Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-587-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-587-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee
CORRESPONDING AUTHOR
Thünen Institute of Climate-Smart Agriculture, Braunschweig,
Germany
Anika Gebauer
Department Soil System Science, Helmholtz Centre for Environmental
Research – UFZ, Halle (Saale), Germany
Mareike Ließ
Department Soil System Science, Helmholtz Centre for Environmental
Research – UFZ, Halle (Saale), Germany
Thünen Institute of Climate-Smart Agriculture, Braunschweig,
Germany
Related authors
Mareike Ließ and Ali Sakhaee
EGUsphere, https://doi.org/10.5194/egusphere-2023-2386, https://doi.org/10.5194/egusphere-2023-2386, 2023
Preprint archived
Short summary
Short summary
The CNN is a powerful algorithm to generate three-dimensional multivariate data products. Its high potential is demonstrated by generating a data product for the agricultural soil landscape of Germany. It comprises soil particle size fractions in a vertical resolution of one centimeter. Many soil functions and processes are controlled by the soil particle size distribution. The developed data product is of particular importance to model agricultural processes.
Mareike Ließ and Ali Sakhaee
EGUsphere, https://doi.org/10.5194/egusphere-2023-2386, https://doi.org/10.5194/egusphere-2023-2386, 2023
Preprint archived
Short summary
Short summary
The CNN is a powerful algorithm to generate three-dimensional multivariate data products. Its high potential is demonstrated by generating a data product for the agricultural soil landscape of Germany. It comprises soil particle size fractions in a vertical resolution of one centimeter. Many soil functions and processes are controlled by the soil particle size distribution. The developed data product is of particular importance to model agricultural processes.
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022, https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
Short summary
Digital soil mapping (DSM) allows us to regionalize soil properties by relating them to environmental covariates with the help of an empirical model. Legacy soil data provide a valuable basis to generate high-resolution soil maps with DSM. We studied the usefulness of data-clustering methods to tackle potential sampling bias in legacy soil data while applying DSM for soil texture regionalization. Clustering has proved to be useful in various steps of the DSM process.
Javier Reyes and Mareike Ließ
EGUsphere, https://doi.org/10.5194/egusphere-2022-273, https://doi.org/10.5194/egusphere-2022-273, 2022
Preprint archived
Short summary
Short summary
The use of soil Vis-NIR spectroscopy is a promising research field in the context of SOC monitoring. Predictive models were built on behalf of spectral laboratory and field measurements and thoroughly interpreted concerning spectral wavelength importance. The analysis disclosed the challenge of using soil spectroscopy for SOC monitoring. Shifts in wavelength importance were observed between spectrometers. Correction of spectral field data improved the predictive performance of the models.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Cited articles
Al-Anazi, A. F. and Gates, I. D.: Support vector regression to predict
porosity and permeability: Effect of sample size, Comput. Geosci., 39,
64–76, https://doi.org/10.1016/j.cageo.2011.06.011, 2012.
Arrouays, D., Jolivet, C., Boulonne, L., Bodineau, G., Saby, N., and
Grolleau, E.: A new projection in France: a multi-institutional soil quality
monitoring network, Comptes Rendus l'Académie d'Agriculture Fr., 88,
93–103, 2002.
Awad, M. and Khanna, R.: Support Vector Regression, in: Efficient Learning
Machines, Apress, Berkeley, CA, 67–80,
https://doi.org/10.1007/978-1-4302-5990-9_4, 2015.
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical
properties at European scale using the LUCAS database, Geoderma, 261,
110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016.
Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A.,
Borrelli, P., Montanarella, L., and Panagos, P.: Mapping LUCAS topsoil
chemical properties at European scale using Gaussian process regression,
Geoderma, 355, 113912, https://doi.org/10.1016/j.geoderma.2019.113912, 2019.
Battineni, G., Chintalapudi, N., and Amenta, F.: Machine learning in
medicine: Performance calculation of dementia prediction by support vector
machines (SVM), Informatics Med. Unlocked, 16, 100200,
https://doi.org/10.1016/j.imu.2019.100200, 2019.
Behrens, T. and Scholten, T.: Digital soil mapping in Germany – A review, J.
Plant Nutr. Soil Sci., 169, 434–443,
https://doi.org/10.1002/jpln.200521962, 2006.
Behrens, T., Förster, H., Scholten, T., Steinrücken, U., Spies, E.
D., and Goldschmitt, M.: Digital soil mapping using artificial neural
networks, J. Plant Nutr. Soil Sc., 168, 21–33,
https://doi.org/10.1002/jpln.200421414, 2005.
Belon, E., Boisson, M., Deportes, I. Z., Eglin, T. K., Feix, I., Bispo, A.
O., Galsomies, L., Leblond, S., and Guellier, C. R.: An inventory of trace
elements inputs to French agricultural soils, Sci. Total Environ., 439,
87–95, https://doi.org/10.1016/j.scitotenv.2012.09.011, 2012.
BGR (Federal Institute for Geosciences and Natural Resources):
Geomorphographic Map of Germany (GMK1000), Hanover, 2007.
BGR (Federal Institute for Geosciences and Natural Resources): Soil scapes
in Germany 1 : 5,000,000 (BGL5000), Hanover, 2008.
BGR (Federal Institute for Geosciences and Natural Resources) and SDG (German
State Geological Surveys): Hydrogeological Map of Germany 1 : 250,000
(HÜK250), Hanover, 2019.
Bhadra, T., Bandyopadhyay, S., and Maulik, U.: Differential Evolution Based
Optimization of SVM Parameters for Meta Classifier Design, Proc.
Tech., 4, 50–57, https://doi.org/10.1016/j.protcy.2012.05.006, 2012.
BKG (Federal Agency for Cartography and Geodesy): Digitales
Basis-Landschaftsmodell (Basis-DLM), Leipzig, 2019.
Borrelli, P., Van Oost, K., Meusburger, K., Alewell, C., Lugato, E., and
Panagos, P.: A step towards a holistic assessment of soil degradation in
Europe: Coupling on-site erosion with sediment transfer and carbon fluxes,
Environ. Res., 161, 291–298, https://doi.org/10.1016/j.envres.2017.11.009,
2018.
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K., and
Schimel, D. S.: Texture, Climate, and Cultivation Effects on Soil Organic
Matter Content in U.S. Grassland Soils, Soil Sci. Soc. Am. J., 53, 800–805,
https://doi.org/10.2136/sssaj1989.03615995005300030029x, 1989.
Camera, C., Zomeni, Z., Noller, J. S., Zissimos, A. M., Christoforou, I. C.,
and Bruggeman, A.: A high resolution map of soil types and physical
properties for Cyprus: A digital soil mapping optimization, Geoderma, 285,
35–49, https://doi.org/10.1016/j.geoderma.2016.09.019, 2017.
Carter, B. J. and Ciolkosz, E. J.: Slope gradient and aspect effects on
soils developed from sandstone in Pennsylvania, Geoderma, 49, 199–213,
https://doi.org/10.1016/0016-7061(91)90076-6, 1991.
Castaldi, F., Hueni, A., Chabrillat, S., Ward, K., Buttafuoco, G., Bomans,
B., Vreys, K., Brell, M., and van Wesemael, B.: Evaluating the capability of
the Sentinel 2 data for soil organic carbon prediction in croplands, ISPRS
J. Photogramm. Remote Sens., 147, 267–282,
https://doi.org/10.1016/j.isprsjprs.2018.11.026, 2019.
Chapman, S. J., Bell, J. S., Campbell, C. D., Hudson, G., Lilly, A., Nolan,
A. J., Robertson, A. H. J., Potts, J. M., and Towers, W.: Comparison of soil
carbon stocks in Scottish soils between 1978 and 2009, Eur. J. Soil Sc.,
64, 455–465, https://doi.org/10.1111/ejss.12041, 2013.
Cherkassky, V. and Ma, Y.: Practical Selection of SVM Parameters and Noise Estimation for SVM Regression, Neural Networks, 17, 113–126, https://doi.org/10.1016/S0893-6080(03)00169-2, 2004.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
de Brogniez, D., Ballabio, C., Stevens, A., Jones, R. J. A., Montanarella,
L., and van Wesemael, B.: A map of the topsoil organic carbon content of
Europe generated by a generalized additive model, Eur. J. Soil Sci., 66,
121–134, https://doi.org/10.1111/ejss.12193, 2015.
Deng, S., Wang, C., Wang, M., and Sun, Z.: A gradient boosting decision tree
approach for insider trading identification: An empirical model evaluation
of China stock market, Appl. Soft Comput. J., 83, 105652,
https://doi.org/10.1016/j.asoc.2019.105652, 2019.
DWD (DWD Climate Data Center, CDC): Multi-annual grids of annual sunshine
duration over Germany 1981–2010, version v1.0, 2017.
DWD (DWD Climate Data Center, CDC): Multi-annual grids of monthly averaged daily
minimum air temperature (2m) over Germany, version v1.0, 2018a.
DWD (DWD Climate Data Center, CDC): Multi-annual grids of number of summer days
over Germany, version v1.0, 2018b.
DWD (DWD Climate Data Center, CDC): Multi-annual grids of precipitation height
over Germany 1981–2010, version v1.0, 2018c.
Esri (Environmental Systems Research Institute): ArcGIS 10.2 for Desktop,
2013.
European Soil Data Centre (ESDAC): LUCAS 2009 TOPSOIL data, ESDAC [data set], https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data (last access: 6 February 2019), 2013.
European Union Copernicus Land Monitoring Service and EEA:
European Digital Elevation Model (EU-DEM), Version 1.1, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (last access: 19 September 2022), 2016.
Forkuor, G., Hounkpatin, O. K. L., Welp, G., and Thiel, M.: High resolution
mapping of soil properties using Remote Sensing variables in south-western
Burkina Faso: A comparison of machine learning and multiple linear
regression models, PLoS One, 12, 1–21,
https://doi.org/10.1371/journal.pone.0170478, 2017.
Friedman, J., Tibshirani, R., and Hastie, T.: Additive logistic regression:
a statistical view of boosting (With discussion and a rejoinder by the
authors), Ann. Stat., 28, 337–407, https://doi.org/10.1214/aos/1016120463,
2000.
Friedman, J. H.: Stochastic gradient boosting, Comput. Stat. Data Anal., 38,
367–378, https://doi.org/10.1016/S0167-9473(01)00065-2, 2002.
Gebauer, A., Ellinger, M., Brito Gomez, V. M., and Ließ, M.: Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning, SOIL, 6, 215–229, https://doi.org/10.5194/soil-6-215-2020, 2020.
Greenwell, B., Boehmke, B., and Cunningham, J.: Generalized Boosted Regression Models, CRAN [code], 2019.
Guevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., Arévalo, G. E., Arroyo-Cruz, C. E., Bolivar, A., Bunning, S., Bustamante Cañas, N., Cruz-Gaistardo, C. O., Davila, F., Dell Acqua, M., Encina, A., Figueredo Tacona, H., Fontes, F., Hernández Herrera, J. A., Ibelles Navarro, A. R., Loayza, V., Manueles, A. M., Mendoza Jara, F., Olivera, C., Osorio Hermosilla, R., Pereira, G., Prieto, P., Ramos, I. A., Rey Brina, J. C., Rivera, R., Rodríguez-Rodríguez, J., Roopnarine, R., Rosales Ibarra, A., Rosales Riveiro, K. A., Schulz, G. A., Spence, A., Vasques, G. M., Vargas, R. R., and Vargas, R.: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America, SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, 2018.
Guio Blanco, C. M., Brito Gomez, V. M., Crespo, P., and Ließ, M.:
Spatial prediction of soil water retention in a Páramo landscape:
Methodological insight into machine learning using random forest, Geoderma,
316, 100–114, https://doi.org/10.1016/j.geoderma.2017.12.002, 2018.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning, Second., Springer Series in Statistics, Springer New York, NY, 158–161, https://doi.org/10.1007/b94608, 2009.
Hawkins, D. M., Basak, S. C., and Mills, D.: Assessing model fit by
cross-validation, J. Chem. Inf. Comp. Sci., 43, 579–586,
https://doi.org/10.1021/ci025626i, 2003.
Hornik, K., Weingessel, A., Leisch, F., and Davidmeyerr-projectorg, M. D. M.: Package “e1071”, CRAN [code], 2021.
Hoyle, F., Baldock, J., and Murphy, D.: Soil Organic Carbon – Role in Rainfed Farming Systems, in: Rainfed Farming Systems, edited by: Tow, P., Cooper, I., Partridge, I., and Birch, C., Springer, Dordrecht, 339–361, https://doi.org/10.1007/978-1-4020-9132-2_14, 2011.
Khaledian, Y. and Miller, B. A.: Selecting appropriate machine learning
methods for digital soil mapping, Appl. Math. Model., 81, 401–418,
https://doi.org/10.1016/j.apm.2019.12.016, 2020.
Kuhn, M., and Johnson, K.: Applied predictive modeling, 1st Edn., Springer New York, NY, 1–600, https://doi.org/10.1007/978-1-4614-6849-3, 2013.
Lal, R.: Soil carbon sequestration impacts on global climate change and food
security, Science, 304, 1623–1627,
https://doi.org/10.1126/science.1097396, 2004.
Li, T., Zhang, H., Wang, X., Cheng, S., Fang, H., Liu, G., and Yuan, W.:
Soil erosion affects variations of soil organic carbon and soil respiration
along a slope in Northeast China, Ecol. Process., 8, 28,
https://doi.org/10.1186/s13717-019-0184-6, 2019.
Li, X., Ding, J., Liu, J., Ge, X., and Zhang, J.: Digital mapping of soil
organic carbon using sentinel series data: A case study of the ebinur lake
watershed in xinjiang, Remote Sens., 13, 1–19,
https://doi.org/10.3390/rs13040769, 2021.
Liang, W., Zhang, L., and Wang, M.: The chaos differential evolution
optimization algorithm and its application to support vector regression
machine, J. Softw., 6, 1297–1304,
https://doi.org/10.4304/jsw.6.7.1297-1304, 2011.
Ließ, M., Gebauer, A., and Don, A.: Machine Learning With GA
Optimization to Model the Agricultural Soil-Landscape of Germany: An
Approach Involving Soil Functional Types With Their Multivariate Parameter
Distributions Along the Depth Profile, Front. Environ. Sci., 9, 1–24,
https://doi.org/10.3389/fenvs.2021.692959, 2021.
Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N.,
Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M.,
Blaud, A., Clark, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner,
G., and Griffiths, R. I.: Land use driven change in soil pH affects
microbial carbon cycling processes, Nat. Commun., 9, 1–10,
https://doi.org/10.1038/s41467-018-05980-1, 2018.
Martin, M. P., Orton, T. G., Lacarce, E., Meersmans, J., Saby, N. P. A.,
Paroissien, J. B., Jolivet, C., Boulonne, L., and Arrouays, D.: Evaluation
of modelling approaches for predicting the spatial distribution of soil
organic carbon stocks at the national scale, Geoderma, 223–225, 97–107,
https://doi.org/10.1016/j.geoderma.2014.01.005, 2014.
McBratney, A. B., Mendonça Santos, M. L., and Minasny, B.: On digital
soil mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4,
2003.
Meersmans, J., Martin, M. P., Lacarce, E., De Baets, S., Jolivet, C.,
Boulonne, L., Lehmann, S., Saby, N. P. A., Bispo, A., and Arrouays, D.: A
high resolution map of French soil organic carbon, Agron. Sustain. Dev., 32,
841–851, https://doi.org/10.1007/s13593-012-0086-9, 2012a.
Meersmans, J., Martin, M. P., De Ridder, F., Lacarce, E., Wetterlind, J., De
Baets, S., Bas, C. Le, Louis, B. P., Orton, T. G., Bispo, A., and Arrouays,
D.: A novel soil organic C model using climate, soil type and management
data at the national scale in France, Agron. Sustain. Dev., 32, 873–888,
https://doi.org/10.1007/s13593-012-0085-x, 2012b.
Minasny, B., McBratney, A. B., Malone, B. P., and Wheeler, I.: Digital Mapping of Soil Carbon, Advances in Agronomy, 118, edited by: Sparks, D. L., Academic Press Inc., 1–47, https://doi.org/10.1016/B978-0-12-405942-9.00001-3, 2013.
Mulder, V. L., Lacoste, M., Richer-de-Forges, A. C., Martin, M. P., and
Arrouays, D.: National versus global modelling the 3D distribution of soil
organic carbon in mainland France, Geoderma, 263, 16–34,
https://doi.org/10.1016/J.GEODERMA.2015.08.035, 2016.
Padarian, J., Minasny, B., and McBratney, A. B.: Machine learning and soil sciences: a review aided by machine learning tools, SOIL, 6, 35–52, https://doi.org/10.5194/soil-6-35-2020, 2020.
Pei, T., Qin, C. Z., Zhu, A. X., Yang, L., Luo, M., Li, B., and Zhou, C.:
Mapping soil organic matter using the topographic wetness index: A
comparative study based on different flow-direction algorithms and kriging
methods, Ecol. Indic., 10, 610–619,
https://doi.org/10.1016/j.ecolind.2009.10.005, 2010.
Peterson, B., Ulrich, J., and Boudt, K.: Package “DEoptim”, J. Stat. Softw., 40, 1–26,
https://doi.org/10.18637/jss.v040.i06, 2021.
Poeplau, C., Bolinder, M. A., Eriksson, J., Lundblad, M., and Kätterer, T.: Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers, Biogeosciences, 12, 3241–3251, https://doi.org/10.5194/bg-12-3241-2015, 2015.
Poeplau, C., Jacobs, A., Don, A., Vos, C., Schneider, F., Wittnebel, M.,
Tiemeyer, B., Heidkamp, A., Prietz, R., and Flessa, H.: Stocks of organic
carbon in German agricultural soils – Key results of the first comprehensive
inventory, J. Plant Nutr. Soil Sc., 183, 665–681,
https://doi.org/10.1002/jpln.202000113, 2020a.
Poeplau, C., Don, A., Flessa, H., Heidkamp, A., Jacobs, A., and Prietz, R.: Erste Bodenzustandserhebung Landwirtschaft – Kerndatensatz, Open Agrar [data set], https://doi.org/10.3220/DATA20200203151139, 2020b.
Prechtel, A., Von Lützow, M., Schneider, B. U., Bens, O.,
Bannick, C. G., Kögel-Knabner, I., and Hüttl, R. F.: Organic Carbon
in soils of Germany: Status quo and the need for new data to evaluate
potentials and trends of soil carbon sequestration, J. Plant Nutr. Soil
Sc., 172, 601–614, https://doi.org/10.1002/jpln.200900034, 2009.
Ramifehiarivo, N., Brossard, M., Grinand, C., Andriamananjara, A.,
Razafimbelo, T., Rasolohery, A., Razafimahatratra, H., Seyler, F.,
Ranaivoson, N., Rabenarivo, M., Albrecht, A., Razafindrabe, F., and
Razakamanarivo, H.: Mapping soil organic carbon on a national scale: Towards
an improved and updated map of Madagascar, Geoderma Reg., 9, 29–38,
https://doi.org/10.1016/j.geodrs.2016.12.002, 2017.
Rawlins, B. G., Marchant, B. P., Smyth, D., Scheib, C., Lark, R. M., and
Jordan, C.: Airborne radiometric survey data and a DTM as covariates for
regional scale mapping of soil organic carbon across Northern Ireland, Eur.
J. Soil Sci., 60, 44–54, https://doi.org/10.1111/j.1365-2389.2008.01092.x,
2009.
Reeves, D. W.: The role of soil organic matter in maintaining soil quality
in continuous cropping systems, Soil Till. Res., 43, 131–167,
https://doi.org/10.1016/S0167-1987(97)00038-X, 1997.
Ritchie, J. C., McCarty, G. W., Venteris, E. R., and Kaspar, T. C.: Soil and
soil organic carbon redistribution on the landscape, Geomorphology, 89, 163–171,
https://doi.org/10.1016/j.geomorph.2006.07.021, 2007.
Roßberg, D., Michel, V., Graf, R., and Neukampf, R.: Definition von
Boden-Klima-Räumen für die Bundesrepublik Deutschland,
Nachrichtenblatt des Dtsch. Pflanzenschutzdienstes, 59, 155–161, 2007.
Roßkopf, N., Fell, H., and Zeitz, J.: Organic soils in Germany, their
distribution and carbon stocks, Catena, 133, 157–170,
https://doi.org/10.1016/j.catena.2015.05.004, 2015.
Santos, C. E. D. S., Sampaio, R. C., Coelho, L. D. S., Bestarsd, G. A., and
Llanos, C. H.: Multi-objective adaptive differential evolution for SVM/SVR
hyperparameters selection, Pattern Recogn., 110, 107649,
https://doi.org/10.1016/j.patcog.2020.107649, 2021.
Schapire, R. E.: The Boosting Approach to Machine Learning: An Overview, in: Nonlinear Estimation and Classification, 117, edited by: Denison, D. D., Holmes, C. C., Hansen, M. H., Mallick, B., and Yu, B., Springer, New York, NY, 149–171, https://doi.org/10.1007/978-0-387-21579-2_9, 2003.
Schneider, F., Amelung, W., and Don, A.: Origin of carbon in agricultural
soil profiles deduced from depth gradients of C : N ratios, carbon fractions,
δ13C and δ15N values, Plant Soil, 460, 123–148,
https://doi.org/10.1007/s11104-020-04769-w, 2021.
Smola, A. J. and Schölkopf, B.: A tutorial on support vector regression,
Stat. Comput., 14, 199–222,
https://doi.org/10.1023/B:STCO.0000035301.49549.88, 2004.
Storn, R. and Price, K.: Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces, J. Global Optim.,
11, 341–359, https://doi.org/10.1023/A:1008202821328, 1997.
Taghizadeh-Toosi, A., Olesen, J. E., Kristensen, K., Elsgaard, L.,
Østergaard, H. S., Lægdsmand, M., Greve, M. H., and Christensen, B.
T.: Changes in carbon stocks of Danish agricultural mineral soils between
1986 and 2009, Eur. J. Soil Sci., 65, 730–740,
https://doi.org/10.1111/ejss.12169, 2014.
Tóth, G., Jones, A., and Montanarella, L.: LUCAS Topsoil Survey. Methodology, data and results, JRC Technical Reports, Luxembourg, Publications Office of the European Union, EUR26102, Scientific and Technical Research series, https://doi.org/10.2788/97922, 2013.
Tziachris, P., Aschonitis, V., Chatzistathis, T., Papadopoulou, M., and
Doukas, I. J. D.: Comparing machine learning models and hybrid
geostatistical methods using environmental and soil covariates for soil pH
prediction, ISPRS Int. J. Geo-Inf., 9, 276,
https://doi.org/10.3390/ijgi9040276, 2020.
Varma, S. and Simon, R.: Bias in error estimation when using
cross-validation for model selection, BMC Bioinformatics, 7, 1–8,
https://doi.org/10.1186/1471-2105-7-91, 2006.
Wadoux, A. M. J. C., Minasny, B., and McBratney, A. B.: Machine learning for
digital soil mapping: Applications, challenges and suggested solutions,
Earth-Sci. Rev., 210, 103359, https://doi.org/10.1016/j.earscirev.2020.103359,
2020.
Wang, S., Xu, L., Zhuang, Q., and He, N.: Investigating the spatio-temporal
variability of soil organic carbon stocks in different ecosystems of China,
Sci. Total Environ., 758, 143644, https://doi.org/10.1016/j.scitotenv.2020.143644,
2021.
Wang, X., Zhang, Y., Atkinson, P. M., and Yao, H.: Predicting soil organic
carbon content in Spain by combining Landsat TM and ALOS PALSAR images, Int.
J. Appl. Earth Obs., 92, 102182,
https://doi.org/10.1016/j.jag.2020.102182, 2020.
Ward, K. J., Chabrillat, S., Neumann, C., and Foerster, S.: A remote sensing
adapted approach for soil organic carbon prediction based on the spectrally
clustered LUCAS soil database, Geoderma, 353, 297–307,
https://doi.org/10.1016/j.geoderma.2019.07.010, 2019.
Were, K., Bui, D. T., Dick, Ø. B., and Singh, B. R.: A comparative
assessment of support vector regression, artificial neural networks, and
random forests for predicting and mapping soil organic carbon stocks across
an Afromontane landscape, Ecol. Indic., 52, 394–403,
https://doi.org/10.1016/j.ecolind.2014.12.028, 2015.
Wiesmeier, M., Spörlein, P., Geuß, U., Hangen, E., Haug, S.,
Reischl, A., Schilling, B., von Lützow, M., and Kögel-Knabner, I.:
Soil organic carbon stocks in southeast Germany (Bavaria) as affected by
land use, soil type and sampling depth, Glob. Change Biol., 18, 2233–2245,
https://doi.org/10.1111/j.1365-2486.2012.02699.x, 2012.
Wright, M. N. and Ziegler, A.: Ranger: A fast implementation of random
forests for high dimensional data in C and R, J. Stat. Softw., 77,
1–17, https://doi.org/10.18637/jss.v077.i01, 2017.
Yu, D., Hu, F., Zhang, K., Liu, L., and Li, D.: Available water capacity and
organic carbon storage profiles in soils developed from dark brown soil to
boggy soil in Changbai Mountains, China, Soil Water Res., 16, 11–21,
https://doi.org/10.17221/150/2019-SWR, 2021.
Zhang, J., Niu, Q., Li, K., and Irwin, G. W.: Model selection in SVMs using
Differential Evolution, IFAC, 44, 14717–14722,
https://doi.org/10.3182/20110828-6-IT-1002.00584, 2011.
Zhong, Z., Chen, Z., Xu, Y., Ren, C., Yang, G., Han, X., Ren, G., and Feng,
Y.: Relationship between soil organic carbon stocks and clay content under
different climatic conditions in Central China, Forests, 9, 598,
https://doi.org/10.3390/f9100598, 2018.
Zhou, T., Geng, Y., Ji, C., Xu, X., Wang, H., Pan, J., Bumberger, J., Haase,
D., and Lausch, A.: Prediction of soil organic carbon and the C : N ratio on a
national scale using machine learning and satellite data: A comparison
between Sentinel-2, Sentinel-3 and Landsat-8 images, Sci. Total Environ.,
755, 142661, https://doi.org/10.1016/j.scitotenv.2020.142661, 2021.
Short summary
As soil carbon has become a key component of climate-smart agriculture, the demand for high-resolution maps has increased drastically. Meanwhile, machine learning algorithms are becoming more widely used and are opening up new solutions in soil mapping. This paper shows which algorithms perform best, how soil inventory data can be most efficiently used for digital soil mapping, and the different available options and methods to derive high-resolution soil carbon data at the large regional scale.
As soil carbon has become a key component of climate-smart agriculture, the demand for...