Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of innovative long-term soil and crop management on topsoil properties of a Mediterranean soil based on detailed water retention curves
Alaitz Aldaz-Lusarreta
CORRESPONDING AUTHOR
Institute for Innovation & Sustainable Development in Food Chain
(IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Department of Engineering, Ed. Los Olivos, Universidad Pública de
Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Rafael Giménez
Institute for Innovation & Sustainable Development in Food Chain
(IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Department of Engineering, Ed. Los Olivos, Universidad Pública de
Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Miguel A. Campo-Bescós
Institute for Innovation & Sustainable Development in Food Chain
(IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Department of Engineering, Ed. Los Olivos, Universidad Pública de
Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Luis M. Arregui
Institute for Innovation & Sustainable Development in Food Chain
(IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Department of Agricultural Engineering, Biotechnology and Food, Ed.
Los Olivos, Universidad Pública de Navarra (UPNA), Campus de Arrosadia,
31006 Pamplona, Spain
Iñigo Virto
Institute for Innovation & Sustainable Development in Food Chain
(IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Department of Science, Ed. Los Olivos, Universidad Pública de
Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
Related authors
No articles found.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Cited articles
Alonso, A., Froidevaux, M., Javaux, M., Laloy, E., Mattern, S., Roisin, C.,
Vanclooster, M., and Bielders, C.: A hybrid method for characterizing
tillage-induced soil physical quality at the profile scale with fine spatial
details, Soil Till. Res., 216, 105236,
https://doi.org/10.1016/j.still.2021.105236, 2022.
Angers, D. A., Recous, S., and Aita, C.: Fate of carbon and nitrogen in
water-stable aggregates during decomposition of 13C15N-labelled wheat straw
in situ, Eur. J. Soil Sci., 48, 295–300,
https://doi.org/10.1111/j.1365-2389.1997.tb00549.x, 1997.
Armindo, R. A. and Wendroth, O.: Physical Soil Structure Evaluation based on
Hydraulic Energy Functions, Soil Sci. Soc. Am. J., 80, 1167–1180,
https://doi.org/10.2136/sssaj2016.03.0058, 2016.
Bacher, M. G., Schmidt, O., Bondi, G., Creamer, R., and Fenton, O.:
Comparison of Soil Physical Quality Indicators Using Direct and Indirect
Data Inputs Derived from a Combination of In-Situ and Ex-Situ Methods, Soil
Sci. Soc. Am. J., 83, 5–17, https://doi.org/10.2136/sssaj2018.06.0218,
2019.
Beare, M. H., Hendrix, P. F., Cabrera, M. L., and Coleman, D. C.:
Aggregate-Protected and Unprotected Organic Matter Pools in Conventional-
and No-Tillage Soils, Soil Sci. Soc. Am. J., 58, 787–795,
https://doi.org/10.2136/sssaj1994.03615995005800030021x, 1994.
Bescansa, P., Imaz, M. J., Virto, I., Enrique, A., and Hoogmoed, W. B.: Soil
water retention as affected by tillage and residue management in semiarid
Spain, Soil Till. Res., 87, 19–27,
https://doi.org/10.1016/j.still.2005.02.028, 2006.
Borges, J. A. R., Pires, L. F., Cássaro, F. A. M., Auler, A. C., Rosa,
J. A., Heck, R. J., and Roque, W. L.: X-ray computed tomography for
assessing the effect of tillage systems on topsoil morphological attributes,
Soil Till. Res., 189, 25–35, https://doi.org/10.1016/j.still.2018.12.019,
2019.
Bouma, J.: Soil science contributions towards Sustainable Development Goals
and their implementation: Linking soil functions with ecosystem services, J.
Plant Nutr. Soil Sc., 177, 111–120,
https://doi.org/10.1002/jpln.201300646, 2014.
Bouma, J., Montanarella, L., and Evanylo, G.: The challenge for the soil
science community to contribute to the implementation of the UN Sustainable
Development Goals, Soil Use Manage., 35, 538–546,
https://doi.org/10.1111/sum.12518, 2019.
Bouma, J., Pinto-correia, T., and Veerman, C.: Assessing the role of soils
when developing sustainable agricultural production systems focused on
achieving the un-sdgs and the eu green deal, Soil Syst., 5,
https://doi.org/10.3390/soilsystems5030056, 2021.
Bouma, J., de Haan, J., and Dekkers, M. F. S.: Exploring Operational
Procedures to Assess Ecosystem Services at Farm Level, including the Role of
Soil Health, Soil Syst., 6, 34, https://doi.org/10.3390/soilsystems6020034,
2022.
Brooks, R. H. and Corey, A. T.: Hidraulic properties of porous media, edited by: Corey, A. T., Dils, R. E.,
and Yevdjevich, V. M., Colorado State University, Fort Collins, CO, https://mountainscholar.org/bitstream/handle/10217/61288/HydrologyPapers_n3.pdf (last access: 18 October 2022) 1964.
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de
Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P.,
Pulleman, M., Sukkel, W., van Groenigen, J. W., and Brussaard, L.: Soil
quality – A critical review, Soil Biol. Biochem., 120, 105–125,
https://doi.org/10.1016/j.soilbio.2018.01.030, 2018.
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and
Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge
gaps and potential innovations, Soil Till. Res., 188, 41–52,
https://doi.org/10.1016/j.still.2018.04.011, 2019.
Costantini, E. A. C., Antichi, D., Almagro, M., Hedlund, K., Sarno, G., and
Virto, I.: Local adaptation strategies to increase or maintain soil organic
carbon content under arable farming in Europe: Inspirational ideas for
setting operational groups within the European innovation partnership, J.
Rural Stud., 79, 102–115, https://doi.org/10.1016/j.jrurstud.2020.08.005,
2020.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil
carbon storage informed by particulate and mineral-associated organic
matter, Nat. Geosci., 12, 989–994,
https://doi.org/10.1038/s41561-019-0484-6, 2019.
Council of the European Union: Council Directive 91/676/EEC of 12 December
1991 concerning the protection of waters against pollution caused by
nitrates from agricultural sources, L 269, 1–15, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01991L0676-20081211&from=EN (last access: 18 October 2022), 2008.
De Tourdonnet, S., Nozières, A., Barz, P., Chenu, C., Düring, R. A.,
Frielinghaus, M., Kõlli, R., Kubat, J., Magid, J., Medvedev, V.,
Michels, A., Müller, L., Netland, J., Nielsen, N. E., Nieves Mortensen,
C., Picard, D., Quillet, J. C., Saulas, P., Tessier, D., Thinggaard, K., and
Vandeputte, E.: Comprehensive inventory and assessment of existing knowledge
on sustainable agriculture in the European platform of KASSA, edited by:
Lahmar, R., Arrue, J. L., Denardin, J. E., Gupta, R. K., Ribeiro, M. F. F.,
and De Tourdonnet, S., CIRAD, Montpellier, 54 pp., ISBN 978-2-87614-646-4, 2007.
Dexter, A. R.: Soil physical quality: Part I. Theory, effects of soil
texture, density, and organic matter, and effects on root growth, Geoderma,
120, 201–214, https://doi.org/10.1016/j.geoderma.2003.09.004, 2004a.
Dexter, A. R.: Soil physical quality: Part II. Friability, tillage, tilth
and hard-setting, Geoderma, 120, 215–225,
https://doi.org/10.1016/j.geoderma.2003.09.005, 2004b.
Dexter, A. R. and Bird, N. R. A.: Methods for predicting the optimum and the
range of soil water contents for tillage based on the water retention curve,
Soil Till. Res., 57, 203–212,
https://doi.org/10.1016/S0167-1987(00)00154-9, 2001.
Dexter, A. R., Czyz, E. A., Richard, G., and Reszkowska, A.: A user-friendly
water retention function that takes account of the textural and structural
pore spaces in soil, Geoderma, 143, 243–253,
https://doi.org/10.1016/j.geoderma.2007.11.010, 2008.
Dirksen, C. (Ed.): Soil physics measurements, Catena Verlag, Reiskirchen,
Germany, 154 pp., https://www.cabdirect.org/cabdirect/abstract/20013083835 (last access: 18 October 2022), 1999.
Eekhout, J. P. C. and De Vente, J.: How soil erosion model conceptualization
affects soil loss projections under climate change, Prog. Phys. Geogr., 44,
212–232, https://doi.org/10.1177/0309133319871937, 2020.
Elliott, E. T.: Aggregate Structure and Carbon, Nitrogen, and Phosphorus in
Native and Cultivated Soils, Soil Sci. Soc. Am. J., 50, 627–633,
https://doi.org/10.2136/sssaj1986.03615995005000030017x, 1986.
Espejo-Pérez, A. J., Rodríguez-Lizana, A., Ordóñez, R., and
Giráldez, J. V.: Soil Loss and Runoff Reduction in Olive-Tree
Dry-Farming with Cover Crops, Soil Sci. Soc. Am. J., 77, 2140–2148,
https://doi.org/10.2136/sssaj2013.06.0250, 2013.
FAO: A protocol for measurement, monitoring, reporting and verification of
soil organic carbon in agricultural landscapes – GSOC-MRV Protocol, FAO, Rome,
140 pp., https://doi.org/10.4060/cb0509en, 2020.
Fernández-Ugalde, O., Virto, I., Bescansa, P., Imaz, M. J., Enrique, A.,
and Karlen, D. L.: No-tillage improvement of soil physical quality in
calcareous, degradation-prone, semiarid soils, Soil Till. Res., 106,
29–35, https://doi.org/10.1016/j.still.2009.09.012, 2009.
Fernández-Ugalde, O., Virto, I., Barré, P., Gartzia-Bengoetxea, N.,
Enrique, A., Imaz, M. J., and Bescansa, P.: Effect of carbonates on the
hierarchical model of aggregation in calcareous semi-arid Mediterranean
soils, Geoderma, 164, 203–214,
https://doi.org/10.1016/j.geoderma.2011.06.008, 2011.
Fernández-Ugalde, O., Barré, P., Virto, I., Hubert, F., Billiou, D.,
and Chenu, C.: Does phyllosilicate mineralogy explain organic matter
stabilization in different particle-size fractions in a 19-year C3/C4
chronosequence in a temperate Cambisol?, Geoderma, 264, 171–178,
https://doi.org/10.1016/j.geoderma.2015.10.017, 2016.
Fetting, C.: The European Green Deal, ESDN Report, ESDN Office, Vienna, https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf (last access: 18 October 2022), 2020.
Fuentes-Guevara, M. D., Armindo, R. A., Timm, L. C., and Faria, L. C.:
Examining the land leveling impacts on the physical quality of lowland soils
in Southern Brazil, Soil Till. Res., 215, 105217,
https://doi.org/10.1016/j.still.2021.105217, 2022.
Gao, L., Wang, B., Li, S., Wu, H., Wu, X., Liang, G., Gong, D., Zhang, X.,
Cai, D., and Degré, A.: Soil wet aggregate distribution and pore size
distribution under different tillage systems after 16 years in the Loess
Plateau of China, Catena, 173, 38–47,
https://doi.org/10.1016/j.catena.2018.09.043, 2019.
Gobierno de Navarra Meteorología y Climatología de Navarra: Meteorología y Climatología de Navarra,
http://meteo.navarra.es/climatologia/selfichaclima.cfm?IDEstacion=81&tipo=MAN,
last access: 30 August 2022.
Golchin, A., Oades, J. M., Skjemstad, J. O., and Clarke, P.: Soil structure
and carbon cycling, Aust. J. Soil Res., 32, 1043–1063,
https://doi.org/10.1071/SR9941043, 1994.
Gómez, J. A., Sobrinho, T. A., Giráldez, J. V., and Fereres, E.:
Soil management effects on runoff, erosion and soil properties in an olive
grove of Southern Spain, Soil Till. Res., 102, 5–13,
https://doi.org/10.1016/j.still.2008.05.005, 2009.
Greenland, D. J. and Pereira, H. C.: Soil damage by intensive arable
cultivation: temporary or permanent?, Philos. T. Roy. Soc. B, 281, 193–208,
https://doi.org/10.1098/rstb.1977.0133, 1977.
Grillakis, M. G., Polykretis, C., and Alexakis, D. D.: Past and projected
climate change impacts on rainfall erosivity: Advancing our knowledge for
the eastern Mediterranean island of Crete, Catena, 193, 104625,
https://doi.org/10.1016/j.catena.2020.104625, 2020.
Hendershot, W. H. and Lalande, H.: Chapter 16. Soil Reactionand Exchangeable
Acidity, in: Soil Sampling and Methods of Analysis, edited by: Carter, M.
R., CRC Press LLC, Boca Ratón, FL, USA, 141–142, 1993.
IBM Corp: IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY, IBM Corp, 2021.
Imhoff, S., Ghiberto, P. J., Grioni, A., and Gay, J. P.: Porosity
characterization of Argiudolls under different management systems in the
Argentine Flat Pampa, Geoderma, 158, 268–274,
https://doi.org/10.1016/j.geoderma.2010.05.005, 2010.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015 International
soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports
No. 106. FAO, Rome, 2015.
Jarvis, S.: Landmark papers, Eur. J. Soil Sci., 63, 1–21,
https://doi.org/10.1111/j.1365-2389.2011.01408.x, 2012.
Jastrow, J. D.: Soil aggregate formation and the accrual of particulate and
mineral-associated organic matter, Soil Biol. Biochem., 28, 665–676,
https://doi.org/10.1016/0038-0717(95)00159-X, 1996.
Jensen, J. L., Schjønning, P., Watts, C. W., Christensen, B. T., and
Munkholm, L. J.: Soil Water Retention: Uni-Modal Models of Pore-Size
Distribution Neglect Impacts of Soil Management, Soil Sci. Soc. Am. J., 83,
18–26, https://doi.org/10.2136/sssaj2018.06.0238, 2019.
Klute, A.: Some Theoretical Aspects of the Flow of Water in Unsaturated
Soils, Soil Sci. Soc. Am. J., 16, 144–148,
https://doi.org/10.2136/sssaj1952.03615995001600020008x, 1952.
Kosugi, K., Hopmans, J. W., and Dane, J. H.: Parametric Models, in: Methods
of Soil Analysis. Part 4 – Physical Methods, edited by: Dane, J. H. and
Clarke Topp, G., SSSA, Madison Winsconsin, 739–757, 2002.
Lahmar, R., Arrúe, J. L., Denardin, J. E., Gupta, R. K., Ribeiro, M. F.
S., de Tourdonnet, S., Abrol, I. P., Barz, P., de Benito, A., Bianchini, A.,
and Al, E.: Knowledge Assessment and Sharing on Sustainable Agriculture.
Synthesis Report;, Montpellier, France, 125 pp., 2007.
Lal, R., Horn, R., and Kosaki, T. (Eds.): Soil and Sustainable Development Goals, Catena Soils Science, Stuttgart, Germany, 196 pp., https://www.schweizerbart.de/publications/detail/isbn/9783510654253/Soil%5c_and%5c_Sustainable%5c_Development%5c_Goals%5c (last access: 18 October 2022), 2018.
Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser, B.,
Hatano, R., Hartemink, A. E., Kosaki, T., Lascelles, B., Monger, C.,
Muggler, C., Ndzana, G. M., Norra, S., Pan, X., Paradelo, R.,
Reyes-Sánchez, L. B., Sandén, T., Singh, B. R., Spiegel, H., Yanai,
J., and Zhang, J.: Soils and sustainable development goals of the United
Nations: An International Union of Soil Sciences perspective, Geoderma Reg.,
25, e00398, https://doi.org/10.1016/j.geodrs.2021.e00398, 2021.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lipiec, J., Kuś, J., Słowińska-Jurkiewicz, A., and Nosalewicz, A.:
Soil porosity and water infiltration as influenced by tillage methods, Soil
Till. Res., 89, 210–220, https://doi.org/10.1016/j.still.2005.07.012,
2006.
Milly, P. C. D.: Estimation of Brooks-Corey Parameters, Water Resour. Res.,
23, 1085–1089, 1987.
Minasny, B. and McBratney, A. B.: Limited effect of organic matter on soil
available water capacity, Eur. J. Soil Sci., 69, 39–47,
https://doi.org/10.1111/ejss.12475, 2018.
Mosavi, A., Sajedi-Hosseini, F., Choubin, B., Taromideh, F., Rahi, G., and
Dineva, A. A.: Susceptibility mapping of soil water erosion using machine
learning models, Water, 12, 1–17, https://doi.org/10.3390/w12071995, 2020.
Oades, J. M.: Soil organic matter and structural stability: mechanisms and
implications for management, Plant Soil, 76, 319–337,
https://doi.org/10.1007/BF02205590, 1984.
Oliveira, M., Barré, P., Trindade, H., and Virto, I.: Different
efficiencies of grain legumes in crop rotations to improve soil aggregation
and organic carbon in the short-term in a sandy Cambisol, Soil Till. Res.,
186, 23–35, https://doi.org/10.1016/j.still.2018.10.003, 2019.
Or, D., Keller, T., and Schlesinger, W. H.: Natural and managed soil
structure: On the fragile scaffolding for soil functioning, Soil Till.
Res., 208, 104912, https://doi.org/10.1016/j.still.2020.104912, 2021.
Ordóñez Fernández, R., González Fernández, P.,
Giráldez Cervera, J. V., and Perea Torres, F.: Soil properties and crop
yields after 21 years of direct drilling trials in southern Spain, Soil
Till. Res., 94, 47–54, https://doi.org/10.1016/j.still.2006.07.003, 2007.
Pagliai, M., La Marca, M., Lucamante, G., and Genovese, L.: Effects of zero
and conventional tillage on the length and irregularity of elongated pores
in a clay loam soil under viticulture, Soil Till. Res., 4, 433–444,
https://doi.org/10.1016/0167-1987(84)90051-5, 1984.
Pagliai, M., Vignozzi, N., and Pellegrini, S.: Soil structure and the effect
of management practices, Soil Till. Res., 79, 131–143,
https://doi.org/10.1016/j.still.2004.07.002, 2004.
Panagos, P., Ballabio, C., Himics, M., Scarpa, S., Matthews, F., Bogonos,
M., Poesen, J., and Borrelli, P.: Projections of soil loss by water erosion
in Europe by 2050, Environ. Sci. Policy, 124, 380–392,
https://doi.org/10.1016/j.envsci.2021.07.012, 2021.
Panagos, P., Montanarella, L., Barbero, M., Schneegans, A., Aguglia, L., and
Jones, A.: Soil priorities in the European Union, Geoderma Reg., 29, e00510,
https://doi.org/10.1016/j.geodrs.2022.e00510, 2022.
Pansu, M. and Gautheyrou, J. (Eds.): Chapter 17. Carbonates, in: Handbook of Soil
Analysis. Mineralogical, Organic and Inorganic Methods, Springer
Netherlands, Dordrecht, the Netherlands, 593–601, https://doi.org/10.1007/978-3-540-31211-6, 2003a.
Pansu, M. and Gautheyrou, J. (Eds.): Chapter 18. Soluble Salts, in: Handbook of
Soil Analysis. Mineralogical, Organic and Inorganic Methods, Springer
Netherlands, Dordrecht, the Netherlands, 608–609, https://doi.org/10.1007/978-3-540-31211-6, 2003b.
Paroissien, J. B., Darboux, F., Couturier, A., Devillers, B., Mouillot, F.,
Raclot, D., and Le Bissonnais, Y.: A method for modeling the effects of
climate and land use changes on erosion and sustainability of soil in a
Mediterranean watershed (Languedoc, France), J. Environ. Manage., 150,
57–68, https://doi.org/10.1016/j.jenvman.2014.10.034, 2015.
Paul, E. A.: The nature and dynamics of soil organic matter: Plant inputs,
microbial transformations, and organic matter stabilization, Soil Biol.
Biochem., 98, 109–126, https://doi.org/10.1016/j.soilbio.2016.04.001, 2016.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pertassek, T., Peters, A., and Durner, W.: HYPROP-FIT Software User's
Manual, UMS GmbH, Gmunder Str. 37, 81379 München, Germany, 66 pp., 2015.
Peters, A. and Durner, W.: Simplified evaporation method for determining
soil hydraulic properties, J. Hydrol., 356, 147–162,
https://doi.org/10.1016/j.jhydrol.2008.04.016, 2008.
Pires, L. F., Borges, F. S., Passoni, S., and Pereira, A. B.: Soil Pore
Characterization Using Free Software and a Portable Optical Microscope,
Pedosphere, 23, 503–510, https://doi.org/10.1016/S1002-0160(13)60043-0,
2013.
Pires, L. F., Borges, J. A. R., Rosa, J. A., Cooper, M., Heck, R. J.,
Passoni, S., and Roque, W. L.: Soil structure changes induced by tillage
systems, Soil Till. Res., 165, 66–79,
https://doi.org/10.1016/j.still.2016.07.010, 2017.
Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, L. J., Lee, J.,
Lundy, M. E., Van Gestel, N., Six, J., Venterea, R. T., and Van Kessel, C.:
Productivity limits and potentials of the principles of conservation
agriculture, Nature, 517, 365–368, https://doi.org/10.1038/nature13809,
2015.
Preston-Mafham, J., Boddy, L., and Randerson, P. F.: Analysis of microbial
community functional diversity using sole-carbon-source utilisation profiles
– A critique, FEMS Microbiol. Ecol., 42, 1–14,
https://doi.org/10.1016/S0168-6496(02)00324-0, 2002.
Rabot, E., Wiesmeier, M., Schlüter, S., and Vogel, H. J.: Soil structure
as an indicator of soil functions: A review, Geoderma, 314, 122–137,
https://doi.org/10.1016/j.geoderma.2017.11.009, 2018.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R.,
Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries,
C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P.,
Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved
set of variables for predicting soil organic matter content,
Biogeochemistry, 137, 297–306, https://doi.org/10.1007/s10533-018-0424-3,
2018.
Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A., and Yang, X. M.: Use
of indicators and pore volume-function characteristics to quantify soil
physical quality, Geoderma, 152, 252–263,
https://doi.org/10.1016/j.geoderma.2009.06.009, 2009.
Rowley, M. C., Grand, S., and Verrecchia, É. P.: Calcium-mediated
stabilisation of soil organic carbon, Biogeochemistry, 137, 27–49,
https://doi.org/10.1007/s10533-017-0410-1, 2018.
Rowley, M. C., Grand, S., Spangenberg, J. E., and Verrecchia, E. P.:
Evidence linking calcium to increased organo-mineral association in soils,
Biogeochemistry, 153, 223–241, https://doi.org/10.1007/s10533-021-00779-7,
2021.
Sartori, F., Piccoli, I., Polese, R., and Berti, A.: Transition to
conservation agriculture: How tillage intensity and covering affect soil
physical parameters, Soil, 8, 213–222,
https://doi.org/10.5194/soil-8-213-2022, 2022.
Schindler, U.: Ein Schnellverfahren zur Messung der Wasserleitfahigkeit im
teilgesattigten Boden and Stechzylinderproben, Arch. fur Acker- und
Pflanzenbau und Bodenkd., 24, 1–7, 1980.
Schindler, U., Durner, W., von Unold, G., Mueller, L., and Wieland, R.: The
evaporation method: Extending the measurement range of soil hydraulic
properties using the air-entry pressure of the ceramic cup, J. Plant Nutr.
Soil Sc., 173, 563–572, https://doi.org/10.1002/jpln.200900201, 2010.
Six, J., Elliot, E. T., and Paustian, K.: Aggregate and Soil Organic Matter
Dynamics under Conventional and No-Tillage Systems, Soil Sci. Soc. Am. J.,
63, 1350–1358, 1999.
Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S. J.,
Gregorich, E. G., Paul, E. A., and Paustian, K.: Measuring and Understanding
Carbon Storage in Afforested Soils by Physical Fractionation, Soil Sci. Soc.
Am. J., 66, 1981–1987, https://doi.org/10.2136/sssaj2002.1981, 2002.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on
the link between (micro)aggregates, soil biota, and soil organic matter
dynamics, Soil Till. Res., 79, 7–31,
https://doi.org/10.1016/j.still.2004.03.008, 2004.
Soil Survey Staff: Keys to soil taxonomy, 12th Edn., USDA-Natural Resour. Conserv. Serv. Washington, DC., 360, https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 (last access: 18 October 2022), 2014.
Taina, I. A., Heck, R. J., Deen, W., and Ma, E. Y. T.: Quantification of
freeze-thaw related structure in cultivated topsoils using X-ray computer
tomography, Can. J. Soil Sci., 93, 533–553,
https://doi.org/10.4141/CJSS2012-044, 2013.
Tiessen, H. and Moir, J. O.: Total and organic C, in: Soil Sampling and
Methods of Analysis, edited by: Carter, M., CRC Press LLC, Boca Raton, FL,
USA, 187–191, https://doi.org/10.1201/9781420005271, 1993.
Tisdall, J. M. and Oades, J. M.: Organic matter and water-stable aggregates
in soils, J. Soil Sci., 33, 141–163,
https://doi.org/10.1111/j.1365-2389.1982.tb01755.x, 1982.
Tuzzin de Moraes, M., Debiasi, H., Carlesso, R., Cezar Franchini, J.,
Rodrigues da Silva, V., and Bonini da Luz, F.: Soil physical quality on
tillage and cropping systems after two decades in the subtropical region of
Brazil, Soil Till. Res., 155, 351–362,
https://doi.org/10.1016/j.still.2015.07.015, 2016.
Vance, E. D., Brookes, D. S., and Jenkinson, D. S.: An extraction method for
measuring soil microbial biomass C, Soil Biol. Biochem., 19, 703–707,
https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
van Genuchten, M. T. and Nielsen, D. R.: On describing and predicting the
hydraulic properties of unsaturated soils, Ann. Geophys., 3, 615–628, 1985.
Verhulst, N., Govaerts, B., Verachtert, E., Mezzalama, M., Wall, P. C., Chocobar, A., Deckers, J., and Sayre, K. D.: Conservation agriculture, improving soil quality for sustainable production systems?, in: Food Security and Soil Quality, edited by: Lal, R. and Stewart, B. A., CRC Press, 137–208, https://doi.org/10.1201/EBK1439800577, 2010.
Virto, I., Imaz, M. J., Enrique, A., Hoogmoed, W., and Bescansa, P.: Burning
crop residues under no-till in semi-arid land, Northern Spain – Effects on
soil organic matter, aggregation, and earthworm populations, Aust. J. Soil
Res., 45, 414–421, https://doi.org/10.1071/SR07021, 2007.
Virto, I., Barré, P., Burlot, A., and Chenu, C.: Carbon input
differences as the main factor explaining the variability in soil organic C
storage in no-tilled compared to inversion tilled agrosystems,
Biogeochemistry, 108, 17–26, https://doi.org/10.1007/s10533-011-9600-4,
2012.
Virto, I., Imaz, M. J., Fernández-Ugalde, O., Gartzia-Bengoetxea, N.,
Enrique, A., and Bescansa, P.: Soil degradation and soil quality in Western
Europe: Current situation and future perspectives, Sustain., 7, 313–365,
https://doi.org/10.3390/su7010313, 2015.
Wardak, D. L. R., Padia, F. N., de Heer, M. I., Sturrock, C. J., and Mooney,
S. J.: Zero tillage has important consequences for soil pore architecture
and hydraulic transport: A review, Geoderma, 422, 115927,
https://doi.org/10.1016/j.geoderma.2022.115927, 2022.
Warrick, A. W. (Ed.): Soil Water Dynamics, Oxford University Press, Oxford, UK, https://books.google.es/books?id=WV3nCwAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (last access: 18 October 2022),
2003.
Weil, R. and Brady, N.: The Nature and Properties of Soils, 15th Edn., edited by: Fox, D., Pearson, https://www.pearson.com/en-gb/subject-catalog/p/nature-and-properties-of-soils-the-global-edition/P200000005713/9781292162249 (last access: 18 October 2022), 2017.
Wiecheteck, L. H., Giarola, N. F. B., de Lima, R. P., Tormena, C. A.,
Torres, L. C., and de Paula, A. L.: Comparing the classical permanent
wilting point concept of soil (−15,000 hPa) to biological wilting of wheat
and barley plants under contrasting soil textures, Agr. Water Manage., 230,
105965, https://doi.org/10.1016/j.agwat.2019.105965, 2020.
Yagüe, M. R., Domingo-Olivé, F., Bosch-Serra, À. D., Poch, R.
M., and Boixadera, J.: Dairy Cattle Manure Effects on Soil Quality:
Porosity, Earthworms, Aggregates and Soil Organic Carbon Fractions, Land
Degrad. Dev., 27, 1753–1762, https://doi.org/10.1002/ldr.2477, 2016.
Zak, J. C., Willig, M. R., Moorhead, D. L., and Wildman, H. G.: Functional
diversity of microbial communities: A quantitative approach, Soil Biol.
Biochem., 26, 1101–1108, https://doi.org/10.1016/0038-0717(94)90131-7,
1994.
Short summary
This study shows how an innovative soil and crop management including no-tillage, cover crops and organic amendments is able to improve the topsoil physical quality compared to conventional management for rainfed cereal cropping in a semi-arid Mediterranean area in Navarre (Spain).
This study shows how an innovative soil and crop management including no-tillage, cover crops...