 1:25 000 Be 2

Mineral raw materials (AGR, 2015) 1:25 000 Be 1

Climate mean annual/monthly temperature and

precipitation, radiation, continentality

index, site water balance, NH3

concentration in air

MeteoSwiss 1961–1990 (Zimmermann and Kienast, 1999) 25/100 m 33

MeteoTest 1975–2010 (Remund et al., 2011) 250 m 38

Air pollutants (BAFU, 2011) 500 m Zf 2

NO2 immissions (AWEL, 2015) 100 m Gr 3

Vegetation band ratios, NDVI, imaging

spectroscopy bands, aggregated

vegetation units, canopy height

Landsat7 scene (USGS EROS, 2013) 30 m 9

DMC mosaic (DMC, 2015) 22 m 4

SPOT5 mosaic (Mathys and Kellenberger, 2009) 10 m Zf 12

APEX spectrometer mosaics (Schaepman et al., 2015) 2 m Gr,Be 180

Share of coniferous trees (FSO, 2000b) 25 m Zf 1

Vegetation map (Schmider et al., 1993) 1:5 000 Zf 2

Species composition data (Brassel and Lischke, 2001) 25 m Zf 1

Digital surface model (Swisstopo, 2011) 2 m Zf 1

Topography slope, curvature, northness, TPI, TWI,

MRVBF (various radii/resolutions)Digital elevation model (Swisstopo, 2011) 25 m 62

Digital terrain model (Swisstopo, 2013b) 2 m 134
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For tree-based models (Sect. 3.4 and 3.5) responses were not transformed. Clay and silt were modelled independently, and

sand
:
.
::::
Sand

:
was computed as the remainder to 100 % .

:::::::
because

:::
for

::::
field

::::::::
estimates

:
–
::
a
:::::::::
substantial

:::
part

:::
of

:::
the

::::
used

::::::
texture

::::
data

:::::
(Table

:::
S1

::
in

::
the

:::::::::::
Supplement)

::
–

::::
sand

:::
was

:::::::
obtained

::
in
:::
the

:::::
same

::::
way

:::::::::::::::::::::::::::::::::
(Brunner et al., 1997; Jäggli et al., 1998). Additive log-ratio

transformation (ALR) for compositional data (Aitchison, 1986, pp. 113) was tested for geoGAM (Sect. 3.3), but as ALR had

no advantage, we preferred to model textural components on their original scale.5

To find optimal tuning parameters, we minimized root mean squared error (RMSE, Eq. (4)) in 10-fold cross-validation using

the same cross-validation subsets for all methods in Sect. 3.1 to 3.4. For RF (Sect. 3.5) root mean squared error (RMSE) was

computed for out-of-bag predictions. All computations were done in R (R Core Team, 2016) using the functions reported

below.

3.1 Group lasso10

The lasso (least absolute shrinkage and selection operator) is a shrinkage method that likely excludes non-relevant covariates

and is therefore an attractive framework for highdimensional
:::
high

::::::::::
dimensional

:
covariate selection. Lasso estimates coefficients

of a linear model by minimizing a penalized residual sum of squares, with the penalty being equal to the weighted sum of

absolute values of the estimated coefficients. By increasing the weight λ of the penalty term,
:
a kind of continuous subset

selection is performed. Covariates with coefficients shrunken exactly to zero are excluded from the model (Hastie et al., 2009,15

Sect. 3.4).

We used the grouped lasso which jointly shrinks all coefficients of a factor (R package grpreg, Breheny and Huang, 2015).

The optimal λ was chosen such that we obtained the least complex model with cross-validation mean squared error (MSE) one

standard error (SE) larger than the optimal MSE (Hastie et al., 2009, p. 62).

3.2 Robust external-drift kriging (georob)20

As geostatistical method we
::
We

:
applied external-drift kriging (EDK) with robustly estimated trend coefficients and exponential

variogram parameters (R package georob, Papritz, 2016; Nussbaum et al., 2014).

Building a parsimonious trend model from a large number of covariates p
:
p
::
of

:::::::::
covariates was challenging for EDK

:::::
georob.

We built trend models by concatenating several covariate selection steps. First, we did a pre-selection by finding common

covariates in repeated lasso cross-validation runs (32 repetitions, optimal λ from argmini(MSEi)+ 1SE, R package glmnet,25

Friedman et al., 2010).

Then we reduced and expanded this initial covariate set by repeated stepwise covariate selection (models were reduced by

step function minimizing Bayesian information criterion [BIC], and enlarged by adding covariates with p≤ 0.05 in Wald tests).

Covariates with inflated coefficients due to multi-collinearity had to be removed manually form
::::
from the final models (40 %

of responses). We used a robustness parameter ψ equal to 1.75. When the robust estimation algorithm did not converge
:::
find

::
a30

:::
root

::
of

:::
the

:::::::::
estimating

:::::::::
equations, we first increased ψ and fitted the model non-robustly if this did not help (8 % of responses,

see Tables S10 and S11 in
:::
the Supplement).
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3.3 Boosted geoadditive model (geoGAM)

Additive models accommodate besides linear effectssmooth nonlinear
::
as

::::
well

::
as
::::::

linear
::::::
effects,

:::::::
smooth

::::::::
non-linear

:
effects of

continuous covariates. Spatial auto-correlation can be represented in geoGAM by a smooth function of the spatial coordi-

nates (smooth spatial surface), and nonstationary
::::::::::::
non-stationary effects are modelled by interactions between smooth spatial

functions and covariates. We based model building for geoGAM on componentwise
:::::::::::::
component-wise

:
gradient boosting, a slow5

stagewise additive model building algorithm. At each stage base procedures are fitted to residuals of the previous model and the

best fitting base procedure is retained to update the model by a small step size v. We used non-parametric penalized smoothing

splines for continuous covariates and linear base procedures for factors. After boosting further model reduction was achieved

by stepwise removal of covariates and aggregation of factor levels. Optimal number of boosting iterations mstop and param-

eters for further model reduction were found by minimizing cross-validation RMSE. For more details on the model building10

procedure, see ?
:::::::::::::::::::
Nussbaum et al. (2017) and R package geoGAM (Nussbaum, 2017).

Nonstationary
::::::::::::
Non-stationary effects were added for all continuous covariates, but cross-validation RMSE did not substan-

tially decrease, and we preferred the simpler stationary models throughout. Maximum boosting iterations mmax were kept

on default 300 iterations (geoGAM, Nussbaum, 2017), except if visual inspection of the sequence of cross-validation RMSE

values suggested that RMSE had not yet levelled off (20 % of the responses).15

3.4 Boosted regression trees (BRT)

Classification and regression trees (CART) are based on recursive binary partitioning of the covariates and can capture complex

interaction structures in a dataset. Generally, single trees tend to be noisy (large variance), but to have small bias. Combining

trees by ensemble methods aims at reducing their variance
::
to

::::::
reduce

::::
their

:::::::
variance

::::::::::::::::::::::::::::::
(Hastie et al., 2009, Chapt. 9 and 10). One

such approach uses regression trees as base procedures in componentwise
:::::::::::::
component-wise gradient boosting (Sect. 3.3).20

The optimal number of trees (= number of boosting iterations) ntrees and the number of splits per tree id (representing

interaction depth) was found by cross-validation by iterating through a grid of ntrees = 2,4,8, ..,200,210, ..,800 and id =

1,2, ..,12,14, ..,50 (R package gbm, Southworth, 2015, optimization done using R package caret, Kuhn, 2015).

Learning rate was kept similarly small as for geoGAM with v = 0.1 (Sect. 3.3, Hastie et al., 2009, Chapt. 10), and minimal

number of observations in each end node was set to 5 as in RF (Sect. 3.5).25

3.5 Random forest (RF)

RF (Breiman, 2001), another method of balancing instability of CART, averages a committee of fully grown trees. Two mech-

anisms are used to de-correlate trees and, consequently, reduce the variance of the predictions: 1) bootstrap sampling (bagging)

creates a different response vector for each tree
:::
and, 2) at each node only mtry < p randomly selected covariates are tested as

candidates for binary splitting. Predictions are simple means of all fitted ntree ::::
fitted

:
trees.30

Tuning parameters are the number of trees ntree, the minimal number of observations at terminal nodes nmin and the number

of tested covariates mtry at each split. Tests with five different responses confirmed that tuning ntree and nmin did not reduce
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out-of-bag RMSE substantially (Spiess, 2016). Therefore, we used default values of ntree = 500 and nmin = 5 for all RF fits (R

package randomForest, Liaw and Wiener, 2002). To find optimal mtry we minimized out-of-bag RMSE by iterating through

mtry = 1,2, ..,p.

3.6 Model averaging (MA)

The five methods described above likely represent different aspects of the covariates p and can be seen as different means of re-5

ducing the high-dimensional covariate input. Hence, combining predictions of several models to an ensemble
::
by

::::::
several

::::::
models

possibly improves predictive performance over single methods as large variance of individual models is reduced through aver-

aging (Hastie et al., 2009, Sect. 8.8). We computed weighted sums of the predictions by our five digital soil mapping (DSM)

procedures with weights proportional to the inverse cross-validation or out-of-bag RMSE (Tables S8, S10 and S11 in
:::
the

Supplement).10

3.7 Legacy soil map

For Greifensee region a legacy soil map 1:5 000 was available, which reported classes of clay and gravel content for top- and

subsoil and effective soil depth available to plants (SD, Jäggli et al., 1998). Experienced soil surveyors assigned to each class or

combination of classes a typical value of these soil properties (Nussbaum and Papritz, 2017), and we used these as predictions

when we computed the statistics for the validation sets (Sect. 3.8).15

The map defined topsoil by pedogenetic A horizon without indicating a particular depth. We compared therefore predictions

for topsoil to values observed in 0–10 and 10–30 cm depth and predictions for subsoil to observations in 30–50 and 50–100 cm.

Inhomogeneous mapping units (complex polygons with multiple soil units assigned) were excluded from the validation. Since

all the sites in the validation sets had been used to create the map, statistics rather report “goodness-of-fit” than
::::::::
validation

:::::::
statistics

::::
give

::::::::::::
goodness-of-fit

:::::
instead

::
of
:
rigorous validation measures for the legacy map.20

3.8 Evaluating predictive performance

The precision
:::::::
accuracy

:
of predictions by the six statistical DSM approaches and the legacy soil map was evaluated by compar-

ing predicted Ỹ (si) with observed Y (si) soil properties for all locations si of the validation sets. To rate the methods, we used

::::
bias, RMSE and mean squared error skill score (SSmse, Wilks, 2011, p. 359):

bias
:::

=− 1

n

n∑
i=1

(Y (

:::::::::::

si)−
::
Ỹ (si)),

::
(3)25

RMSE =

(
1

n

n∑
i=1

(
Y (si)− Ỹ (si)

)2)1/2

, (4)

SSmse = 1−

∑n
i=1

(
Y (si)− Ỹ (si)

)2
∑n

i=1

(
Y (si)− 1

n

∑n
i=1Y (si)

)2 . (5)
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SSmse has the same interpretation as the R2 which is occasionally reported, with SSmse = 1 for perfect predictions (RMSE =

0), SSmse = 0 if predictions have the same variance as the data of the validation set and SSmse< 0 for predictions with larger

variance. Note, however, that some DSM studies report R2 values
:::::::
identical

::
to

:::::
SSmse

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Vaysse and Lagacherie, 2015; Viscarra Rossel et al., 2015) while

:::::
others

::::::
report

::
R2, where R is the Pearson correlation co-

efficient of Y (si) and Ŷ (si) :::::
Y (si):::

and
::::::
Ŷ (si) (e.g. Behrens et al., 2014; Somarathna et al., 2016). Such R2 values differ,5

except for linear models fitted by ordinary least squares, from SSmse. Since computation of reported R2 is sometimes not clear,

we call the statistic SSmse, which makes it clear that it is a skill score.

4 Results and Discussion

4.1 Model building

Grouped lasso, robust external-drift kriging (georob) and boosted geoadditive models (geoGAM) successfully selected strongly10

reduced sets of covariates. On average, lasso models had 21, georob 27 and geoGAM only 12 covariates in the final models.

This corresponds to only 3-6 % of all covariates. Boosted regression trees (BRT) performed weak covariate selection. The

stagewise forward algorithm selected on average 43 % of all covariates (covariates with importance > 0) for its models.

Nonetheless, complexity of BRT models varied quite strongly with 12 % of covariates selected for the smallest and 86 % for

the largest model. The number of covariates in final lasso, geoGAM, georob and BRT models was positively correlated over15

the responses (Pearson correlation between methods 0.43–0.58). RF
:::::::
Random

:::::
forest

::::
(RF)

:
included all available covariates in

its models (all covariates with importance > 0). Having models that depend only on a reduced set of the initial input covariates

is desirable, because computing predictions is then less demanding and checking of effect feasibility becomes
::::::::::
interpreting

:::::::
modelled

::::::
effects

::
of

:::::::::
covariates

::
is easier. For three responses we checked therefore, whether covariate importance (Hastie et al.,

2009, p. 368) can be used to select covariates for random forest (RF)
:::
RF. We either selected q = 10,20, ..,50 most important20

covariates or selected covariates by stepwise recursive elimination of the least important covariate. For given q, both approaches

selected similar sets (correspondence 60–90 %), and root mean squared error (RMSE) computed with independent validation

data did not much change
::::::
change

::::
much

:
by the selection. For example for effective cation exchange capacity (ECEC) 0–20 cm,

RMSE increased only by 0.5 mmolc kg
−1 for a model with 50 instead of 325 covariates. This increase was clearly within

normal fluctuations of RMSE by bagging and random covariate selection (Spiess, 2016). Brungard et al. (2015) even improved25

predictive precision
::::::::
prediction

::::::::
accuracy of RF by recursive covariate elimination.

Optimal values of mtry were quite large, hence trees were not strongly de-correlated. Out of 48 models, 32 tuned fits had

mtry >
p
3 which is the software default (Liaw and Wiener, 2002). However, the gain obtained by optimizing mtry was generally

small. On average RMSE of models fitted with default mtry were only 1.015 times larger than
::
as

::::
large

::
as

:::
the

:
RMSE of models

with optimized mtry. The largest relative benefit of tuning was found for topsoil
:::
bulk

:
density of the fine soil fraction (BD) in30

ZH forest where optimal mtry reduced out-of-bag RMSE from 0.052 to 0.049 Mgm−3.

In contrast, BRT profited more from tuning its parameters ntrees and id. In particular, optimizing ntrees resulted in some

reduction of cross-validation RMSE. 69 % of the fits had smaller optimal ntrees than the software default (100). Tuning ntrees
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reduced RMSE on average by a factor of 0.941. Optimizing the interaction depth id (mean optimal value = 10, default = 1),

decreased RMSE on average by a factor of 0.982. Tuning ntrees and id had the largest effect for subsoil ECEC and pH in ZH

forest where cross-validation RMSE was reduced from 47.3 to 40.9 mmolc kg
−1 and 0.91 to 0.75 pH units, respectively.

Residual spatial autocorrelation of georob models was much weaker than autocorrelation of the original responses (Ta-

bles S4, S6 and S7 in
::
the

:
Supplement). Effective ranges for Greifensee and ZH forest were less than 300 m for most models,5

and for Berne effective ranges varied between 1–10 km with rather large nugget effects (around 50 % of the total sill). Only 5

of 48 final geoGAM models contained a smooth spatial surface, they .
:::::
They seemed often too smooth to represent small-scale

residual spatial autocorrelation
:::::::
(median

::
of

:::::::
effective

:::::
range

::
of

:::::::
residual

:::::::::
variogram:

::::
270 m

:
).

Since cross-validation and out-of-bag RMSE did not vary much between the five methods, model averaging (MA) weights

did in general not differ much from 1/5 (interquartile range of weights: 0.18 - 0.21). Only for subsoil soil organic matter (SOM,10

50–100 cm) cross-validation RMSE of parametric models were larger compared to BRT and RF and resulted in somewhat

larger differences between MA weights. A complete list of model parameters and MA weights is given in Tables S10 and S11

in
:::
the

:
Supplement.

Summing up, lasso, georob and geoGAM and partly BRT effectively selected relevant covariates from a large number
::
set.

Reduction of covariates in RF seems – tested on
:
a
:
few responses – promising. The benefit of tuning model parameters was15

sometimes only small, but remains relevant over
::::::::
remained

::::::
relevant

:::::
when

::::::::::
considering

:
all responses.

4.2 Evaluation of model performance

4.2.1 General performance

Table 4 reports RMSE and mean squared error skill score (SSmse) of all models for independent validation data, and Fig. 2

summarizes SSmse by method and study region. Overall, the models accounted only for a moderate part of the variance of20

the validation data (median SSmse of best performing method per response: 0.257). SOM in 10–30 cm soil depth in study

region Berne was best predicted with SSmse of 0.677. Soil properties in Greifensee were in general more difficult to predict,

yielding for some responses negative SSmse for all methods. For pH in 30–50 cm soil depth, for example, lasso performed

“best” with SSmse of -0.089 which is undoubtedly
:::::::::::::
unquestionably a bad result. In general, topsoil properties were predicted

more precisely
:::::::::
accurately than subsoil properties (Fig. 3). We are aware of the limitation that we did not validate the methods25

with data collected by a randomized statistical design (Brus et al., 2011). This is a common drawback if digital soil mapping

(DSM) is based on legacy soil data and thus represents a typical situation. Other studies that validated DSM methods with

independent data on several soil properties from multiple depths – and likely did not suppress evidence for poor performance

– reported similar R2 values: Negative up to 0.75 (Vaysse and Lagacherie, 2015), 0.1 to 0.48 (Mulder et al., 2016), 0.6 to 0.68

(Kempen et al., 2011), 0.36 to 0.52 (Viscarra Rossel et al., 2015) and 0.26 to 0.55 (Adhikari et al., 2013). Also, these studies30

found that R2 values of predictions of topsoil properties were generally larger than R2 related to subsoils.
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Figure 2. Boxplots of SSmse (for independent validation data) grouped by method and study region. Boxplots summarize SSmse values of

n = 21
:::::
n= 21

:
soil properties for study regions Berne and Greifensee (20 for georob in Greifensee). For ZH forest SSmse are individu-

ally shown for n= 6 soil properties (lasso: grouped least absolute shrinkage and selection operator, georob: robust external-drift kriging,

geoGAM: boosted geoadditive model, BRT: boosted regression trees, RF: random forest, MA: model averaging).
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Table 4. Precision
:::::::
Accuracy

:
of predictions of soil properties by study region and soil depth computed with independent validation data

(RMSE: root mean squared error, SSmse : mean squared error skill score according to Eq. (5), legacy map: legacy soil map 1:5 000, lasso:

grouped least absolute shrinkage and selection operator, georob: robust external-drift kriging, geoGAM: boosted geoadditive model, BRT:

boosted regression trees, RF: random forest, MA: model averaging, NA: no convergence of georob algorithm).

depth legacy map lasso georob geoGAM BRT RF MA
RMSE SSmse RMSE SSmse RMSE SSmse RMSE SSmse RMSE SSmse RMSE SSmse RMSE SSmse

Berne
clay 0–10 6.698 0.230 5.928 0.396 5.776 0.427 5.897 0.403 6.096 0.365 5.838 0.417

10–30 7.666 0.162 6.974 0.307 7.450 0.209 6.812 0.339 6.638 0.367 6.717 0.352
30–50 9.056 0.090 8.743 0.152 9.990 -0.108 8.733 0.153 8.619 0.175 8.729 0.154
50–100 9.001 -0.002 9.706 -0.165 9.458 -0.106 9.050 -0.013 8.922 0.016 8.871 0.027

silt 0–10 12.954 0.001 12.245 0.107 12.031 0.138 12.19 0.115 11.369 0.230 11.644 0.192
10–30 11.810 0.115 11.606 0.145 11.391 0.176 11.135 0.213 10.493 0.304 10.778 0.266
30–50 14.231 0.143 14.151 0.153 14.163 0.151 14.263 0.139 13.809 0.193 13.701 0.206
50–100 15.604 0.081 15.661 0.074 15.829 0.054 15.108 0.139 15.161 0.136 14.923 0.163

gravel 0–10 2.582 0.129 2.595 0.120 2.567 0.139 2.769 -0.002 2.635 0.113 2.522 0.188
10–30 3.280 0.200 3.277 0.201 3.281 0.199 3.311 0.185 3.299 0.200 3.143 0.274
30–50 4.846 0.207 4.767 0.232 4.462 0.328 4.852 0.205 4.843 0.224 4.641 0.287
50–100 6.146 0.144 6.343 0.088 6.582 0.018 6.367 0.081 6.040 0.173 5.992 0.186

SOM 0–10 4.528 0.634 5.456 0.469 5.137 0.529 5.291 0.501 4.698 0.608 4.742 0.601
10–30 4.167 0.677 4.981 0.539 4.648 0.599 5.235 0.491 4.910 0.554 4.431 0.636
30–50 7.817 0.096 7.627 0.139 9.167 -0.243 7.174 0.239 8.379 -0.025 6.562 0.371
50–100 12.871 -0.015 19.284 -1.279 14.518 -0.296 11.817 0.144 10.629 0.308 9.958 0.392

pH 0–10 0.564 0.549 0.569 0.542 0.547 0.577 0.564 0.549 0.554 0.565 0.536 0.593
10–30 0.601 0.495 0.591 0.511 0.609 0.482 0.616 0.469 0.601 0.494 0.581 0.527
30–50 0.715 0.408 0.762 0.327 0.725 0.390 0.722 0.395 0.691 0.447 0.690 0.448
50–100 0.769 0.425 0.811 0.361 0.791 0.392 0.763 0.434 0.761 0.437 0.728 0.484

SD – 31.413 0.094 32.61 0.023 33.286 -0.017 31.039 0.115 30.543 0.143 31.014 0.117

Greifensee
clay 0–10 6.241 0.206 6.208 0.214 6.208 0.214 6.095 0.243 6.296 0.192 6.129 0.234 5.958 0.277

10–30 6.397 0.293 6.637 0.239 6.662 0.233 6.474 0.276 6.813 0.198 6.575 0.253 6.412 0.289
30–50 8.478 -0.123 7.651 0.085 7.402 0.144 7.488 0.124 7.286 0.170 7.177 0.195 7.129 0.206
50–100 8.972 0.037 8.741 0.086 7.944 0.245 9.356 -0.047 8.183 0.199 8.031 0.228 8.048 0.225

silt 0–10 6.624 0.062 6.375 0.131 7.385 -0.167 6.322 0.145 6.007 0.228 6.225 0.171
10–30 6.676 0.047 6.479 0.102 6.785 0.015 6.360 0.135 6.310 0.148 6.309 0.149
30–50 7.959 0.021 8.512 -0.120 8.160 -0.030 8.429 -0.099 8.071 -0.007 8.039 0.001
50–100 9.189 -0.026 10.006 -0.217 9.817 -0.171 9.253 -0.041 9.091 -0.005 9.251 -0.040

gravel 0–10 6.440 -0.128 5.896 0.059 5.549 0.167 5.431 0.202 5.300 0.240 5.326 0.233 5.218 0.263
10–30 5.831 0.184 6.086 0.116 6.066 0.121 5.335 0.321 5.454 0.290 5.560 0.264 5.438 0.296
30–50 8.655 0.049 8.778 0.027 8.346 0.120 8.089 0.173 7.991 0.193 7.887 0.214 7.945 0.203
50–100 9.811 0.314 11.77 0.018 10.821 0.170 10.402 0.233 10.373 0.237 10.696 0.189 10.407 0.232

SOM 0–10 3.504 0.078 3.210 0.226 3.219 0.222 3.244 0.209 3.202 0.230 3.158 0.251
10–30 3.675 0.028 3.349 0.192 3.455 0.141 3.282 0.224 3.315 0.191 3.258 0.218
30–50 5.838 -0.072 5.599 0.014 5.900 -0.095 5.352 0.099 5.259 0.130 5.481 0.055
50–100 7.536 -0.223 NA NA 11.917 -2.058 6.090 0.201 6.512 0.087 6.620 0.056

pH 0–10 0.714 0.043 0.701 0.077 0.742 -0.035 0.707 0.061 0.700 0.081 0.693 0.097
10–30 0.700 0.078 0.720 0.024 0.718 0.031 0.708 0.056 0.691 0.102 0.683 0.121
30–50 0.751 -0.089 0.810 -0.266 0.830 -0.332 0.790 -0.205 0.752 -0.092 0.756 -0.103
50–100 0.750 -0.085 0.856 -0.412 0.799 -0.228 0.753 -0.092 0.747 -0.075 0.750 -0.083

SD – 11.076 0.763 19.345 0.278 21.009 0.148 20.928 0.155 19.511 0.265 18.820 0.316 18.858 0.314

ZH forest
ECEC 0–20 75.382 0.356 83.040 0.261 74.900 0.365 73.378 0.423 72.548 0.436 72.294 0.440

40–60 55.926 0.240 83.238 -0.683 69.113 -0.160 54.681 0.274 51.369 0.359 54.531 0.278
pH 0–20 0.871 0.406 0.913 0.348 0.928 0.325 0.870 0.407 0.856 0.426 0.839 0.448

40–60 1.122 0.268 1.248 0.093 1.452 -0.227 1.138 0.246 1.093 0.305 1.107 0.287
bd 0–20 0.052 0.203 0.048 0.334 0.055 0.128 0.050 0.271 0.047 0.343 0.046 0.389

40–60 0.047 0.283 0.061 -0.221 0.051 0.148 0.045 0.336 0.043 0.400 0.044 0.373
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SSmse
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Figure 3. Boxplots of SSmse (for independent validation data) grouped by method and soil depth. Statistics of 0–10 and 0–20 cm soil layers

:::::
depths and 20–40 and 30–50 cm were pooled. (SD: effective soil depth available to plants, lasso: grouped least absolute shrinkage and

selection operator, georob: robust external-drift kriging, geoGAM: boosted geoadditive model, BRT: boosted regression trees, RF: random

forest, MA: model averaging).
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Figure 4. Boxplots of bias2-to-MSE-ratio (for independent validation data) grouped by method and study region. Boxplots summarize

ratios of n = 21
:::::
n= 21

:
soil properties for study regions Berne and Greifensee (20 for georob in Greifensee). For ZH forest ratios are

individually shown for n= 6 soil properties (lasso: grouped least absolute shrinkage and selection operator, georob: robust external-drift

kriging, geoGAM: boosted geoadditive model, BRT: boosted regression trees, RF: random forest, MA: model averaging).
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4.2.2 Performance of methods

There was no method that consistently performed best for all soil properties, soil depths and study regions. Each of the tested

methods (lasso, georob, geoGAM, BRT, RF) performed best for at least one response, and SSmse varied more strongly between

responses than methods. Although no method consistently outperformed the others, Fig. 2 and 3 suggest that the tree-based

methods BRT and in particular RF performed on average best. For 28 out of 48 responses, RF hat
:::
had maximum SSmse, and5

it never had minimum SSmse. In contrast, georob and geoGAM most often fared worst (for 15 and 14 out of 48 responses,

respectively) and were best only for two (georob) and five responses (geoGAM). Lasso ranked between these two methods and

BRT.

MA further improved on RF: For 14 out of the 28 responses for which RF was best, MA resulted in even larger SSmse ,
:
and

MA was best for another 9 of the 20 remaining responses. Hence, for 23 out of 48 responses MA had overall largest SSmse.10

Apart from overall precision
:::::::
accuracy as captured by RMSE and SSmse also bias matters for choosing a DSM method. In

general, marginal bias was small (median bias2-to-MSE-ratio < 6 %, Fig. 4, Table S9 in
::
the

:
Supplement). Bias contributed

more to mean squared error (MSE) when SSmse was small (methods lasso, georob, geoGAM, study region Greifensee), except

for the tree-based methods RF and BRT which often had very small bias2-to-MSE-ratios. BRT had slightly lower bias2-to-

MSE-ratios compared to RF, confirming that boosting reduces bias in an adaptive way while bagging in RF lowers only15

variance but not bias (Hastie et al., 2009, p. 588). Largest bias2-to-MSE-ratios were most often found for lasso, and they were

especially large (12 to 17 %, Table S9 in
::
the

:
Supplement) for predicting gravel content in Greifensee and SOM in Berne in

50–100 cm depth. Shrinkage methods such as lasso trade reduced variance of predictions for increased bias (Hastie et al., 2009,

Chapt. 3). Also RF resulted occasionally in biased predictions, for example for SOM 30–50 cm in Berne. Conditional bias –

distortion of predictions conditional on the observed values (Wilks, 2011, p. 304) – did not differ between methods. Predictions20

were only conditionally biased if overall precision
:::::::
accuracy was small.

Lastly, we evaluated whether the various methods tended to over-fit the data by computing differences between cross-

validation (CV) or out-of-bag (OOB, RF) SSmse and independent validation SSmse (Fig. 5).
:::::::
Through

::::::::
repeated

:::::::::::::
cross-validation

::
on

:::
the

:::::
same

::::::
subsets

::::
and

::::::
choice

::
of

::::::
tuning

:::::::::
parameters

::::
with

:::::
OOB

::::::::
statistics

:::::
(RF),

:::
the

:::::::::::::
cross-validation

::::
and

::::
OOB

::::::
SSmse :::

can
:::
be

:::::::::
considered

::
as

:::::::::::
conservative

::::::::::::
goodness-of-fit

:::::
SSmse .

:
We interpret positive (negative) differences in the sequel as indications of25

over-(under-)fitting, although we cannot exclude that differences between calibration and validation datasets contributed to

discrepancies in SSmse. In particular, replicated observations from a given site were not always assigned to the same CV subset,

and this possibly contributed to overly optimistic CV
::
or

:::::
OOB results. Except for lasso all methods ([b] to [f] in Fig. 5) often

had larger CV or OOB than independent validation SSmse. As also found by Liddicoat et al. (2015) lasso partly under-fitted

the data, likely because we penalized the residual sum of squares by the “optimum plus 1 standard error” rule (Sect. 3.1).30

Why BRT tended partially to under-fit the data remained unclear. Georob
::::::
georob and RF tended to over-fit the data most, and

geoGAM was intermediate. For all the methods differences in SSmse were largest for poorly performing models (small SSmse

in independent validation). For georob this was most pronounced. For ZH forest ECEC (40–60 cm) CV yielded SSmse of 0.70
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Figure 5. Difference of 10-fold cross-validation and independent validation SSmse plotted against independent validation SSmse, grouped by

method . (lasso: grouped least absolute shrinkage and selection operator, georob: robust external-drift kriging, geoGAM: boosted geoadditive

model, BRT: boosted regression trees, RF: random forest, MA: model averaging, SSmse <−1 were omitted).

and independent validation SSmse of -0.683. Hence, repeated covariate selection steps based on BIC and Wald test tend to

over-fit the data when responses only weakly depend on covariates.

4.2.3 Factors controlling predictive performance

We explored whether characteristics of the (spatial) empirical distributions of the responses were in some way related to varia-

tions of predictive performance observed between responses. We checked whether SSmse and bias2-to-MSE-ratios depended on5

spatial sampling density, skewness, (robust) coefficient of variation, strength of spatial autocorrelation and tuning parameters

of methods (Tables S3 to S7 and S10 to S11 in
::
the

:
Supplement), but no clear relationships became evident. Particularly, we

could not find any relationships between predictive performance and strength of autocorrelation as measured by spatially struc-

tured variance ratios (Vaysse and Lagacherie, 2015, 1− nugget/silltotal) :::::::::::::::::::::::::::::::::::::::::
(1− nugget/silltotal, Vaysse and Lagacherie, 2015) or

spatial ranges of response variograms.10

Only for extremely positively skewed responses (SOM below 30 cm in Greifensee) we found that BRT and RF were clearly

better than lasso, georob and geoGAM, likely because log-transformation was too weak to fully account for skewness. For

skewness < 2 the advantage of tree-based methods disappeared.
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4.2.4 Performance
:
of

:
legacy soil map

RMSE and SSmse of the legacy soil map (Table 4) were mostly within the range of values observed for DSM methods. Only for

subsoil gravel (50–100 cm) and the effective soil depth available to plants (SD) predictions by the legacy soil map were better

than DSM predictions. (Note, however, that RMSE and SSmse of the legacy soil map are rather “goodness-of-fit”
::::::::::::
goodness-of-fit

than rigorous validation measures, because all data of the validation set had been used to create the soil map.) Vaysse and5

Lagacherie (2015) also found that a legacy soil map predicted only SD more precisely
:::::::::
accurately than DSM methods. To

create the legacy soil map at a scale of 1:5 000 many auger samples were taken to delineate map units (Jäggli et al., 1998),

but this data was not recorded and therefore unavailable for DSM. This might explain why the legacy map modelled SD

substantially better (SSmse 0.76) than DSM methods (SSmse 0.15–0.32).

4.3 Evaluation of covariate relevance10

4.3.1 Covariate importance

To characterize “predictive skill” of covariates by topic, we computed weighted averages of RF covariate importance (Hastie

et al., 2009, p. 368), weighing importance of covariates by validation SSmse (Fig. 6). Overall, terrain attributes were important

covariates. For Greifensee they were the main source of information for modelling soil properties. None of the other covariate

groups was able to capture much of the variation of soil properties for this study region. Likely, this explains why DSM15

generally performed poorly here (Sect. 4.2) and indicates that the performance of DSM depends also on regional specific

conditions. In the study region Berne climatic covariates were important for chemical but not for physical soil properties, in

topsoil more than in subsoil
:::::::::
particularly

:::
in

::::::
topsoil. Additionally, geology, information on soil, sampling period and type of

data had moderate importance for this study region, also for physical properties. Similarly, for ZH forest covariate importance

differed between chemical (pH, ECEC) and physical properties (BD). Vegetation was very influential for modelling pH and20

ECEC whereas for BD spatial location, sampling period and type of data were important as well.

Sampling period and type of soil data was important for many responses (
::::::
legacy

::::
data

:::::::::
correction,

:
Fig. 6). As mentioned

also by Mulder et al. (2016) this emphasizes the necessity to compensate temporal changes and differences in analytics when

using legacy soil data. Topsoil pH and SOM in Berne – among the responses predicted best in this study – were mostly

“explained” by maps of mean monthly and yearly precipitation, a geological overview map, an agricultural suitability map25

and topographic wetness indices smoothed by different radii (7–60 m). The geological and soil overview maps were also

important for modelling SD in Berne. Unlike Greifensee, terrain attributes did not contribute much to modelling SD in Berne.

In Greifensee, a map of historic wetlands and distances to water bodies were in addition to terrain attributes (mostly indicating

local depressions) important for modelling SD. Predictions of physical and chemical properties in Greifensee relied mainly

on vertical and horizontal distance to water bodies, local topographic indices and curvatures (50–90 m radii) as well as the30

multi-resolution valley bottom flatness (MRVBF). For ZH forest by far the most important covariate was the vegetation map

accounting for nearly half of predictive skill in topsoil for pH and ECEC and for one third in subsoil. Terrain attributes were
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Figure 6. Mean predictive skill [%] of covariates (weighted averages of covariance importance, Hastie et al., 2009, p. 368) grouped by

covariate topic
:::::
theme (see Table 3, for legacy data correction see Sect. 2.2). Predictive skill is reported separately for study region (Berne,

Greifensee and ZH forest), top- (0–30 cm) and subsoils (30–100 cm) and type of response (physical, chemical soil properties, effective soil

depth). Mean predictive skill was computed from 30 most important covariates and summed up by topic. The resulting value was weighed by

validation SSmse and plotted as grey dots for each response. Mean validation SSmse [%] per covariate topic
:::::
theme is given by black horizontal

lines (if responses n > 2).

important for ZH forest predictions on both small (variation of slope in 20 m radius) and large scale (topographic indices in

radii 50 and 125 km).
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Overall, APEX covariates had very small importance (average rank of covariate importance of 168 for RF and 48 for

BRT). Differences of reflectance intensities between autumn and spring flights and in between agricultural lands with
:::::::
between

:::::::::
agricultural

::::
land

::::
with

:::::
partly

::::
bare

:::::
soils

:::
and various crops most likely obscured relations between surface reflectance of vegeta-

tion and bare soil
:::
soil

::::::::
properties. Preprocessing using co-kriging with data from bare soil areas possibly improves predictive

capabilities for the present study regions (Lagacherie et al., 2012).5

4.3.2 Covariate interpretation

Besides studying covariate importance, we evaluated for all five methods by
:::
the

::::::
effects

::
of

:::::
single

:::::::::
covariates

::
on

:::
the

:::::::::
responses

::
by

:::::
using partial effects or dependence plotswhat effects single covariates had on selected responses. .

::::::
Given

:::
the

::::
large

:::::::
number

::
of

::::::
models

:::
and

:::::::::
covariates

:::
we

:::::
chose

:
a
:::::::::
continuous

::::
and

:
a
:::::
factor

::::::::
covariate

::
to

:::::::
illustrate

:::
the

::::::
effects

:::
for

:::
one

::::::::
response.

:
Figure 7 shows

as example how MRVBF (continuous covariate)
:::
how

:::::::
MRVBF

:
and the factor for different sampling period and type of soil data10

(legacy data correction) affected topsoil clay content (0–10 cm, Greifensee). The effect of MRVBF on clay content was similar

for all five methods. Large MRVBF values point to accumulation sites in the landscape (Gallant and Dowling, 2003), and such

sites often have larger clay contents. BRT and RF partial dependence plots suggests that the relation is nonlinear
::::::::
non-linear

with a sharp transition at MRVBF equal to 4. Patterns of estimated differences between sampling periods and type of data were

similar for the five methods, which further strengthens the evidence that such differences should be compensated when one15

uses legacy soil data.

4.4 Mapping

In addition to the reported analysis, we visually inspected the soil property maps generated by the six DSM methods. Figure 8

shows for a section of the Greifensee study region DSM maps of topsoil clay content (0–10 cm)
::
for

:
a
:::::::
section

::
of

:::
the

:::::::::
Greifensee

::::
study

::::::
region

:
along with a map of clay content derived from the legacy soil map. Recall that topsoil clay content could be20

predicted fairly well for the Greifensee study region (Table 4). All methods, including the soil map predicted soils rather rich in

clay with clay content > 20 % for most sites which agrees with available observations (coloured dots, [g] in Fig. 8). Modelled

patterns of the maps were similar, but lasso and particularly RF predictions were very smooth. In contrast, predictions by

georob, geoGAM and BRT varied more with larger clay content on valley bottoms to the east. MA performed best for this

response (SSmse 0.28, Table 4) and, being a weighted average of (a) to (e), showed smoother spatial predictions than georob25

and geoGAM because RF had highest model averaging weight (0.24, Table S11 in
:::
the Supplement). The legacy soil map

predicted for most polygons the class sandy loam to loam with 10–30 % clay to which we assigned a typical clay content of

20 %, which is less than most DSM predictions. As typical for polygon maps small areas with deviating clay content were

delineated. The DSM methods were not able to map clay content with similar detail because calibration data was too scarce

(Sect. 4.2.4). According to the legacy soil map, there were organic soils in depressions (darkgreen polygons, [g] in Fig. 8), but30

these had not been sampled.

Maps of georob and BRT predictions showed artefacts (single pixels [georob] or bands [BRT]) with very large predicted

values. In the MA map outlying predictions were smoothed out. Outlying georob predictions were caused by the multiflow
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Figure 7. Example partial residual plots (e.g. Faraway, 2005, p. 72) for lasso, georob and geoGAM (panels (a) to (c), (f) to (h)) and partial

dependence plots (e.g Hastie et al., 2009, pp. 369) for tree-based methods (panels (d), (e), (i), (j)) for two covariates that were present in lasso,

georob and geoGAM and had large importance in BRT and RF for the response clay 0–10 cm in Greifensee (MRVBF 2 m: multi-resolution

valley bottom flatness [Gallant and Dowling (2003)
:::::::::::::::::::
Gallant and Dowling 2003], legacy data correction: factor accommodating sampling pe-

riod and type of soil data, see Sect. 2.2, L: Laboratory measurements, F: field estimates, lasso: grouped least absolute shrinkage and selection

operator, georob: robust external-drift kriging, geoGAM: boosted geoadditive model, BRT: boosted regression trees, RF: random forest).

specific catchment area (2 m resolution), an extremely positively skewed terrain attribute. This covariate was not chosen for the

geoGAM model, in lasso its coefficient was strongly shrunken, and BRT and RF do not create extrapolation errors for extreme

values of covariates. The cause of the artefact in BRT was impossible to spot because the BRT model contained 148 covariates

(Table S11 in
:::
the Supplement).

Besides creating extrapolation errors, parametric methods (lasso, georob, geoGAM) predicted physically impossible values5

(e.g. clay content< 0 % or> 100 %) that we had to eliminate. In contrast, trees do not extrapolate beyond the range of observed

values of the response when computing predictions.

4.5 Practical use of statistical methods

All tested DSM methods were able to process large sets of factors and continuous covariates. Although RF more often per-

formed best and MA even improved on that, the advantage measured in validation SSmse was small (Sect. 4.2). Hence other10

reasons than precision
:::::::
accuracy

:
might become more decisive for choosing a particular approach.
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Figure 8. Predictions of clay content [%] in 0–10 cm soil depth computed by six DSM methods (a to f) on a grid of 20 m resolution and by

a legacy soil map 1:5 000 (g) for a section of Greifensee study regionnorth of village of Bubikon. The legacy soil map (g) predicted texture

classes to each of which we assigned a typical clay content displayed here. For complex polygons the texture class of the main unit is shown.

Dots in (g) depict observations of clay content used for calibrating (a) to (f) and for creating the soil map (g).

In our study residual spatial autocorrelation was weak or short-ranged. For a response with strong residual autocorrelation a

geostatistical approach might still offer an advantage. The smooth spatial surface of geoGAM is possibly too coarse to capture

short-ranged autocorrelation. BRT and RF include spatial coordinates as covariates, but if the response depends only weakly

on other covariates, spatial coordinates become overly important. Repeated recursive splitting on coordinates likely leads to

“chessboard type” artefacts.5
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All methods allowed interpretation of modelled relationships (Fig. 7), but a large number of remaining covariates in a model

hinders interpretation of partial effects or dependencies. The most parsimonious models were chosen by geoGAM with only

12 remaining covariates remaining on average (lasso: 21, georob: 27). For BRT and RF a covariate selection scheme would

still need to be implemented and tuned. Preliminary results suggest that this might be well worth the effort (Sect. 4.1). But even

without covariate selection, BRT and RF allowed to analyse the importance of the covariates (Fig. 6).5

R packages are readily available for all methods used in this study. Lasso and geoGAM optimize their tuning parameters

directly without any further input to the software while RF and BRT require specification of parameter ranges to be tested.

The number of parameters to tune influences computing times considerably. Using default mtry for RF (Sect. 4.1) and coarse

grids for finding optimal BRT parameters (Sect. 3.4) might be a good compromise to balance computing efforts with good

predictive performance. Computational effort was especially large for georob, where there is no established efficient proce-10

dure for building models from large sets of covariates. Lasso, based on a coordinate descent algorithm, built models most

quickly (see also Fitzpatrick et al., 2016) while computational effort for geoGAM model building was quite variable de-

pending mainly on number of observations and number of covariates selected by boosting step (?, Sect. 2.2)
:::
the

:::::::
boosting

::::
step

:::::::::::::::::::::::::::
(Nussbaum et al., 2017, Sect. 2.2).

Moreover, ease of modelling predictive uncertainty is another factor relevant for choice of a DSM method. In georob un-15

certainties can be directly derived from the kriging variances. For RF, conditional quantiles of predictive distributions can

be estimated directly at the cost of a larger memory requirement (R package quantregForest, Meinshausen, 2015). For lasso,

geoGAMand BRT
:
,
::::
BRT

:::
and

::::
MA

:
model-based bootstrapping can be used to simulate predictive distributions

(?)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Nussbaum et al., 2017, for geoGAM uncertainties for topsoil ECEC), but bootstrapping involves quite some compu-

tational effort.
:::::
Given

:::
the

:::::
large

::::::
number

:::
of

::::::::
responses

::::
and

:::::::
methods

::::::::
requiring

::::::::::::
bootstrapping

:::
we

::::
were

:::
not

::::
able

:::
to

:::::::
compute

::::
and20

:::::::
evaluate

:::::::::
uncertainty

:::
for

:::
the

::::::::
presented

::::::
models

::::::
within

:::::::::
reasonable

::::
time.

:

Responses for DSM are not always continuous soil properties. Binary, multinomial (e.g. soil types) or ordinal (e.g. drainage

classes) responses are sometimes relevant. Grouped lasso is availble
:::::::
available

:
for binary (R package grpreg, Breheny and

Huang, 2015) and nominal responses (R package glmnet, Friedman et al., 2010). Logistic geostatistical models could be

fitted in the generalized linear mixed model framework (R package geoRGLM, Christensen and Ribeiro Jr, 2002; Diggle25

and Ribeiro Jr, 2002; Pringle et al., 2014), but this is practical only for small datasets. INLA (Integrated Nested Laplace

Approximation, Rue et al., 2009; Lindgren et al., 2011) could be
:
a
:
viable alternative. geoGAM accommodate binary and

ordinal responses (Nussbaum, 2017), but extension to nominal responses would be straightforward. Classification for binary

and nominal responses are easily fitted by RF (R package randomForest, Liaw and Wiener, 2002) and BRT (R package gbm,

Southworth, 2015) while ordinal response BRT could be implemented by R package mboost (Hothorn et al., 2015) with slightly30

larger effort on model specification.
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5 Conclusions

We applied – to a total of 48 soil responses observed in three study regions in Switzerland – six statistical digital soil mapping

(DSM) methods: grouped lasso (least absolute shrinkage and selection operator), robust external-drift kriging (georob), boosted

geoadditive models (geoGAM), boosted regression trees (BRT)and
:
, random forest (RF) . Models were build from

:::
and

::::::
model

::::::::
averaging

::::::
(MA).

:::
We

::::
used

:
300–500 environmental covariates , and performance

::
as

::::
input

:::
to

::::
each

:::::::
method.

:::::::::::
Performance

:
was5

assessed by comparing model predictions with independent validation data.

From this study we conclude:

– All methods were successfully building models automatically from large sets of covariates. The applied ad hoc procedure

to find a parsimonious trend model for georob was however very inefficient.

– Except for lasso, cross-validation and out-of-bag precision
:::::::
accuracy measures were sometimes better than actually ob-10

served for the validation data. This suggests that the methods partly tended to over-fit the data and underpins the necessity

of model evaluation with independent data.

– Admittedly, the
:::
The

:
best performing method frequently had not

:::
did

:::
not

::::
have

:
much larger mean squared error skill score

(SSmse) than its closest competitors, and the empirical distributions of SSmse did not differ much for BRT, RF and MA

(Figures 2 and 3). Nevertheless, the frequencies of best and worst performance clearly favoured RF if only one method15

is used. Applying model averaging (MA) of several approaches likely even improves on RF.

– Correcting for sampling period and soil data type by adding a factor to the models turned out to be important. Legacy

soil data is inherently heterogeneous for various reasons, but one can (and should) compensate this variation by careful

statistical modelling.

Code availability. The geoGAM model building procedure was published as R package geoGAM (Nussbaum, 2017).20

Data availability. The soil data of the Canton of Zurich were used under a non-public data licence (Canton of Zurich, contract number TID

22742; WSL) and could not be published. Data from Berne study region was partly published as test data berne and berne.grid in R package

geoGAM (Nussbaum, 2017).
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