Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-99-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-99-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effective hydraulic properties of 3D virtual stony soils identified by inverse modeling
Division of Soil Science and Soil Physics, Institute of Geoecology,
Technische Universität Braunschweig, Braunschweig, Germany
Sascha C. Iden
Division of Soil Science and Soil Physics, Institute of Geoecology,
Technische Universität Braunschweig, Braunschweig, Germany
Wolfgang Durner
Division of Soil Science and Soil Physics, Institute of Geoecology,
Technische Universität Braunschweig, Braunschweig, Germany
Related authors
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023, https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Short summary
While various expressions for the water retention curve are commonly compared, the capillary conductivity model proposed by Mualem is widely used but seldom compared to alternatives. We compare four different capillary bundle models in terms of their ability to fully predict the hydraulic conductivity. The Mualem model outperformed the three other models in terms of predictive accuracy. Our findings suggest that the widespread use of the Mualem model is justified.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Cited articles
Abbasi, F., Jacques, D., Šimůnek, J., Feyen, J., and Van Genuchten,
M. T.: Inverse estimation of soil hydraulic and solute transport parameters
from transient field experiments: Heterogeneous soil, T. ASAE, 46, 1097, https://doi.org/10.13031/2013.13961, 2003.
Abbaspour, K., Kasteel, R., and Schulin, R.,: Inverse parameter estimation in a layered unsaturated field soil, Soil Sci., 165, 109–123, https://doi.org/10.1097/00010694-200002000-00002, 2000.
Abbaspour, K. C., Sonnleitner, M. A., and Schulin, R.: Uncertainty in estimation of soil hydraulic parameters by inverse modeling: Example lysimeter experiments, Soil Sci. Soc. Am. J., 63, 501–509, https://doi.org/10.2136/sssaj1999.03615995006300030012x, 1999.
Arias, N., Virto, I., Enrique, A., Bescansa, P., Walton, R., and Wendroth,
O.: Effect of Stoniness on the Hydraulic Properties of a Soil from an
Evaporation Experiment Using the Wind and Inverse Estimation Methods, Water,
11, 440, https://doi.org/10.3390/w11030440, 2019.
Baetens, J. M., Verbist, K., Cornelis, W. M., Gabriëls, D., and Soto, G.: On the influence of coarse fragments on soil water retention, Water Resour. Res., 45, W07408, https://doi.org/10.1029/2008WR007402, 2009.
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical
properties at European scale using the LUCAS database, Geoderma, 261,
110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016.
Beckers, E., Pichault, M., Pansak, W., Degré, A., and Garré, S.: Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments, SOIL, 2, 421–431, https://doi.org/10.5194/soil-2-421-2016, 2016.
Bouwer, H. and Rice, R. C.: Hydraulic properties of stony vadose zones,
Ground Water, 22, 696–705, https://doi.org/10.1111/j.1745-6584.1984.tb01438.x, 1984.
Brakensiek, D. L., Rawls, W. J., and Stephenson, G. R.: Determining the
saturated conductivity of a soil containing rock fragments, Soil Sci. Soc.
Am. J., 50, 834–835, https://doi.org/10.2136/sssaj1986.03615995005000030053x, 1986.
Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative
numerical solution for the unsaturated flow equation, Water Resour.
Res., 26, 1483–1496, https://doi.org/10.1029/WR026i007p01483, 1990.
Ciollaro, G. and Romano, N.,: Spatial variability of the hydraulic properties of a volcanic soil, Geoderma, 65, 263–282, https://doi.org/10.1016/0016-7061(94)00050-K, 1995.
Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B.,
Haikal, M. A., and Basile, A.: Measuring and modeling water content in stony
soils, Soil Till. Res., 128, 9–22, https://doi.org/10.1016/j.still.2012.10.006, 2013.
Corring, R. L. and Churchill, S. W.: Thermal conductivity of heterogeneous materials, Chem. Eng. Prog., 57, 53–59, 1961.
Corwin, D. L. and Lesch, S. M.: Apparent soil electrical conductivity
measurements in agriculture, Comput. Electron. Agr., 46, 11–43, https://doi.org/10.1016/j.compag.2004.10.005, 2005.
Cousin, I., Nicoullaud, B., and Coutadeur, C.: Influence of rock fragments
on the water retention and water percolation in a calcareous soil, Catena,
53, 97–114, https://doi.org/10.1016/S0341-8162(03)00037-7, 2003.
Dann, R., Close, M., Flintoft, M., Hector, R., Barlow, H., Thomas, S., and
Francis, G.: Characterization and estimation of hydraulic properties in an
alluvial gravel vadose zone, Vadose Zone J., 8, 651–663, https://doi.org/10.2136/vzj2008.0174, 2009.
Duan, Q. Y., Gupta, V. K., and Sorooshian, S.,: Shuffled complex evolution approach for effective and efficient global minimization, J. Optimiz. Theory App., 76, 501–521, https://doi.org/10.1007/BF00939380, 1993.
Durner, W. and Flühler, H.: Soil hydraulic properties, in: Encyclopedia of hydrological sciences, edited by: Anderson, M. G. and McDonnell, J. J., chap. 74, 1103–1120. John Wiley & Sons,
https://doi.org/10.1002/0470848944.hsa077c, 2006.
Durner, W. and Iden, S. C.: Extended multistep outflow method for the
accurate determination of soil hydraulic properties near water
saturation, Water Resour. Res., 47, 1–13, https://doi.org/10.1029/2011WR010632, 2011.
Durner, W., Jansen, U., and Iden, S. C.: Effective hydraulic properties of
layered soils at the lysimeter scale determined by inverse modelling, Euro.
J. Soil Sci., 59, 114–124, https://doi.org/10.1111/j.1365-2389.2007.00972.x, 2008.
Farthing, M. W. and Ogden, F. L.: Numerical solution of Richards' equation: A
review of advances and challenges, Soil Sci. Soc. Am. J., 81, 1257–1269,
https://doi.org/10.2136/sssaj2017.02.0058, 2017.
Fiès, J. C., Louvigny, N. D. E., and Chanzy, A.: The role of stones in soil water retention, Euro. J. Soil Sci., 53, 95–104, https://doi.org/10.1046/j.1365-2389.2002.00431.x, 2002.
Flint, A. L. and Childs, S.: Development and calibration of an irregular hole bulk density sampler, Soil Sci. Soc. Am. J., 48, 374–378, https://doi.org/10.2136/sssaj1984.03615995004800020030x, 1984.
Germer, K. and Braun J.: Determination of anisotropic saturated hydraulic
conductivity of a macroporous slope soil, Soil Sci. Soc. Am. J., 79,
1528–1536, https://doi.org/10.2136/sssaj2015.02.0071, 2015.
Grath, S. M., Ratej, J., Jovičić, V., and Curk, B.: Hydraulic
characteristics of alluvial gravels for different particle sizes and
pressure heads, Vadose Zone J., 14, 1–18, https://doi.org/10.2136/vzj2014.08.0112, 2015.
Haghverdi, A., Öztürk, H. S., and Durner, W.: Measurement and
estimation of the soil water retention curve using the evaporation method
and the pseudo continuous pedotransfer function, J. Hydrol., 563, 251–259,
https://doi.org/10.1016/j.jhydrol.2018.06.007, 2018.
Hlaváčiková, H. and Novák, V.: A relatively simple scaling
method for describing the unsaturated hydraulic functions of stony soils, J.
Plant Nutr. Soil Sci., 177, 560–565, https://doi.org/10.1002/jpln.201300524, 2014.
Hlaváčiková, H., Novák, V., and Šimůnek, J.: The
effects of rock fragment shapes and positions on modeled hydraulic
conductivities of stony soils, Geoderma, 281, 39–48, https://doi.org/10.1016/j.geoderma.2016.06.034, 2016.
Hlaváčiková, H., Novák, V., Kostka, Z., Danko, M., and
Hlavčo, J.: The influence of stony soil properties on water dynamics
modeled by the HYDRUS model, J. Hydrol. Hydromech., 66, 181–188, https://doi.org/10.1515/johh-2017-0052, 2018.
Hopmans, J. W., Šimůnek, J., Romano, N., and Durner, W.: Inverse Modeling of Transient Water Flow, in: Methods of Soil Analysis, Part 1, Physical Methods, chap. 3.6.2, edited by: Dane, J. H. and Topp, G. C., 3rd edn., SSSA, Madison, WI, 963–1008, https://doi.org/10.2136/sssabookser5.4.c40, 2002.
Kutilek, M.: Soil hydraulic properties as related to soil structure, Soil
Till. Res., 79, 175–184, https://doi.org/10.1016/j.still.2004.07.006,
2004.
Lai, J. and Ren, L.: Estimation of effective hydraulic parameters in
heterogeneous soils at field scale, Geoderma, 264, 28–41, https://doi.org/10.1016/j.geoderma.2015.09.013, 2016.
Lehmann, P., Bickel, S., Wei, Z., and Or, D.: Physical constraints for
improved soil hydraulic parameter estimation by pedotransfer functions,
Water Resour. Res., 56, e2019WR025963, https://doi.org/10.1029/2019WR025963, 2020.
Maxwell, J. C.: A Treatise on Electricity and Magnetism, vol. I, reprint: Dover, New York, Sect. 314, p. 440, https://doi.org/10.1038/007478a0, 1873.
Naseri, M., Iden, S. C., Richter, N., and Durner, W.: Influence of stone
content on soil hydraulic properties: experimental investigation and test of
existing model concepts, Vadose Zone J., 18, 1–10, https://doi.org/10.2136/vzj2018.08.0163, 2019.
Naseri, M., Peters, A., Durner, W., and Iden, S. C.: Effective hydraulic
conductivity of stony soils: General effective medium theory, Adv. Water
Resour., 146, 103765, https://doi.org/10.1016/j.advwatres.2020.103765, 2020.
Naseri, M., Iden, S. C., and Durner, W.: Evaporation and multi-step unit gradient virtual experiments for 3D geometries of stony soils with different volumes of rock fragments, TU Braunschweig, Institute of Geoecology [data set], https://doi.org/10.24355/dbbs.084-202201251240-0, 2022.
Nasta, P., Huynh, S., and Hopmans, J. W.: Simplified multistep outflow method
to estimate unsaturated hydraulic functions for coarse-textured soils, Soil
Sci. Soc. Am. J., 75, 418–425, https://doi.org/10.2136/sssaj2010.0113, 2011.
Novák, V. and Hlaváčiková, H.: Applied Soil Hydrology,
Springer International Publishing, https://doi.org/10.1007/978-3-030-01806-1, 2019.
Novák, V., Kňava, K., and Šimůnek, J.: Determining the
influence of stones on hydraulic conductivity of saturated soils using
numerical method, Geoderma, 161, 177–181, https://doi.org/10.1016/j.geoderma.2010.12.016, 2011.
Peck, A. J. and Watson, J. D.: Hydraulic conductivity and flow in non-uniform soil, in: Workshop on Soil Physics and Field Heterogeneity: working papers, Canberra, Australia, CSIRO Division of Environmental Mechanics, 12–14 February 1979, Canberra, 31-9, http://hdl.handle.net/102.100.100/297466?index=1 (last access: 3 February 2022), 1979.
Peters, A. and Durner, W.: Simplified evaporation method for determining
soil hydraulic properties, J. Hydrol., 356, 147–162, https://doi.org/10.1016/j.jhydrol.2008.04.016, 2008.
Peters, A., Iden, S. C., and Durner, W.: Revisiting the simplified
evaporation method: Identification of hydraulic functions considering vapor,
film and corner flow, J. Hydrol., 527, 531–542, https://doi.org/10.1016/j.jhydrol.2015.05.020, 2015.
Peters, R. R. and Klavetter, E. A.: A continuum model for water movement in
an unsaturated fractured rock mass, Water Resour. Res., 24, 416–430, https://doi.org/10.1029/WR024i003p00416, 1988.
Ponder, F. and Alley, D. E.: Soil sampler for rocky soils, US Department of
Agriculture, Forest Service, North Central Forest Experiment Station, https://doi.org/10.2737/NC-RN-371, 1997.
Radcliffe, D. E. and Šimůnek, J.: Soil physics with HYDRUS: Modeling
and applications, CRC press, https://doi.org/10.1201/9781315275666, 2018.
Ravina, I. and Magier, J.: Hydraulic conductivity and water retention of
clay soils containing coarse fragments, Soil Sci. Soc. Am. J., 48,
736–740, https://doi.org/10.2136/sssaj1984.03615995004800040008x, 1984.
Russo, D.: Determining soil hydraulic properties by parameter estimation: On
the selection of a model for the hydraulic properties, Water Resour. Res.,
24, 453–459, https://doi.org/10.1029/WR024i003p00453, 1988.
Sarkar, S., Germer, K., Maity, R., and Durner, W.: Measuring near-saturated
hydraulic conductivity of soils by quasi unit-gradient percolation – 1.
Theory and numerical analysis, J. Plant Nutr. Soil Sc., 182, 524–534,
https://doi.org/10.1002/jpln.201800382, 2019.
Schelle, H., Iden, S. C., Peters, A., and Durner, W.: Analysis of the
agreement of soil hydraulic properties obtained from multistep-outflow and
evaporation methods, Vadose Zone J., 9, 1080–1091, https://doi.org/10.2136/vzj2010.0050, 2010.
Schelle, H., Durner, W., Schlüter, H., Vogel, H.-J., and Vanderborght,
J.: Virtual Soils: Moisture measurements and their interpretation by inverse
modeling, Vadose Zone J., 12, 1–12, https://doi.org/10.2136/vzj2012.0168, 2013.
Schindler, U., Durner, W., von Unold, G., and Müller, L.: Evaporation
method for measuring unsaturated hydraulic properties of soils: Extending
the measurement range, Soil Sci. Soc. Am. J., 74, 1071–1083, https://doi.org/10.2136/sssaj2008.0358, 2010.
Schofield, R. K.: The pF of water in soil, in: Trans. of the Third
International Congress on Soil Science, 2, Plenary Session Papers, 30 July–7 August 1935, Oxford, UK, 37–48, https://repository.rothamsted.ac.uk/item/97yx6/the-pf-of-the-water-in-soil (last access: 3 February 2022), 1935.
Sekucia, F., Dlapa, P., Kollár, J., Cerdá, A., Hrabovský, A.,
and Svobodová, L.: Land-use impact on porosity and water retention of
soils rich in rock fragments, Catena, 195, 104807, https://doi.org/10.1016/j.catena.2020.104807, 2020.
Šimůnek, J., Van Genuchten, M. T., and Šejna, M.: The HYDRUS
software package for simulating two-and three-dimensional movement of water,
heat, and multiple solutes in variably-saturated media, Technical manual,
version, 1, 241, PC Progress, Prague, Czech Republic, https://www.ars.usda.gov/research/publications/publication/?seqNo115=204212 (last access: 3 February 2022), 2006.
Šimůnek, J., van Genuchten, M. T., and Šejna, M.: Development and
applications of the HYDRUS and STANMOD software packages and related codes,
Vadose Zone J., 7, 587–600, https://doi.org/10.2136/vzj2007.0077, 2008.
Šimůnek, J., Van Genuchten, M. T., and Šejna, M.: Recent
developments and applications of the HYDRUS computer software packages,
Vadose Zone J., 15, 1–25, https://doi.org/10.2136/vzj2016.04.0033, 2016 (code available at: https://www.pc-progress.com/en/Default.aspx, last access: 3 February 2022).
Singh, A., Haghverdi, A., Öztürk, H. S., and Durner, W.: Developing
Pseudo Continuous Pedotransfer Functions for International Soils Measured
with the Evaporation Method and the HYPROP System: I. The Soil Water
Retention Curve, Water, 12, 3425, https://doi.org/10.3390/w12123425, 2020.
Singh, A., Haghverdi, A., Öztürk, H. S., and Durner, W.: Developing
Pseudo Continuous Pedotransfer Functions for International Soils Measured
with the Evaporation Method and the HYPROP System: II. The Soil Hydraulic
Conductivity Curve, Water, 13, 878, https://doi.org/10.3390/w13060878, 2021.
Stevenson, M., Kumpan, M., Feichtinger, F., Scheidl, A., Eder, A., Durner
W., and Strauss, P.: Innovative method for installing soil moisture probes
in a large-scale undisturbed gravel lysimeter, Vadose Zone J., 20, 1–7, https://doi.org/10.1002/vzj2.20106, 2021.
Tetegan, M., de Forges, A. R., Verbeque, B., Nicoullaud, B., Desbourdes, C.,
Bouthier, A., Arrouays, D., and Cousin, I.: The effect of soil stoniness on
the estimation of water retention properties of soils: A case study from
central France, Catena, 129, 95–102, https://doi.org/10.1016/j.catena.2015.03.008,
2015.
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Verbist, K. M. J., Cornelis, W. M., Torfs, S., and Gabriels, D.: Comparing
methods to determine hydraulic conductivities on stony soils, Soil Sci. Soc.
Am. J., 77, 25–42, https://doi.org/10.2136/sssaj2012.0025, 2013.
Zhang, Y., Zhang, M., Niu, J., Li, H., Xiao, R., Zheng, H., and Bech, J.:
Rock fragments and soil hydrological processes: significance and progress,
Catena, 147, 153–166, https://doi.org/10.1016/j.catena.2016.07.012, 2016.
Zimmerman, R. W. and Bodvarsson, G.S.: The effect of rock fragments on the
hydraulic properties of soils, Lawrence Berkeley Lab., CA, USA, USDOE,
Washington, D.C., USA, https://doi.org/10.2172/102527, 1995.
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and...