Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison
Benjamin Guillaume
CORRESPONDING AUTHOR
Uliège – Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Passage des Déportés 2, 5030 Gembloux, Belgium
Hanane Aroui Boukbida
Instrumentation, Moyens Analytiques, observatoire en Géophysique et
Océanographie (UAR IMAGO), Institut de Recherche pour le Développement (IRD), 13002 Marseille, France
Gerben Bakker
Wageningen University and Research, Wageningen, Netherlands
Andrzej Bieganowski
Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
Yves Brostaux
Uliège – Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Passage des Déportés 2, 5030 Gembloux, Belgium
Wim Cornelis
Ghent University, Gent, Belgium
Wolfgang Durner
Technische Universität Braunschweig, Braunschweig, Germany
Christian Hartmann
Instrumentation, Moyens Analytiques, observatoire en Géophysique et
Océanographie (UAR IMAGO), Institut de Recherche pour le Développement (IRD), 13002 Marseille, France
Bo V. Iversen
Department of Agroecology, Aarhus University, Aarhus, Denmark
Mathieu Javaux
UCLouvain, Earth and Life Institute, Louvain-la-Neuve, Belgium
Joachim Ingwersen
Institute of Soil Science and Land Evaluation, University of Hohenheim, Hohenheim, Germany
Krzysztof Lamorski
Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
Axel Lamparter
Federal Institute for Geosciences and Natural Resources, Hanover, Germany
András Makó
Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Street 15,
1022 Budapest, Hungary
Ana María Mingot Soriano
Swedish University of Agricultural Sciences, Uppsala, Sweden
Ingmar Messing
Swedish University of Agricultural Sciences, Uppsala, Sweden
Attila Nemes
Norwegian Institute of Bioeconomy Research, Ås, Norway
Alexandre Pomes-Bordedebat
Uliège – Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Passage des Déportés 2, 5030 Gembloux, Belgium
Martine van der Ploeg
Wageningen University and Research, Wageningen, Netherlands
Tobias Karl David Weber
Institute of Soil Science and Land Evaluation, University of Hohenheim, Hohenheim, Germany
Lutz Weihermüller
Agrosphere Institute IBG-3, Forschungszentrum Jülich GmbH, Jülich, Germany
Joost Wellens
Uliège – Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Passage des Déportés 2, 5030 Gembloux, Belgium
Aurore Degré
Uliège – Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Passage des Déportés 2, 5030 Gembloux, Belgium
Related authors
Benjamin Guillaume, Adrien Michez, and Aurore Degré
EGUsphere, https://doi.org/10.5194/egusphere-2024-3978, https://doi.org/10.5194/egusphere-2024-3978, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Nature-based solutions (NbS) can mitigate floods and agricultural droughts by enhancing soil health and restoring hydrological cycles. This study highlights that leveraging soil diversity is key to optimizing NbS performance.
Benjamin Guillaume, Adrien Michez, and Aurore Degré
EGUsphere, https://doi.org/10.5194/egusphere-2024-3978, https://doi.org/10.5194/egusphere-2024-3978, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Nature-based solutions (NbS) can mitigate floods and agricultural droughts by enhancing soil health and restoring hydrological cycles. This study highlights that leveraging soil diversity is key to optimizing NbS performance.
Gaston Matias Mendoza Veirana, Hana Grison, Jeroen Verhegge, Wim Cornelis, and Philippe De Smedt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3306, https://doi.org/10.5194/egusphere-2024-3306, 2024
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study explores the link between soil magnetic susceptibility and cation exchange capacity (CEC) to improve prediction models for CEC in European soils. Results show that magnetic susceptibility significantly enhances CEC prediction in sandy soils, achieving high accuracy (R2 = 0.94). This offers a rapid, cost-effective way to estimate CEC, emphasizing the value of geophysical data integration in soil assessment.
Solomon Ehosioke, Sarah Garre, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frederic Nguyen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2628, https://doi.org/10.5194/egusphere-2024-2628, 2024
Short summary
Short summary
We investigated the electrical properties of the primary roots of Brachypodium and Maize plants during the uptake of fresh and saline water using SIP measurements in a frequency range from 1 Hz to 45 kHz. Our results indicate that salinity tolerance varies with the species, and that Maize is more tolerant to salinity than Brachypodium.
Gaston Matias Mendoza Veirana, Guillaume Blanchy, Ellen Van De Vijver, Jeroen Verhegge, Wim Cornelis, and Philippe De Smedt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2693, https://doi.org/10.5194/egusphere-2024-2693, 2024
Short summary
Short summary
This study explores two methods for predicting soil properties using the FDEM technique in Belgium. We compared deterministic models, which often require extensive data adjustments, to stochastic models. Our findings suggest that stochastic models are generally more effective for soil analysis, although each method has its limitations. This research helps improve soil property prediction, crucial for agriculture and environmental management.
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2889, https://doi.org/10.5194/egusphere-2024-2889, 2024
Short summary
Short summary
To use fertilizers more effectively, non-invasive geophysical methods can be used to understand nutrient distribution in the soil. We utilize in a long-term field study geophysical techniques to study soil properties and conditions under different fertilizer treatments. We compared the geophysical responds with soil samples and soil sensor data. Especially, electromagnetic induction and electrical resistivity tomography were effective in monitoring changes in nitrate levels over time.
Louis Delval, Jordan Bates, François Jonard, and Mathieu Javaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-2555, https://doi.org/10.5194/egusphere-2024-2555, 2024
Short summary
Short summary
The accurate quantification of grapevine water status is crucial for winemakers as it significantly impacts wine quality. It is acknowledged that within a single vineyard, the variability of grapevine water status can be significant. Within-field spatial distribution of soil hydraulic conductance and weather conditions are the primary factors governing the leaf water potential spatial heterogeneity and extent observed in non-irrigated vineyards, and their effects are concomitants.
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
EGUsphere, https://doi.org/10.5194/egusphere-2024-559, https://doi.org/10.5194/egusphere-2024-559, 2024
Short summary
Short summary
To assess the impact of groundwater table (GWT) depth on soil moisture and C mineralization, we designed a laboratory setup using 200 cm undisturbed soil columns. Surprisingly, the moisture increase induced by a shallower GWT did not result in enhanced C mineralization. We presume this capillary moisture effect was offset by increased C mineralization upon rewetting, particularly noticeable in drier soils when capillary rise affected the topsoil to a lesser extent due to a deeper GWT.
Louise J. Schreyers, Tim H. M. van Emmerik, Thanh-Khiet L. Bui, Khoa L. van Thi, Bart Vermeulen, Hong-Q. Nguyen, Nicholas Wallerstein, Remko Uijlenhoet, and Martine van der Ploeg
Hydrol. Earth Syst. Sci., 28, 589–610, https://doi.org/10.5194/hess-28-589-2024, https://doi.org/10.5194/hess-28-589-2024, 2024
Short summary
Short summary
River plastic emissions into the ocean are of global concern, but the transfer dynamics between fresh water and the marine environment remain poorly understood. We developed a simple Eulerian approach to estimate the net and total plastic transport in tidal rivers. Applied to the Saigon River, Vietnam, we found that net plastic transport amounted to less than one-third of total transport, highlighting the need to better integrate tidal dynamics in plastic transport and emission models.
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023, https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Short summary
While various expressions for the water retention curve are commonly compared, the capillary conductivity model proposed by Mualem is widely used but seldom compared to alternatives. We compare four different capillary bundle models in terms of their ability to fully predict the hydraulic conductivity. The Mualem model outperformed the three other models in terms of predictive accuracy. Our findings suggest that the widespread use of the Mualem model is justified.
Maria Eliza Turek, Attila Nemes, and Annelie Holzkämper
SOIL, 9, 545–560, https://doi.org/10.5194/soil-9-545-2023, https://doi.org/10.5194/soil-9-545-2023, 2023
Short summary
Short summary
In this study, we systematically evaluated prospective crop transpiration benefits of sequestering soil organic carbon (SOC) under current and future climatic conditions based on the model SWAP. We found that adding at least 2% SOC down to at least 65 cm depth could increase transpiration annually by almost 40 mm, which can play a role in mitigating drought impacts in rain-fed cropping. Beyond this threshold, additional crop transpiration benefits of sequestering SOC are only marginal.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023, https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Short summary
Important topics in land–atmosphere feedback research are water and energy balances and heterogeneities of fluxes at the land surface and in the atmosphere. To target these questions, the Land–Atmosphere Feedback Observatory (LAFO) has been installed in Germany. The instrumentation allows for comprehensive measurements from the bedrock to the troposphere. The LAFO observation strategy aims for simultaneous measurements in all three compartments: atmosphere, soil and land surface, and vegetation.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary
Short summary
Presented are measurement results from six agricultural fields operated by local farmers in southwestern Germany over 9 years. Six eddy-covariance stations measuring water, energy, and carbon fluxes between the vegetated soil surface and the atmosphere provided the backbone of the measurement sites and were supplemented by extensive soil and vegetation state monitoring. The dataset is ideal for testing process models characterizing fluxes at the vegetated soil surface and in the atmosphere.
Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner
SOIL, 8, 99–112, https://doi.org/10.5194/soil-8-99-2022, https://doi.org/10.5194/soil-8-99-2022, 2022
Short summary
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
Kim Madsen van't Veen, Ty Paul Andrew Ferré, Bo Vangsø Iversen, and Christen Duus Børgesen
Hydrol. Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022, https://doi.org/10.5194/hess-26-55-2022, 2022
Short summary
Short summary
Geophysical instruments are often used in hydrological surveys. A geophysical model that couples electrical conductivity in the subsurface layers with measurements from an electromagnetic induction instrument was combined with a machine learning algorithm. The study reveals that this combination can estimate the identifiability of electrical conductivity in a layered soil and provide insight into the best way to configure the instrument for a specific field site.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
Gasper L. Sechu, Bertel Nilsson, Bo V. Iversen, Mette B. Greve, Christen D. Børgesen, and Mogens H. Greve
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-361, https://doi.org/10.5194/hess-2020-361, 2020
Manuscript not accepted for further review
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Short summary
Isotopic labeling of soil water is a broadly used tool for tracing the origin of water extracted by plants and computing root water uptake (RWU) profiles with multisource mixing models. In this study, we show how a method such as this may misconstrue time series of xylem water isotopic composition as the temporal dynamics of RWU by simulating data collected during a tall fescue rhizotron experiment with an isotope-enabled physical soil–root model accounting for variability in root traits.
Kristina Bohm, Joachim Ingwersen, Josipa Milovac, and Thilo Streck
Biogeosciences, 17, 2791–2805, https://doi.org/10.5194/bg-17-2791-2020, https://doi.org/10.5194/bg-17-2791-2020, 2020
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
David Nagy, Annette E. Rosenbom, Bo V. Iversen, Mohamed Jabloun, and Finn Plauborg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-665, https://doi.org/10.5194/hess-2019-665, 2020
Publication in HESS not foreseen
Short summary
Short summary
The results of this model study revealed that 70 % of the overall drainage was supplied via macropores and of applied Bromide tracer, 54 % leached directly from the plough layer. This shows that there is a high risk of used soluble agrochemicals and nutrients, which are incorporated into the plough layer (such as injected slurry), being leached to the tile drain system.
David Nagy, Annette E. Rosenbom, Bo V. Iversen, and Finn Plauborg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-666, https://doi.org/10.5194/hess-2019-666, 2020
Publication in HESS not foreseen
Short summary
Short summary
A large amount of N (48 % to 80 % of the total N-loss to drainage) was preferentially transported via macropores to drainage, regardless of the application method and concurrent occurrence of precipitation. Overall, this study delineates the importance of accounting for preferential transport and coherent denitrification in the assessment of the leaching risk of nitrate to the aquatic environment.
Saghar Khodadad Motarjemi, Anders Bjørn Møller, Finn Plauborg, and Bo Vangsø Iversen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-650, https://doi.org/10.5194/hess-2019-650, 2020
Manuscript not accepted for further review
Ravshan Eshonkulov, Arne Poyda, Joachim Ingwersen, Hans-Dieter Wizemann, Tobias K. D. Weber, Pascal Kremer, Petra Högy, Alim Pulatov, and Thilo Streck
Biogeosciences, 16, 521–540, https://doi.org/10.5194/bg-16-521-2019, https://doi.org/10.5194/bg-16-521-2019, 2019
Short summary
Short summary
We compared the energy balance closure (EBC) under varying environmental conditions and investigated a wide range of possible reasons for the energy imbalance. As measures for the imbalance, we used ordinary linear regression, the energy balance ratio (EBR), and the energy residual. The EBR was also investigated as a function of buoyancy, friction velocity, and atmospheric stability. Moreover, the relationship between the EBC and flux source area or footprint was also investigated.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Sathyanarayan Rao, Félicien Meunier, Solomon Ehosioke, Nolwenn Lesparre, Andreas Kemna, Frédéric Nguyen, Sarah Garré, and Mathieu Javaux
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-280, https://doi.org/10.5194/bg-2018-280, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper illustrates the impact of electrical property of maize root segments on the Electrical Resistivity Tomography (ERT) inversion results with the help of numerical model. The model includes explicit root representation in the finite element mesh with root growth, transpiration and root water uptake. We show that, ignoring root segments could lead to wrong estimation of water content using ERT method.
Coleen D. U. Carranza, Martine J. van der Ploeg, and Paul J. J. F. Torfs
Hydrol. Earth Syst. Sci., 22, 2255–2267, https://doi.org/10.5194/hess-22-2255-2018, https://doi.org/10.5194/hess-22-2255-2018, 2018
Short summary
Short summary
Remote sensing has been popular for mapping surface soil moisture. However, estimating subsurface values using surface soil moisture remains a challenge, as decoupling can occur. Depth-integrated soil moisture values used in hydrological models are affected by vertical variability. Using statistical methods, we investigate vertical variability between the surface (5 cm) and subsurface (40 cm) to quantify decoupling. We also discuss potential controls for decoupling during wet and dry conditions.
Reuven B. Simhayov, Tobias K. D. Weber, and Jonathan S. Price
SOIL, 4, 63–81, https://doi.org/10.5194/soil-4-63-2018, https://doi.org/10.5194/soil-4-63-2018, 2018
Short summary
Short summary
Lab experiments were performed to understand solute transport in peat from an experimental fen. Transport was analyzed under saturated and unsaturated conditions using NaCl (salt). We tested the applicability of a physical-based model which finds a wide consensus vs. alternative models. Evidence indicated that Cl transport can be explained using a simple transport model. Hence, use of the physical transport mechanism in peat should be evidence based and not automatically assumed.
Harm-Jan F. Benninga, Coleen D. U. Carranza, Michiel Pezij, Pim van Santen, Martine J. van der Ploeg, Denie C. M. Augustijn, and Rogier van der Velde
Earth Syst. Sci. Data, 10, 61–79, https://doi.org/10.5194/essd-10-61-2018, https://doi.org/10.5194/essd-10-61-2018, 2018
Short summary
Short summary
Soil moisture is a central hydrological state variable. We set up a soil moisture and soil temperature profile monitoring network of 15 stations, distributed over the 495 km2 Raam region. The Raam catchment faces dry and wet periods, which both have implications for agricultural and regional water management. The measurements at 5 cm depth provide a reference for soil moisture retrievals from earth observations, while the measurements at deeper layers enable investigation of root zone processes.
Félicien Meunier, Valentin Couvreur, Xavier Draye, Mohsen Zarebanadkouki, Jan Vanderborght, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 21, 6519–6540, https://doi.org/10.5194/hess-21-6519-2017, https://doi.org/10.5194/hess-21-6519-2017, 2017
Short summary
Short summary
To maintain its yield, a plant needs to transpire water that it acquires from the soil. A deep understanding of the mechanisms that lead to water uptake location and intensity is required to correctly simulate the water transfer in the soil to the atmosphere. This work presents novel and general solutions of the water flow equation in roots with varying hydraulic properties that deeply affect the uptake pattern and the transpiration rate and can be used in ecohydrological models.
Tobias Karl David Weber, Sascha Christian Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 21, 6185–6200, https://doi.org/10.5194/hess-21-6185-2017, https://doi.org/10.5194/hess-21-6185-2017, 2017
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017, https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
Short summary
In this study electromagnetic induction (EMI) measurements were used to estimate soil salinity in an agriculture field irrigated with a drip irrigation system. Electromagnetic model parameters and uncertainty were estimated using adaptive Bayesian Markov chain Monte Carlo (MCMC). Application of the MCMC-based inversion to the synthetic and field measurements demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil.
Carsten Montzka, Michael Herbst, Lutz Weihermüller, Anne Verhoef, and Harry Vereecken
Earth Syst. Sci. Data, 9, 529–543, https://doi.org/10.5194/essd-9-529-2017, https://doi.org/10.5194/essd-9-529-2017, 2017
Short summary
Short summary
Global climate models require adequate parameterization of soil hydraulic properties, but typical resampling to the model grid introduces uncertainties. Here we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the problems. It preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters that enables modellers to perturb hydraulic parameters for model ensemble generation.
Youri Rothfuss and Mathieu Javaux
Biogeosciences, 14, 2199–2224, https://doi.org/10.5194/bg-14-2199-2017, https://doi.org/10.5194/bg-14-2199-2017, 2017
Short summary
Short summary
Plant root water uptake (RWU) has been documented for the past 5 decades from water stable isotopic analysis. In this paper, we review the different methods for reconstructing RWU profiles on the basis of isotopic information and confront them with each other during a series of virtual experiments. Finally, we call for a development of approaches coupling physically based RWU models with controlled condition experimental setups.
Sami Touil, Aurore Degre, and Mohamed Nacer Chabaca
SOIL, 2, 647–657, https://doi.org/10.5194/soil-2-647-2016, https://doi.org/10.5194/soil-2-647-2016, 2016
Merit van den Berg, Joachim Ingwersen, Marc Lamers, and Thilo Streck
Biogeosciences, 13, 6107–6119, https://doi.org/10.5194/bg-13-6107-2016, https://doi.org/10.5194/bg-13-6107-2016, 2016
Short summary
Short summary
Peatlands are interesting options for carbon storage but are also natural emitters of the greenhouse gas methane. Peatlands dominated by common reed are interesting because of their global abundance as a wetland plant and their ability to transport gases between the soil and the atmosphere. We found that reed plants highly influenced methane fluxes due to their gas transport mechanism, and that our peatland was a net sink for greenhouse gases in the year 2013.
Eléonore Beckers, Mathieu Pichault, Wanwisa Pansak, Aurore Degré, and Sarah Garré
SOIL, 2, 421–431, https://doi.org/10.5194/soil-2-421-2016, https://doi.org/10.5194/soil-2-421-2016, 2016
Short summary
Short summary
Determining the behaviour of stony soils with respect to infiltration and storage of water is of major importance, since stony soils are widespread across the globe. The most common procedure to overcome this difficulty is to describe the hydraulic characteristics of a stony soils in terms of the fine fraction of soil corrected for the volume of stones present. Our study suggests that considering this hypothesis might be ill-founded, especially for saturated soils.
Simone Bircher, Mie Andreasen, Johanna Vuollet, Juho Vehviläinen, Kimmo Rautiainen, François Jonard, Lutz Weihermüller, Elena Zakharova, Jean-Pierre Wigneron, and Yann H. Kerr
Geosci. Instrum. Method. Data Syst., 5, 109–125, https://doi.org/10.5194/gi-5-109-2016, https://doi.org/10.5194/gi-5-109-2016, 2016
Short summary
Short summary
At the Finnish Meteorological Institute in Sodankylä and the Danish Center for Hydrology, calibration functions for organic surface layers were derived for two in situ soil moisture sensors to be used in the validation of coarse-resolution soil moisture from satellites and land surface models. There was no clear difference in the data from a variety of humus types, strengthening confidence that these calibrations are applicable over a wide range of conditions as encountered in the large areas.
Sarann Ly, Catherine Sohier, Catherine Charles, and Aurore Degré
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-16, https://doi.org/10.5194/nhess-2016-16, 2016
Manuscript not accepted for further review
Short summary
Short summary
This study presents modelling work of extreme discharge response to rainfall inputs interpolated by various approaches. Elevation is used as external data to improve the rainfall prediction. Thirty years of daily rainfall in the Ourthe and Ambleve catchments (hilly landscape of Belgium) are used as inputs for a distributed hydrological model. We assess the effectiveness of extreme flow prediction using these methods. The position of the raingages is the key factor for rainfall interpolation.
M. Rezaei, P. Seuntjens, I. Joris, W. Boënne, S. Van Hoey, P. Campling, and W. M. Cornelis
Hydrol. Earth Syst. Sci., 20, 487–503, https://doi.org/10.5194/hess-20-487-2016, https://doi.org/10.5194/hess-20-487-2016, 2016
Short summary
Short summary
The sensitivity of the combined model (LINGRA-N and HYDRUS-1D) to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed. We showed that it is sufficient to estimate limited amount of key parameters in optimization strategies. A combined modelling approach could increase water use efficiency (12–22.5 %) and yield (5–7%) by changing irrigation scheduling. Result calls for taking into account weather forecast and soil water content data in precision agriculture.
K. Imukova, J. Ingwersen, M. Hevart, and T. Streck
Biogeosciences, 13, 63–75, https://doi.org/10.5194/bg-13-63-2016, https://doi.org/10.5194/bg-13-63-2016, 2016
M. Hannes, U. Wollschläger, F. Schrader, W. Durner, S. Gebler, T. Pütz, J. Fank, G. von Unold, and H.-J. Vogel
Hydrol. Earth Syst. Sci., 19, 3405–3418, https://doi.org/10.5194/hess-19-3405-2015, https://doi.org/10.5194/hess-19-3405-2015, 2015
J. Ingwersen, K. Imukova, P. Högy, and T. Streck
Biogeosciences, 12, 2311–2326, https://doi.org/10.5194/bg-12-2311-2015, https://doi.org/10.5194/bg-12-2311-2015, 2015
Short summary
Short summary
The energy balance of eddy covariance (EC) flux data is normally not closed. Therefore, EC flux data are usually post-closed, i.e. the measured turbulent fluxes are adjusted so as to close the energy balance. We propose to use in model evaluation the post-closure method uncertainty band (PUB) to account for the uncertainty in EC data originating from lacking energy balance closure. Working with only a single post-closing method might result in severe misinterpretations in model-data comparison.
B. Scharnagl, S. C. Iden, W. Durner, H. Vereecken, and M. Herbst
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-2155-2015, https://doi.org/10.5194/hessd-12-2155-2015, 2015
Preprint withdrawn
E. Beckers, E. Plougonven, N. Gigot, A. Léonard, C. Roisin, Y. Brostaux, and A. Degré
Hydrol. Earth Syst. Sci., 18, 1805–1817, https://doi.org/10.5194/hess-18-1805-2014, https://doi.org/10.5194/hess-18-1805-2014, 2014
V. Couvreur, J. Vanderborght, L. Beff, and M. Javaux
Hydrol. Earth Syst. Sci., 18, 1723–1743, https://doi.org/10.5194/hess-18-1723-2014, https://doi.org/10.5194/hess-18-1723-2014, 2014
B. te Brake, M. J. van der Ploeg, and G. H. de Rooij
Hydrol. Earth Syst. Sci., 17, 1933–1949, https://doi.org/10.5194/hess-17-1933-2013, https://doi.org/10.5194/hess-17-1933-2013, 2013
D. Schotanus, M. J. van der Ploeg, and S. E. A. T. M. van der Zee
Hydrol. Earth Syst. Sci., 17, 1547–1560, https://doi.org/10.5194/hess-17-1547-2013, https://doi.org/10.5194/hess-17-1547-2013, 2013
M. Grandry, S. Gailliez, C. Sohier, A. Verstraete, and A. Degré
Hydrol. Earth Syst. Sci., 17, 1319–1330, https://doi.org/10.5194/hess-17-1319-2013, https://doi.org/10.5194/hess-17-1319-2013, 2013
L. Beff, T. Günther, B. Vandoorne, V. Couvreur, and M. Javaux
Hydrol. Earth Syst. Sci., 17, 595–609, https://doi.org/10.5194/hess-17-595-2013, https://doi.org/10.5194/hess-17-595-2013, 2013
A. Peñuela, M. Javaux, and C. L. Bielders
Hydrol. Earth Syst. Sci., 17, 87–101, https://doi.org/10.5194/hess-17-87-2013, https://doi.org/10.5194/hess-17-87-2013, 2013
Related subject area
Soils and water
Depth extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing (CRNS) using the soil moisture analytical relationship (SMAR) model
Addressing soil data needs and data gaps in catchment-scale environmental modelling: the European perspective
Optimized fertilization using online soil nitrate data
The effect of groundwater depth on topsoil organic matter mineralization during a simulated dry summer in North-West Europe
Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol
Perspectives on the misconception of levitating soil aggregates
Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
Sequestering carbon in the subsoil benefits crop transpiration at the onset of drought
Pesticide transport through the vadose zone under sugarcane in the Wet Tropics, Australia
The higher relative concentration of K+ to Na+ in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
Agricultural use of compost under different irrigation strategies in a hedgerow olive grove under Mediterranean conditions – a comparison with traditional systems
Potential of natural language processing for metadata extraction from environmental scientific publications
Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture
Effects of innovative long-term soil and crop management on topsoil properties of a Mediterranean soil based on detailed water retention curves
Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type
Modelling the effect of catena position and hydrology on soil chemical weathering
Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Effective hydraulic properties of 3D virtual stony soils identified by inverse modeling
Biochar alters hydraulic conductivity and impacts nutrient leaching in two agricultural soils
Impact of freeze–thaw cycles on soil structure and soil hydraulic properties
Added value of geophysics-based soil mapping in agro-ecosystem simulations
Particulate macronutrient exports from tropical African montane catchments point to the impoverishment of agricultural soils
A review of the global soil property maps for Earth system models
Saturated and unsaturated salt transport in peat from a constructed fen
Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria
Water in the critical zone: soil, water and life from profile to planet
Deriving pedotransfer functions for soil quartz fraction in southern France from reverse modeling
Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed
Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments
Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions
Sediment concentration rating curves for a monsoonal climate: upper Blue Nile
Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study
Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties
Potential effects of vinasse as a soil amendment to control runoff and soil loss
Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mined lands
Coupled cellular automata for frozen soil processes
Daniel Rasche, Theresa Blume, and Andreas Güntner
SOIL, 10, 655–677, https://doi.org/10.5194/soil-10-655-2024, https://doi.org/10.5194/soil-10-655-2024, 2024
Short summary
Short summary
Soil moisture measurements at the field scale are highly beneficial for numerous (soil) hydrological applications. Cosmic-ray neutron sensing (CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares but only for the first few tens of centimetres of the soil. In this study, we modify and test a simple modeling approach to extrapolate CRNS-derived surface soil moisture information down to 450 cm depth and compare calibrated and uncalibrated model results.
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Yonatan Yekutiel, Yuval Rotem, Shlomi Arnon, and Ofer Dahan
SOIL, 10, 335–347, https://doi.org/10.5194/soil-10-335-2024, https://doi.org/10.5194/soil-10-335-2024, 2024
Short summary
Short summary
A new soil nitrate monitoring system that was installed in a cultivated field enabled us, for the first-time, to control nitrate concentration across the soil profile. Frequent adjustment of fertilizer and water application followed the actual dynamic variation in nitrate concentration across the soil profile. Hence, a significant reduction in fertilizer application was achieved while preserving optimal crop yield.
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
EGUsphere, https://doi.org/10.5194/egusphere-2024-559, https://doi.org/10.5194/egusphere-2024-559, 2024
Short summary
Short summary
To assess the impact of groundwater table (GWT) depth on soil moisture and C mineralization, we designed a laboratory setup using 200 cm undisturbed soil columns. Surprisingly, the moisture increase induced by a shallower GWT did not result in enhanced C mineralization. We presume this capillary moisture effect was offset by increased C mineralization upon rewetting, particularly noticeable in drier soils when capillary rise affected the topsoil to a lesser extent due to a deeper GWT.
Shouhao Li, Shuiqing Chen, Shanshan Bai, Jinfang Tan, and Xiaoqian Jiang
SOIL, 10, 49–59, https://doi.org/10.5194/soil-10-49-2024, https://doi.org/10.5194/soil-10-49-2024, 2024
Short summary
Short summary
The distribution of water-extractable colloids with soil profiles of 0–120 cm was investigated in a Vertisol under high-intensity agricultural management. A large number of experimental data show that colloidal phosphorus plays an important role in apatite transport throughout the profile. Thus, it is crucial to consider the impact of colloidal P when predicting surface-to-subsurface P loss in Vertisols.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Birhanu Iticha, Luke M. Mosley, and Petra Marschner
SOIL, 10, 33–47, https://doi.org/10.5194/soil-10-33-2024, https://doi.org/10.5194/soil-10-33-2024, 2024
Short summary
Short summary
Little effort has been made to develop methods to calculate the application rates of lime combined with organic amendments (OAs) needed to neutralise soil acidity and achieve the desired pH for plant growth. The previous approach of estimating appropriate lime and OA combinations based on field trials is time-consuming and costly. Hence, we developed and successfully validated a new method to calculate the amount of lime or OAs in combined applications required to ameliorate acidity.
Maria Eliza Turek, Attila Nemes, and Annelie Holzkämper
SOIL, 9, 545–560, https://doi.org/10.5194/soil-9-545-2023, https://doi.org/10.5194/soil-9-545-2023, 2023
Short summary
Short summary
In this study, we systematically evaluated prospective crop transpiration benefits of sequestering soil organic carbon (SOC) under current and future climatic conditions based on the model SWAP. We found that adding at least 2% SOC down to at least 65 cm depth could increase transpiration annually by almost 40 mm, which can play a role in mitigating drought impacts in rain-fed cropping. Beyond this threshold, additional crop transpiration benefits of sequestering SOC are only marginal.
Rezaul Karim, Lucy Reading, Les Dawes, Ofer Dahan, and Glynis Orr
SOIL, 9, 381–398, https://doi.org/10.5194/soil-9-381-2023, https://doi.org/10.5194/soil-9-381-2023, 2023
Short summary
Short summary
The study was performed using continuous measurement of temporal variations in soil saturation and of the concentration of pesticides along the vadose zone profile and underlying alluvial aquifers at sugarcane fields in the Wet Tropics of Australia. A vadose zone monitoring system was set up to enable the characterization of pesticide (non-PS II herbicides) migration with respect to pesticide application, sugarcane growing period, and, finally, rainwater infiltration.
Sihui Yan, Tibin Zhang, Binbin Zhang, Tonggang Zhang, Yu Cheng, Chun Wang, Min Luo, Hao Feng, and Kadambot H. M. Siddique
SOIL, 9, 339–349, https://doi.org/10.5194/soil-9-339-2023, https://doi.org/10.5194/soil-9-339-2023, 2023
Short summary
Short summary
The paper provides some new information about the effects of different relative concentrations of K+ to Na+ at constant electrical conductivity (EC) on soil hydraulic conductivity, salt-leaching efficiency and pore size distribution. In addition to Ca2+ and Mg2+, K+ plays an important role in soil structure stability. These findings can provide a scientific basis and technical support for the sustainable use of saline water and control of soil quality deterioration.
Laura L. de Sosa, María José Martín-Palomo, Pedro Castro-Valdecantos, and Engracia Madejón
SOIL, 9, 325–338, https://doi.org/10.5194/soil-9-325-2023, https://doi.org/10.5194/soil-9-325-2023, 2023
Short summary
Short summary
Olive groves are subject to enormous pressure to meet the social demands of production. In this work, we assess how an additional source of organic carbon and an irrigation control can somehow palliate the effect of olive grove intensification by comparing olive groves under different management and tree densities. We observed that a reduced irrigation regimen in combination with compost from the oil industry's own waste was able to enhance soil fertility under a water conservation strategy.
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023, https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary
Short summary
Adapting agricultural practices to future climatic conditions requires us to synthesize the effects of management practices on soil properties with respect to local soil and climate. We showcase different automated text-processing methods to identify topics, extract metadata for building a database and summarize findings from publication abstracts. While human intervention remains essential, these methods show great potential to support evidence synthesis from large numbers of publications.
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
Alaitz Aldaz-Lusarreta, Rafael Giménez, Miguel A. Campo-Bescós, Luis M. Arregui, and Iñigo Virto
SOIL, 8, 655–671, https://doi.org/10.5194/soil-8-655-2022, https://doi.org/10.5194/soil-8-655-2022, 2022
Short summary
Short summary
This study shows how an innovative soil and crop management including no-tillage, cover crops and organic amendments is able to improve the topsoil physical quality compared to conventional management for rainfed cereal cropping in a semi-arid Mediterranean area in Navarre (Spain).
Rosolino Ingraffia, Gaetano Amato, Vincenzo Bagarello, Francesco G. Carollo, Dario Giambalvo, Massimo Iovino, Anika Lehmann, Matthias C. Rillig, and Alfonso S. Frenda
SOIL, 8, 421–435, https://doi.org/10.5194/soil-8-421-2022, https://doi.org/10.5194/soil-8-421-2022, 2022
Short summary
Short summary
The presence of microplastics in soil environments has received increased attention, but little research exists on the effects on different soil types and soil water erosion. We performed two experiments on the effects of polyester microplastic fiber on soil properties, soil aggregation, and soil erosion in three agricultural soils. Results showed that polyester microplastic fibers affect the formation of new aggregates and soil erosion and that such effects are strongly dependent on soil type.
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022, https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Short summary
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on soil hydraulic properties. We measured soil water retention and conductivity and also conducted numerical simulations to compare soil water storage abilities under the different systems. Soils under NT and CC practices had improved soil structure. Conservation agriculture practices showed marginal improvement with respect to infiltration rates and water storage.
Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner
SOIL, 8, 99–112, https://doi.org/10.5194/soil-8-99-2022, https://doi.org/10.5194/soil-8-99-2022, 2022
Short summary
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
Danielle L. Gelardi, Irfan H. Ainuddin, Devin A. Rippner, Janis E. Patiño, Majdi Abou Najm, and Sanjai J. Parikh
SOIL, 7, 811–825, https://doi.org/10.5194/soil-7-811-2021, https://doi.org/10.5194/soil-7-811-2021, 2021
Short summary
Short summary
Biochar is purported to alter soil water dynamics and reduce nutrient loss when added to soils, though the mechanisms are often unexplored. We studied the ability of seven biochars to alter the soil chemical and physical environment. The flow of ammonium through biochar-amended soil was determined to be controlled through chemical affinity, and nitrate, to a lesser extent, through physical entrapment. These data will assist land managers in choosing biochars for specific agricultural outcomes.
Frederic Leuther and Steffen Schlüter
SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, https://doi.org/10.5194/soil-7-179-2021, 2021
Short summary
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Yongjiu Dai, Wei Shangguan, Nan Wei, Qinchuan Xin, Hua Yuan, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, Dagang Wang, and Fapeng Yan
SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, https://doi.org/10.5194/soil-5-137-2019, 2019
Short summary
Short summary
Soil data are widely used in various Earth science fields. We reviewed soil property maps for Earth system models, which can also offer insights to soil data developers and users. Old soil datasets are often based on limited observations and have various uncertainties. Updated and comprehensive soil data are made available to the public and can benefit related research. Good-quality soil data are identified and suggestions on how to improve and use them are provided.
Reuven B. Simhayov, Tobias K. D. Weber, and Jonathan S. Price
SOIL, 4, 63–81, https://doi.org/10.5194/soil-4-63-2018, https://doi.org/10.5194/soil-4-63-2018, 2018
Short summary
Short summary
Lab experiments were performed to understand solute transport in peat from an experimental fen. Transport was analyzed under saturated and unsaturated conditions using NaCl (salt). We tested the applicability of a physical-based model which finds a wide consensus vs. alternative models. Evidence indicated that Cl transport can be explained using a simple transport model. Hence, use of the physical transport mechanism in peat should be evidence based and not automatically assumed.
Sami Touil, Aurore Degre, and Mohamed Nacer Chabaca
SOIL, 2, 647–657, https://doi.org/10.5194/soil-2-647-2016, https://doi.org/10.5194/soil-2-647-2016, 2016
M. J. Kirkby
SOIL, 2, 631–645, https://doi.org/10.5194/soil-2-631-2016, https://doi.org/10.5194/soil-2-631-2016, 2016
Short summary
Short summary
The review paper surveys the state of the art with respect to water in the critical zone, taking a broad view that concentrates on the global range of natural soils, identifying some areas of currently active research.
Jean-Christophe Calvet, Noureddine Fritz, Christine Berne, Bruno Piguet, William Maurel, and Catherine Meurey
SOIL, 2, 615–629, https://doi.org/10.5194/soil-2-615-2016, https://doi.org/10.5194/soil-2-615-2016, 2016
Short summary
Short summary
Soil thermal conductivity in wet conditions can be retrieved together with the soil quartz content using a reverse modelling technique based on sub-hourly soil temperature observations at three depths below the soil surface.
A pedotransfer function is proposed for quartz, for the considered region in France.
Gravels have a major impact on soil thermal conductivity, and omitting the soil organic matter information tends to enhance this impact.
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016, https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Short summary
Gully erosion rehabilitation programs in the humid Ethiopian highlands have not been effective, because the gully formation process and its controlling factors are not well understood. In this manuscript, the severity of gully erosion (onsite and offsite effect), the most controlling factors (e.g., ground water elevation) for gully formation, and their arresting mechanisms are discussed in detail. Most data were collected from the detailed measurements of 13 representative gullies.
Eléonore Beckers, Mathieu Pichault, Wanwisa Pansak, Aurore Degré, and Sarah Garré
SOIL, 2, 421–431, https://doi.org/10.5194/soil-2-421-2016, https://doi.org/10.5194/soil-2-421-2016, 2016
Short summary
Short summary
Determining the behaviour of stony soils with respect to infiltration and storage of water is of major importance, since stony soils are widespread across the globe. The most common procedure to overcome this difficulty is to describe the hydraulic characteristics of a stony soils in terms of the fine fraction of soil corrected for the volume of stones present. Our study suggests that considering this hypothesis might be ill-founded, especially for saturated soils.
Mirjam J. D. Hack-ten Broeke, Joop G. Kroes, Ruud P. Bartholomeus, Jos C. van Dam, Allard J. W. de Wit, Iwan Supit, Dennis J. J. Walvoort, P. Jan T. van Bakel, and Rob Ruijtenberg
SOIL, 2, 391–402, https://doi.org/10.5194/soil-2-391-2016, https://doi.org/10.5194/soil-2-391-2016, 2016
Short summary
Short summary
For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, which can quantify the differences between years and also the effects of extreme weather events.
Mamaru A. Moges, Fasikaw A. Zemale, Muluken L. Alemu, Getaneh K. Ayele, Dessalegn C. Dagnew, Seifu A. Tilahun, and Tammo S. Steenhuis
SOIL, 2, 337–349, https://doi.org/10.5194/soil-2-337-2016, https://doi.org/10.5194/soil-2-337-2016, 2016
Short summary
Short summary
In tropical monsoonal Africa, sediment concentration data in rivers are lacking. Using occasional historically observed sediment loads, we developed a simple method for prediction sediment concentrations. Unlike previous methods, our techniques take into account that sediment concentrations decrease with the progression of the monsoon rains. With more testing, the developed method could improve sediment predictions in monsoonal climates.
Didier Michot, Zahra Thomas, and Issifou Adam
SOIL, 2, 241–255, https://doi.org/10.5194/soil-2-241-2016, https://doi.org/10.5194/soil-2-241-2016, 2016
Short summary
Short summary
This study focuses on temporal and spatial soil moisture changes along a toposequence crossed by a hedgerow, using ERT and occasional measurements. We found that the relationship between ER and soil moisture had two behaviors depending on soil heterogeneities. ER values were consistent with occasional measurements outside the root zone. The shift in this relationship was controlled by root system density and a particular topographical context in the proximity of the hedgerow.
Maha Deeb, Michel Grimaldi, Thomas Z. Lerch, Anne Pando, Agnès Gigon, and Manuel Blouin
SOIL, 2, 163–174, https://doi.org/10.5194/soil-2-163-2016, https://doi.org/10.5194/soil-2-163-2016, 2016
Short summary
Short summary
This paper addresses the evolution of engineered soils (i.e., Technosols). The formation of such soils begins with proportional mixing of urban waste. Technosols are particularly well suited for investigating the role of organisms in soil function development. This is because they provide a controlled environment where the soil development can be monitored over time.
Organisms and their interaction with parent materials positively affect the structure of Technosols.
Z. Hazbavi and S. H. R. Sadeghi
SOIL, 2, 71–78, https://doi.org/10.5194/soil-2-71-2016, https://doi.org/10.5194/soil-2-71-2016, 2016
Short summary
Short summary
This study evaluates the influences of vinasse waste of sugarcane industries on runoff and soil loss at small plot scale. Laboratory results indicated that the vinasse at different levels could not significantly (P > 0.05) decrease the runoff amounts and soil loss rates in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m−2 level of vinasse application.
S. Arnold and E. R. Williams
SOIL, 2, 41–48, https://doi.org/10.5194/soil-2-41-2016, https://doi.org/10.5194/soil-2-41-2016, 2016
Short summary
Short summary
Soil water models are used to design cover systems for containing hazardous waste following mining. Often, soil invertebrates are omitted from these calculations, despite playing a major role in soil development (nutrient cycling) and water pathways (seepage, infiltration). As such, soil invertebrates can influence the success of waste cover systems. We propose that experiments in glasshouses, laboratories and field trials on mined lands be undertaken to provide knowledge for these models.
R. M. Nagare, P. Bhattacharya, J. Khanna, and R. A. Schincariol
SOIL, 1, 103–116, https://doi.org/10.5194/soil-1-103-2015, https://doi.org/10.5194/soil-1-103-2015, 2015
Cited articles
Auroy, M., Poyet, S., Le Bescop, P., Torrenti, J.-M., Charpentier, T., Moskura,
M., and Bourbon, X.: Impact of carbonation on unsaturated water transport
properties of cement-based materials, Cement Concrete Res., 74,
44–58, https://doi.org/10.1016/j.cemconres.2015.04.002, 2015. a
Bittelli, M. and Flury, M.: Errors in Water Retention Curves Determined with
Pressure Plates, Soil Sci. Soc. Am. J., 73, 1453–1460,
https://doi.org/10.2136/SSSAJ2008.0082, 2009. a, b
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt,
M., Brubaker, M., Guo, J., Li, P., and Riddell, A.: Stan: A probabilistic
programming language, J. Stat. Softw., 76, 1–32,
https://doi.org/10.18637/jss.v076.i01, 2017. a
Cresswell, H. P., Green, T. W., and McKenzie, N. J.: The Adequacy of Pressure
Plate Apparatus for Determining Soil Water Retention, Soil Sci. Soc.
Am. J., 72, 41–49, https://doi.org/10.2136/SSSAJ2006.0182, 2008. a
Dane, J. H. and Hopmans, J. W.: 3.3.2 Laboratory, in: Methods of Soil
Analysis, John Wiley & Sons, Ltd, 675–720,
https://doi.org/10.2136/sssabookser5.4.c25, 2002. a
de Jong van Lier, Q., Pinheiro, E. A. R., and Inforsato, L.: Hydrostatic
equilibrium between soil samples and pressure plates used in soil water
retention determination: Consequences of a questionable assumption, Revista
Brasileira de Ciencia do Solo, 43, https://doi.org/10.1590/18069657RBCS20190014, 2019. a
Diamantopoulos, E. and Durner, W.: Dynamic Nonequilibrium of Water Flow in
Porous Media: A Review, Vadose Zone J., 11, vzj2011.0197,
https://doi.org/10.2136/vzj2011.0197, 2012. a
Gee, G. W., Campbell, M. D., Campbell, G. S., and Campbell, J. H.: Rapid
Measurement of Low Soil Water Potentials Using a Water
Activity Meter, Soil Sci. Soc. Am. J., 56, 1068–1070,
https://doi.org/10.2136/sssaj1992.03615995005600040010x, 1992. a
Gee, G. W., Ward, A. L., Zhang, Z. F., Campbell, G. S., and Mathison, J.: The
Influence of Hydraulic Nonequilibrium on Pressure Plate Data, Vadose Zone
J., 1, 172–178, https://doi.org/10.2113/1.1.172, 2002. a, b, c, d
Ghanbarian, B., Taslimitehrani, V., Dong, G., and Pachepsky, Y. A.: Sample
dimensions effect on prediction of soil water retention curve and saturated
hydraulic conductivity, J. Hydrol., 528, 127–137,
https://doi.org/10.1016/j.jhydrol.2015.06.024, 2015. a
Gubiani, P. I., Reichert, J. M., Campbell, C., Reinert, D. J., and Gelain,
N. S.: Assessing Errors and Accuracy in Dew-Point Potentiometer and Pressure
Plate Extractor Meaurements, Soil Sci. Soc. Am. J., 77,
19–24, https://doi.org/10.2136/SSSAJ2012.0024, 2013. a, b
Guillaume, B., Aroui Boukbida, H., Bakker, G., Bieganowski, A., Brostaux, Y., Cornelis, W., Durner, W., Hartmann, C., Iversen, B. V.,
Javaux, M., Ingwersen, J., Lamorski, K., Lamparter, A., Makó, A., Mingot Soriano, A. M., Messing, I., Nemes, A., Pomes-Bordedebat,
A., van der Ploeg, M., Weber, T. K. D., Weihermüller, L., Wellens, J., and Degré, A.: Reproducibility of the wet part of the soil water
retention curve: a European interlaboratory comparison [code, data set], https://doi.org/10.5281/zenodo.7943957, 2023. a
Hopmans, J. W., Šimůnek, J., Romano, N., and Durner, W.: 3.6.2. Inverse
Methods, in: Methods of Soil Analysis, John Wiley &
Sons, Ltd, 963–1008, https://doi.org/10.2136/sssabookser5.4.c40, 2002. a
Houst, Y. F.: Diffusion de gaz, carbonatation et retrait de la pâte de ciment
durcie, PhD. thesis, EPFL, Lausanne, https://doi.org/10.5075/epfl-thesis-1108, 1993. a
Hunt, A. G., Ewing, R. P., and Horton, R.: What's Wrong with Soil Physics?,
Soil Sci. Soc. Am. J., 77, 1877–1887,
https://doi.org/10.2136/SSSAJ2013.01.0020, 2013. a
Klute, A.: Water Retention: Laboratory Methods, Methods of Soil Analysis, Part
1: Physical and Mineralogical Methods, 635–662,
https://doi.org/10.2136/SSSABOOKSER5.1.2ED.C26, 1986. a, b
Madsen, H. B., JENSEN, C. R., and BOYSEN, T.: A comparison of the thermocouple
psychrometer and the pressure plate methods for determination of soil water
characteristic curves, J. Soil Sci., 37, 357–362,
https://doi.org/10.1111/J.1365-2389.1986.TB00368.X, 1986. a
Mosquera, G. M., Franklin, M., Jan, F., Rolando, C., Lutz, B., David, W., and
Patricio, C.: A field, laboratory, and literature review evaluation of the
water retention curve of volcanic ash soils: How well do standard laboratory
methods reflect field conditions?, Hydrol. Proc., 35, e14011,
https://doi.org/10.1002/HYP.14011, 2021. a, b
Nemes, A., Schaap, M. G., Leij, F. J., and Wösten, J. H. M.: Description of
the unsaturated soil hydraulic database UNSODA version 2.0, J. Hydrol., 251, 151–162, https://doi.org/10.1016/S0022-1694(01)00465-6, 2001. a
Peters, A. and Durner, W.: Simplified evaporation method for determining soil
hydraulic properties, J. Hydrol., 356, 147–162,
https://doi.org/10.1016/J.JHYDROL.2008.04.016, 2008. a
Reynolds, W. and Topp, G. C.: Soil Water Desorption and Imbibition: Tension and Pressure Techniques, in: Soil Sampling and Methods of
Analysis, 1017–1034, publisher: CRC Press, 1993. a
Richards, L. A. and Ogata, G.: Psychrometric Measurements of Soil Samples
Equilibrated on Pressure Membranes, Soil Sci. Soc. Am. J.,
25, 456–459, https://doi.org/10.2136/SSSAJ1961.03615995002500060012X, 1961. a
Ross, P. J., Williams, J., and Bristow, K. L.: Equation for Extending
Water-Retention Curves to Dryness, Soil Sci. Soc. Am. J.,
55, 923–927, https://doi.org/10.2136/sssaj1991.03615995005500040004x, 1991. a
Schelle, H., Heise, L., Jänicke, K., and Durner, W.: Water retention
characteristics of soils over the whole moisture range: a comparison of
laboratory methods, Europ. J. Soil Sci., 64, 814–821,
https://doi.org/10.1111/EJSS.12108, 2013.
a, b, c
Silva, M. L. d. N., Libardi, P. L., and Gimenes, F. H. S.: Soil Water
Retention Curve as Affected by Sample Height, Revista Brasileira de
Ciência do Solo, 42, https://doi.org/10.1590/18069657RBCS20180058, 2018. a
Solone, R., Bittelli, M., Tomei, F., and Morari, F.: Errors in water retention
curves determined with pressure plates: Effects on the soil water balance,
J. Hydrol., 470, 65–74, https://doi.org/10.1016/J.JHYDROL.2012.08.017,
2012. a
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., and Tóth, G.: New
generation of hydraulic pedotransfer functions for Europe, Europ. J. Soil Sci., 66, 226–238, https://doi.org/10.1111/EJSS.12192, 2015. a
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic
database of Europe at 250 m resolution, Hydrol. Proc., 31,
2662–2666, https://doi.org/10.1002/hyp.11203, 2017. a
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U.,
Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G., Tóth,
B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L.,
Zacharias, S., Zhang, Y., and Vereecken, H.: Pedotransfer Functions in
Earth System Science: Challenges and Perspectives, Rev.
Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017. a
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., and van
Genuchten, M.: Using Pedotransfer Functions to Estimate the van
Genuchten–Mualem Soil Hydraulic Properties: A Review, Vadose Zone J.,
9, 795–820, https://doi.org/10.2136/VZJ2010.0045, 2010. a
Weynants, M., Montanarella, L., Tóth, G., Arnoldussen, A., Anaya Romero, M.,
Bilas, G., Børresen, T., Cornelis, W., Daroussin, J., Gonçalves, M. D. C.,
Haugen, L.-E., Hennings, V., Houskova, B., Iovino, M., Javaux, M., Keay,
C. A., Kätterer, T., Kværnø, S., Laktinova, T., Lamorski, K., Lilly, A.,
Makó, A., Matula, S., Morari, F., Nemes, A., Patyka, N. V., Romano, N.,
Schindler, U., Shein, E., Sławiński, C., Strauss, P., Tóth, B., and
Woesten, H.: European HYdropedological Data Inventory (EU-HYDI),
https://doi.org/10.2788/5936, 2013. a
Wösten, J. H. M., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of
a database of hydraulic properties of European soils, Geoderma, 90,
169–185, https://doi.org/10.1016/S0016-7061(98)00132-3, 1999. a
Zeitoun, R., Vandergeest, M., Vasava, H. B., Machado, P. V. F., Jordan, S.,
Parkin, G., Wagner-Riddle, C., and Biswas, A.: In-Situ Estimation of Soil
Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil
Depths, Sensors, 21, 447, https://doi.org/10.3390/s21020447, 2021. a
Šavija, B. and Luković, M.: Carbonation of cement paste: Understanding,
challenges, and opportunities, Construct. Build. Mat., 117,
285–301, https://doi.org/10.1016/j.conbuildmat.2016.04.138, 2016. a
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Measurements of soil water retention properties play an important role in a variety of societal...