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Many thanks you for your helpful feedback. We comment on your review in the subse-
quent text. Please further consider the our suggestions for changes of the manuscript
in the supplement to this document.
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Spatial distribution of prediction uncertainty

Having spatial estimates of model performance is an important aspect of DSM. Even
though the authors note the computational demands as the reason for not including
these, I think it is possible to create at least one map of performance. I have computed
similar model performance for larger study areas than those presented here with a
smaller pixel size using a PC with 32 GB of RAM.

Comment on page 24: This is an important part of the modeling routine that is not
presented here. It would be helpful to include some maps of uncertainty associated
with each of the methods. This would be especially important for evaluating the maps
shown in Fig. 8. Is it possible to calculate uncertainty for the model averaged result?

Undoubtedly, reporting uncertainty of predictions — e. g. publishing maps of limits of
90 %-prediction intervals — is important for digital soil mapping products, and evaluat-
ing the empirical coverage of such intervals with independent validation data is crucial.
We therefore presented an elaborate evaluation of model uncertainty with independent
data for one response in the main part of Nussbaum et al. (2017), along with a map of
the width of 90 %-prediction intervals in the Supplement to that publication.

However, in this article, we refrained from adding similar information for just one or a
few responses because this would not give the full picture of the performance of the
various methods. Computing and evaluating the quality of predictive distributions for
all 48 responses and 6 methods would certainly have been of interest, but it was not
feasible because of substantial computational load. Group lasso, geo-additive mod-
els (geoGAM), boosted regression trees (BRT) and model averaging (MA) require a
model-based bootstrapping approach, detailed in Nussbaum et al. (2017). Only quan-
tile regression forest ([Q]RF) and robust external-drift kriging (EDK) directly provide
information on prediction uncertainty. Hence, complete evaluation of prediction uncer-
tainty would have involved 96 000 model fits when we use 500 bootstrapping repetitions
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per response and method. In Nussbaum et al. (2017) we used even 1000 repetitions
to ensure stability of the results.

Legacy data correction

One of the most interesting findings in this paper was the successful implementation
of the legacy data correction for the timing of sample collection. While this is noted in
the conclusions, I think it should be more prominent throughout the paper, as this is a
common issue of using legacy data and most papers do not address it.

We agree that accounting for temporal variation in legacy soil data is important. But
we refrained from emphasizing this aspect in the manuscript for two reasons:

Firstly, we were not able to correct the data to our full satisfaction. We lacked a sufficient
number of repeated measurements to truly account for changes in soil properties over
time (this was also remarked by referee 2). Furthermore, the periods we used for
grouping the observations did not consist of well-defined sampling campaigns because
the campaigns partly overlapped or some of the samples were collected under different
protocols (research projects, monitoring programmes). Meta-information on sampling
and lab methods could not be gathered for all samples. Thus, we were not able to
fully compensate methodological differences. Our chosen strategy accounts for all this
variation only in a “batch-like” manner.

Secondly, accounting for temporal variation in legacy soil data is very specific to a
particular dataset. It is difficult to generalize respective approaches. The strategy
proposed in our manuscript could possibly be used with other data sets, however we
recommend to develop more specific procedures that are better tailored to the charac-
teristics of a given data set.
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Answer to further comments in the manuscript

We address most of the specific comments of referee 1 in the supplement where
we suggest changes of the manuscript. Here we respond to some comments which
seemed of more general interest.

Soil density (comment on page 7)

I’m not sure why soil density should be included in the calculation of each property
for a given layer. Also, is density referring to bulk density? It is not clear. It may be
easier to say that property values for a given depth increment were calculated as a
depth-weighted average.

According to Swiss soil classification “density” refers to the fine soil fraction≤ 2 mm (we
will clarify this in the revised manuscript, see attached supplement). Accounting only
for layer thickness (soil depth) is not sufficient when converting soil data from horizons
to fixed-depth layers. The mass of soil per depth increment, i. e. the density of the soil,
must be considered as well. For example, to assess the acidification status of a soil
profile a denser horizon contributes a larger mass of fine soil with a critical pH than a
looser horizon.

Resolution of predictive maps

The modeling resolution should be more clearly stated in the methods. The caption of
Figure 8 is the only place that I found the model resolution mentioned (20 m)

We agree and suggested to add this information in the methods section (Section 3, P8
L26): "To create the final maps we predicted each response at the nodes of a 20 m
grid."
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Soil texture — separate model for sand (comment on page 10)

Why not model sand independently too? As the reminder, it is subject to the compound
model errors of both silt and clay.

You suggested to model sand content separately instead of just computing it as the
remainder of the sum of clay and silt content to 100 %. We agree that it would be
nice to predict sand content with meaningful estimates of prediction uncertainty. Nev-
ertheless, we refrained from separately modelling sand content because a substantial
part of the soil texture data were field estimates by soil surveyors. For field estimates,
sand content is computed as the remainder of the sum of the estimated clay and silt
content to 100 % (Brunner et al. 1997; Jaeggli et al. 1998). Furthermore, soil func-
tion assessment (Greiner et al. 2017) relies on clay and silt content as input. Hence,
uncertainty assessment for soil functions using soil texture data does not depend on
predictive distributions for sand content.

Interpretation of vegetation map (comment on page 20)

This is an important finding that isn’t really discussed. A brief explanation of the in-
fluence of the vegetation map on the soil properties would be helpful. How much
variability of vegetation types were present in this study area? deciduous or coniferous
trees? Do the relationships make sense for properties like pH, ECEC, etc.?

The vegetation map (1:5 000, Schmider et al. 1993) was very detailed, and we had to
merge mapping units to obtain a reasonable number of observations per unit. Inter-
pretation of the modelled effects would therefore be challenging. But we refrained in
general from interpretation of covariate effects as this would make an already quite long
manuscript even longer. As an aside: Nussbaum et al. (2017) discussed briefly the
role of the vegetation map as covariate for predicting topsoil effective cation exchange
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capacity (ECEC). The modelled coefficients for vegetation map units were generally in
accordance with pedological knowledge.

Multi-flow catchment area (comment on page 22)

I would think a multi-flow algorithm would have more smooth values. As opposed to a
single flow algorithm like deterministic 8 used in ArcGIS.

A multi-flow topographic wetness index algorithm (Tarboton, 1997) results in a
smoother surface (less sudden changes between neighbouring pixels) over most of the
terrain than a single flow algorithm. In locations where the flow accumulates, however,
upstream catchment area is lager when computed by multi- than single flow algorithms.
The flexibility of the multi-flow algorithm allows the flow to actually drain to the lowest
point in the terrain. Hence, the frequency distribution of multi-flow catchment areas has
a fatter upper tail. This may cause extrapolation errors when predictions are computed
by a parametric approach such as EDK.

Spatial coordinates in final models (comment on page 24)

Were these selected for the final models?

Spatial coordinates were included in lasso models for 20 out of 48 responses. geoGAM
selected a smooth spatial surface for 5 responses only. Spatial autocorrelation mod-
elled by EDK was generally rather weak judged by the ratio of nugget to sill, but differed
for the study areas and responses (see page 13, line 31ff and Tables S10 and S11 in
the Supplement to the manuscript). For RF (as well as for BRT with similar covari-
ates importance) spatial coordinates were relevant, but covariates from other thematic
groups showed clearly larger predictive skill (see Figure 6 in manuscript).
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Please also note the supplement to this comment:
https://www.soil-discuss.net/soil-2017-14/soil-2017-14-AC1-supplement.pdf

Interactive comment on SOIL Discuss., https://doi.org/10.5194/soil-2017-14, 2017.

C7


