Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type
Rosolino Ingraffia
CORRESPONDING AUTHOR
Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
Gaetano Amato
Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
Fondazione A. e S. Lima Mancuso, Piazza Marina 61, 90133 Palermo, Italy
Vincenzo Bagarello
Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
Francesco G. Carollo
Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
Dario Giambalvo
Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
Fondazione A. e S. Lima Mancuso, Piazza Marina 61, 90133 Palermo, Italy
Massimo Iovino
Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
Anika Lehmann
Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
Matthias C. Rillig
Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
Alfonso S. Frenda
Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
Related authors
No articles found.
Amandine Erktan, Matthias C. Rillig, Andrea Carminati, Alexandre Jousset, and Stefan Scheu
Biogeosciences, 17, 4961–4980, https://doi.org/10.5194/bg-17-4961-2020, https://doi.org/10.5194/bg-17-4961-2020, 2020
Short summary
Short summary
Soil aggregation is crucial for soil functioning. While the role of bacteria and fungi in soil aggregation is well established, how predators feeding on microbes modify soil aggregation has hardly been investigated. We showed for the first time that protists modify soil aggregation, presumably through changes in the production of bacterial mucilage, and that collembolans reduce soil aggregation, presumably by reducing the abundance of saprotrophic fungi.
Vincenzo Alagna, Vincenzo Bagarello, Simone Di Prima, Fabio Guaitoli, Massimo Iovino, Saskia Keesstra, and Artemio Cerdà
SOIL Discuss., https://doi.org/10.5194/soil-2016-79, https://doi.org/10.5194/soil-2016-79, 2017
Manuscript not accepted for further review
Short summary
Short summary
Beerkan infiltration tests along with BEST (Beerkan Estimation of Soil Transfer parameters) algorithm led to accurate estimates of the hydraulic conductivity in both crusted and un-crusted soils. A sampling strategy implying beerkan tests carried out along and between the vine-rows allowed to assess the reduction in hydraulic conductivity with extemporaneous measurements alone. The effect of the cycling occurrence of crusting due to rainfalls and wetting–drying cycles on the vineyard inter-row.
Related subject area
Soils and water
Potential of natural language processing for metadata extraction from environmental scientific publications
Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture
Effects of innovative long-term soil and crop management on topsoil properties of a Mediterranean soil based on detailed water retention curves
Modelling the effect of catena position and hydrology on soil chemical weathering
Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Effective hydraulic properties of 3D virtual stony soils identified by inverse modeling
Biochar alters hydraulic conductivity and impacts nutrient leaching in two agricultural soils
Impact of freeze–thaw cycles on soil structure and soil hydraulic properties
Added value of geophysics-based soil mapping in agro-ecosystem simulations
Particulate macronutrient exports from tropical African montane catchments point to the impoverishment of agricultural soils
A review of the global soil property maps for Earth system models
Saturated and unsaturated salt transport in peat from a constructed fen
Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria
Water in the critical zone: soil, water and life from profile to planet
Deriving pedotransfer functions for soil quartz fraction in southern France from reverse modeling
Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed
Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments
Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions
Sediment concentration rating curves for a monsoonal climate: upper Blue Nile
Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study
Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties
Potential effects of vinasse as a soil amendment to control runoff and soil loss
Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mined lands
Coupled cellular automata for frozen soil processes
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023, https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary
Short summary
Adapting agricultural practices to future climatic conditions requires us to synthesize the effects of management practices on soil properties with respect to local soil and climate. We showcase different automated text-processing methods to identify topics, extract metadata for building a database and summarize findings from publication abstracts. While human intervention remains essential, these methods show great potential to support evidence synthesis from large numbers of publications.
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
Alaitz Aldaz-Lusarreta, Rafael Giménez, Miguel A. Campo-Bescós, Luis M. Arregui, and Iñigo Virto
SOIL, 8, 655–671, https://doi.org/10.5194/soil-8-655-2022, https://doi.org/10.5194/soil-8-655-2022, 2022
Short summary
Short summary
This study shows how an innovative soil and crop management including no-tillage, cover crops and organic amendments is able to improve the topsoil physical quality compared to conventional management for rainfed cereal cropping in a semi-arid Mediterranean area in Navarre (Spain).
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022, https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Short summary
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on soil hydraulic properties. We measured soil water retention and conductivity and also conducted numerical simulations to compare soil water storage abilities under the different systems. Soils under NT and CC practices had improved soil structure. Conservation agriculture practices showed marginal improvement with respect to infiltration rates and water storage.
Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner
SOIL, 8, 99–112, https://doi.org/10.5194/soil-8-99-2022, https://doi.org/10.5194/soil-8-99-2022, 2022
Short summary
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
Danielle L. Gelardi, Irfan H. Ainuddin, Devin A. Rippner, Janis E. Patiño, Majdi Abou Najm, and Sanjai J. Parikh
SOIL, 7, 811–825, https://doi.org/10.5194/soil-7-811-2021, https://doi.org/10.5194/soil-7-811-2021, 2021
Short summary
Short summary
Biochar is purported to alter soil water dynamics and reduce nutrient loss when added to soils, though the mechanisms are often unexplored. We studied the ability of seven biochars to alter the soil chemical and physical environment. The flow of ammonium through biochar-amended soil was determined to be controlled through chemical affinity, and nitrate, to a lesser extent, through physical entrapment. These data will assist land managers in choosing biochars for specific agricultural outcomes.
Frederic Leuther and Steffen Schlüter
SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, https://doi.org/10.5194/soil-7-179-2021, 2021
Short summary
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Yongjiu Dai, Wei Shangguan, Nan Wei, Qinchuan Xin, Hua Yuan, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, Dagang Wang, and Fapeng Yan
SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, https://doi.org/10.5194/soil-5-137-2019, 2019
Short summary
Short summary
Soil data are widely used in various Earth science fields. We reviewed soil property maps for Earth system models, which can also offer insights to soil data developers and users. Old soil datasets are often based on limited observations and have various uncertainties. Updated and comprehensive soil data are made available to the public and can benefit related research. Good-quality soil data are identified and suggestions on how to improve and use them are provided.
Reuven B. Simhayov, Tobias K. D. Weber, and Jonathan S. Price
SOIL, 4, 63–81, https://doi.org/10.5194/soil-4-63-2018, https://doi.org/10.5194/soil-4-63-2018, 2018
Short summary
Short summary
Lab experiments were performed to understand solute transport in peat from an experimental fen. Transport was analyzed under saturated and unsaturated conditions using NaCl (salt). We tested the applicability of a physical-based model which finds a wide consensus vs. alternative models. Evidence indicated that Cl transport can be explained using a simple transport model. Hence, use of the physical transport mechanism in peat should be evidence based and not automatically assumed.
Sami Touil, Aurore Degre, and Mohamed Nacer Chabaca
SOIL, 2, 647–657, https://doi.org/10.5194/soil-2-647-2016, https://doi.org/10.5194/soil-2-647-2016, 2016
M. J. Kirkby
SOIL, 2, 631–645, https://doi.org/10.5194/soil-2-631-2016, https://doi.org/10.5194/soil-2-631-2016, 2016
Short summary
Short summary
The review paper surveys the state of the art with respect to water in the critical zone, taking a broad view that concentrates on the global range of natural soils, identifying some areas of currently active research.
Jean-Christophe Calvet, Noureddine Fritz, Christine Berne, Bruno Piguet, William Maurel, and Catherine Meurey
SOIL, 2, 615–629, https://doi.org/10.5194/soil-2-615-2016, https://doi.org/10.5194/soil-2-615-2016, 2016
Short summary
Short summary
Soil thermal conductivity in wet conditions can be retrieved together with the soil quartz content using a reverse modelling technique based on sub-hourly soil temperature observations at three depths below the soil surface.
A pedotransfer function is proposed for quartz, for the considered region in France.
Gravels have a major impact on soil thermal conductivity, and omitting the soil organic matter information tends to enhance this impact.
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016, https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Short summary
Gully erosion rehabilitation programs in the humid Ethiopian highlands have not been effective, because the gully formation process and its controlling factors are not well understood. In this manuscript, the severity of gully erosion (onsite and offsite effect), the most controlling factors (e.g., ground water elevation) for gully formation, and their arresting mechanisms are discussed in detail. Most data were collected from the detailed measurements of 13 representative gullies.
Eléonore Beckers, Mathieu Pichault, Wanwisa Pansak, Aurore Degré, and Sarah Garré
SOIL, 2, 421–431, https://doi.org/10.5194/soil-2-421-2016, https://doi.org/10.5194/soil-2-421-2016, 2016
Short summary
Short summary
Determining the behaviour of stony soils with respect to infiltration and storage of water is of major importance, since stony soils are widespread across the globe. The most common procedure to overcome this difficulty is to describe the hydraulic characteristics of a stony soils in terms of the fine fraction of soil corrected for the volume of stones present. Our study suggests that considering this hypothesis might be ill-founded, especially for saturated soils.
Mirjam J. D. Hack-ten Broeke, Joop G. Kroes, Ruud P. Bartholomeus, Jos C. van Dam, Allard J. W. de Wit, Iwan Supit, Dennis J. J. Walvoort, P. Jan T. van Bakel, and Rob Ruijtenberg
SOIL, 2, 391–402, https://doi.org/10.5194/soil-2-391-2016, https://doi.org/10.5194/soil-2-391-2016, 2016
Short summary
Short summary
For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, which can quantify the differences between years and also the effects of extreme weather events.
Mamaru A. Moges, Fasikaw A. Zemale, Muluken L. Alemu, Getaneh K. Ayele, Dessalegn C. Dagnew, Seifu A. Tilahun, and Tammo S. Steenhuis
SOIL, 2, 337–349, https://doi.org/10.5194/soil-2-337-2016, https://doi.org/10.5194/soil-2-337-2016, 2016
Short summary
Short summary
In tropical monsoonal Africa, sediment concentration data in rivers are lacking. Using occasional historically observed sediment loads, we developed a simple method for prediction sediment concentrations. Unlike previous methods, our techniques take into account that sediment concentrations decrease with the progression of the monsoon rains. With more testing, the developed method could improve sediment predictions in monsoonal climates.
Didier Michot, Zahra Thomas, and Issifou Adam
SOIL, 2, 241–255, https://doi.org/10.5194/soil-2-241-2016, https://doi.org/10.5194/soil-2-241-2016, 2016
Short summary
Short summary
This study focuses on temporal and spatial soil moisture changes along a toposequence crossed by a hedgerow, using ERT and occasional measurements. We found that the relationship between ER and soil moisture had two behaviors depending on soil heterogeneities. ER values were consistent with occasional measurements outside the root zone. The shift in this relationship was controlled by root system density and a particular topographical context in the proximity of the hedgerow.
Maha Deeb, Michel Grimaldi, Thomas Z. Lerch, Anne Pando, Agnès Gigon, and Manuel Blouin
SOIL, 2, 163–174, https://doi.org/10.5194/soil-2-163-2016, https://doi.org/10.5194/soil-2-163-2016, 2016
Short summary
Short summary
This paper addresses the evolution of engineered soils (i.e., Technosols). The formation of such soils begins with proportional mixing of urban waste. Technosols are particularly well suited for investigating the role of organisms in soil function development. This is because they provide a controlled environment where the soil development can be monitored over time.
Organisms and their interaction with parent materials positively affect the structure of Technosols.
Z. Hazbavi and S. H. R. Sadeghi
SOIL, 2, 71–78, https://doi.org/10.5194/soil-2-71-2016, https://doi.org/10.5194/soil-2-71-2016, 2016
Short summary
Short summary
This study evaluates the influences of vinasse waste of sugarcane industries on runoff and soil loss at small plot scale. Laboratory results indicated that the vinasse at different levels could not significantly (P > 0.05) decrease the runoff amounts and soil loss rates in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m−2 level of vinasse application.
S. Arnold and E. R. Williams
SOIL, 2, 41–48, https://doi.org/10.5194/soil-2-41-2016, https://doi.org/10.5194/soil-2-41-2016, 2016
Short summary
Short summary
Soil water models are used to design cover systems for containing hazardous waste following mining. Often, soil invertebrates are omitted from these calculations, despite playing a major role in soil development (nutrient cycling) and water pathways (seepage, infiltration). As such, soil invertebrates can influence the success of waste cover systems. We propose that experiments in glasshouses, laboratories and field trials on mined lands be undertaken to provide knowledge for these models.
R. M. Nagare, P. Bhattacharya, J. Khanna, and R. A. Schincariol
SOIL, 1, 103–116, https://doi.org/10.5194/soil-1-103-2015, https://doi.org/10.5194/soil-1-103-2015, 2015
Cited articles
Alimi, O. S., Farner Budarz, J., Hernandez, L. M., and Tufenkji, N.:
Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport, Environ. Sci. Technol., 52, 1704–1724, https://doi.org/10.1021/acs.est.7b05559, 2018.
Bagarello, V. and Ferro, V.:
Plot-scale measurement of soil erosion at the experimental area of Sparacia (southern Italy), Hydrol. Process., 18, 141–157, https://doi.org/10.1002/hyp.1318, 2004.
Bagarello, V., Ferro, V., and Flanagan, D.:
Predicting plot soil loss by empirical and process-oriented approaches. A review, J. Agr. Eng., 49, 1–18, 2018.
Bergami, E., Rota, E., Caruso, T., Birarda, G., Vaccari, L., and Corsi, I.:
Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus, Biol. Lett., 16, 20200093, https://doi.org/10.1098/rsbl.2020.0093, 2020.
Boix-Fayos, C., Martínez-Mena, M., Arnau-Rosalén, E., Calvo-Cases, A., Castillo, V., and Albaladejo, J.:
Measuring soil erosion by field plots: Understanding the sources of variation, Earth-Sci. Rev., 3–4, 267–285, https://doi.org/10.1016/j.earscirev.2006.05.005, 2006.
Bonilla, C. A. and Johnson, O. I.:
Soil erodibility mapping and its correlation with soil properties in Central Chile, Geoderma, 189–190, 116–123, https://doi.org/10.1016/j.geoderma.2012.05.005, 2012.
Boots, B., Russell, C. W., and Green, D. S.:
Effects of Microplastics in Soil Ecosystems: Above and Below Ground, Environ. Sci. Technol., 53, 11496–11506, https://doi.org/10.1021/acs.est.9b03304, 2019.
Bradford, J. M., Ferris, J. E., and Remley, P. A.:
Interrill Soil Erosion Processes: II. Relationship of Splash Detachment to Soil Properties, Soil Sci. Soc. Am. J., 51, 1571–1575, https://doi.org/10.2136/sssaj1987.03615995005100060030x, 1987.
Büks, F. and Kaupenjohann, M.:
Global concentrations of microplastics in soils – a review, SOIL, 6, 649–662, https://doi.org/10.5194/soil-6-649-2020, 2020.
Cammeraat, L. H.:
A review of two strongly contrasting geomorphological systems within the context of scale, Earth Surf. Proc. Land., 27, 1201–1222, https://doi.org/10.1002/esp.421, 2002.
Chaney, K. and Swift, R. S.:
The influence of organic matter on aggregate stability in some British soils, J. Soil Sci., 35, 223–230, 1984.
Chaplot, V. and Le Bissonnais, Y.:
Field measurements of interrill erosion under different slopes and plot sizes, Earth Surf. Proc. Land., 25, 145–153, https://doi.org/10.1002/(SICI)1096-9837(200002)25:2<145::AID-ESP51>3.0.CO;2-3, 2000.
Christiansen, J. E.: Irrigation by sprinkling, Berkeley: University of California, 1942.
Crossman, J., Hurley, R. R., Futter, M., and Nizzetto, L.:
Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment, Sci. Total Environ., 724, 138334, https://doi.org/10.1016/j.scitotenv.2020.138334, 2020.
Dane, J. H., Hopmans, J. W., and Topp, G. C.:
Hanging water column, in: Methods Soil Anal. Part 4, 680–683, 2002a.
Dane, J. H., Hopmans, J. W., and Topp, G. C.:
Pressure plate extractor, in: Methods Soil Anal. Part 4, 688–690, 2002b.
Deviren Saygın, S., Cornelis, W. M., Erpul, G., and Gabriels, D.:
Comparison of different aggregate stability approaches for loamy sand soils, Appl. Soil Ecol., 54, 1–6, https://doi.org/10.1016/j.apsoil.2011.11.012, 2012.
Dris, R., Gasperi, J., and Tassin, B.:
Sources and Fate of Microplastics in Urban Areas: A Focus on Paris Megacity, in: Freshwater Microplastics: Emerging Environmental Contaminants?, edited by: Wagner, M. and Lambert, S., Springer International Publishing, Cham, 69–83, https://doi.org/10.1007/978-3-319-61615-5_4, 2018.
Fox, D. M. and Le Bissonnais, Y.:
Process-Based Analysis of Aggregate Stability Effects on Sealing, Infiltration, and Interrill Erosion, Soil Sci. Soc. Am. J., 62, 717–724, https://doi.org/10.2136/sssaj1998.03615995006200030025x, 1998.
Gee, G. W. and Bauder, J. W.:
Particle-size Analysis, in: Methods of Soil Analysis, John Wiley & Sons, Ltd, 383–411, https://doi.org/10.2136/sssabookser5.1.2ed.c15, 1986.
Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., and Wagner, M.:
Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris, Environ. Sci. Technol., 53, 1039–1047, https://doi.org/10.1021/acs.est.8b05297, 2019.
Ho, J., Tumkaya, T., Aryal, S., Choi, H., and Claridge-Chang, A.:
Moving beyond P values: data analysis with estimation graphics, Nat. Methods, 16, 565–566, https://doi.org/10.1038/s41592-019-0470-3, 2019.
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., and Svendsen, C.:
Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities, Sci. Total Environ., 586, 127–141, https://doi.org/10.1016/j.scitotenv.2017.01.190, 2017.
Ingraffia, R., Amato, G., Iovino, M., Rillig, M., Giambalvo, D., and Frenda, A. S.:
Polyester microplastic fibers in soil increase nitrogen loss via leaching and decrease plant biomass production and N uptake, Environ. Res. Lett., 17, 054012, https://doi.org/10.1088/1748-9326/ac652d, 2022.
Iovino, M., Castellini, M., Bagarello, V., and Giordano, G.:
Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a Sicilian Area, Land Degrad. Dev., 27, 200–210, https://doi.org/10.1002/ldr.2263, 2016.
Iserloh, T., Fister, W., Seeger, M., Willger, H., and Ries, J. B.:
A small portable rainfall simulator for reproducible experiments on soil erosion, Soil Tillage Res., 124, 131–137, https://doi.org/10.1016/j.still.2012.05.016, 2012.
Iserloh, T., Ries, J. B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., Echeverría, M. T., Fernández-Gálvez, J., Fister, W., and Geißler, C.:
European small portable rainfall simulators: A comparison of rainfall characteristics, Catena, 110, 100–112, 2013.
Lal, R. and Shukla, M. K.:
Principles of Soil Physics, CRC Press, Boca Raton, 736 pp., https://doi.org/10.4324/9780203021231, 2004.
Lehmann, A., Fitschen, K., and Rillig, M. C.:
Abiotic and Biotic Factors Influencing the Effect of Microplastic on Soil Aggregation, Soil Syst., 3, 21, https://doi.org/10.3390/soilsystems3010021, 2019.
Lehmann, A., Leifheit, E. F., Feng, L., Bergmann, J., Wulf, A., and Rillig, M. C.:
Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi, Soil Ecol. Lett., https://doi.org/10.1007/s42832-020-0060-4, 2020.
Lehmann, A., Leifheit, E. F., Gerdawischke, M., and Rillig, M. C.:
Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss – an experimental and meta-analytical approach, Microplastics Nanoplastics, 1, 7, https://doi.org/10.1186/s43591-021-00007-x, 2021.
Liang, Y., Lehmann, A., Yang, G., Leifheit, E. F., and Rillig, M. C.:
Effects of Microplastic Fibers on Soil Aggregation and Enzyme Activities Are Organic Matter Dependent, Front. Environ. Sci., 9, 97, https://doi.org/10.3389/fenvs.2021.650155, 2021.
Loch, R. J.:
A method for measuring aggregate water stability of dryland soils with relevance to surface seal development, Soil Res., 32, 687–700, https://doi.org/10.1071/sr9940687, 1994.
Lowery, B., Swan, J., Schumacher, T., and Jones, A.:
Physical properties of selected soils by erosion class, J. Soil Water Conserv., 50, 306–311, 1995.
Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A., and Rillig, M. C.:
Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass, Front. Plant Sci., 12, https://doi.org/10.3389/fpls.2021.616645, 2021.
Maaß, S., Daphi, D., Lehmann, A., and Rillig, M. C.:
Transport of microplastics by two collembolan species, Environ. Pollut., 225, 456–459, https://doi.org/10.1016/j.envpol.2017.03.009, 2017.
Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., and Rillig, M. C.:
Impacts of Microplastics on the Soil Biophysical Environment, Environ. Sci. Technol., 52, 9656–9665, https://doi.org/10.1021/acs.est.8b02212, 2018.
Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., and Rillig, M. C.: Microplastics Can Change Soil Properties and Affect Plant Performance, Environ. Sci. Technol., 53, 6044–6052, https://doi.org/10.1021/acs.est.9b01339, 2019.
Mamedov, A. I. and Levy, G. J.:
Soil erosion–runoff relations on cultivated land: Insights from laboratory studies, Eur. J. Soil Sci., 70, 686–696, https://doi.org/10.1111/ejss.12759, 2019.
Meyer, L. D. and Harmon, W. C.:
Susceptibility of Agricultural Soils to Interrill Erosion, Soil Sci. Soc. Am. J., 48, 1152–1157, https://doi.org/10.2136/sssaj1984.03615995004800050040x, 1984.
Napper, I. E., Davies, B. F. R., Clifford, H., Elvin, S., Koldewey, H. J., Mayewski, P. A., Miner, K. R., Potocki, M., Elmore, A. C., Gajurel, A. P., and Thompson, R. C.:
Reaching New Heights in Plastic Pollution—Preliminary Findings of Microplastics on Mount Everest, One Earth, 3, 621–630, https://doi.org/10.1016/j.oneear.2020.10.020, 2020.
Nelson, D. W. and Sommers, L. E.:
Total Carbon, Organic Carbon, and Organic Matter, in: Methods of Soil Analysis, John Wiley & Sons, Ltd, 961–1010, https://doi.org/10.2136/sssabookser5.3.c34, 1996.
O'Kelly, B. C., El-Zein, A., Liu, X., Patel, A., Fei, X., Sharma, S., Mohammad, A., Goli, V. S. N. S., Wang, J. J., Li, D., Shi, Y., Xiao, L., Kuntikana, G., Shashank, B. S., Sarris, T. S., Hanumantha Rao, B., Mohamed, A. M. O., Paleologos, E. K., Nezhad, M. M., and Singh, D. N.:
Microplastics in soils: an environmental geotechnics perspective, Environmental Geotechnics, 8, 586–618, https://doi.org/10.1680/jenge.20.00179, 2021.
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D.: R Core Team, _nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-152, https://CRAN.R-project.org/package=nlme, 2021.
Qi, R., Jones, D. L., Li, Z., Liu, Q., and Yan, C.:
Behavior of microplastics and plastic film residues in the soil environment: A critical review, Sci. Total Environ., 703, 134722, https://doi.org/10.1016/j.scitotenv.2019.134722, 2020.
R Core Team 2020:
R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, 2020.
Rehm, R., Zeyer, T., Schmidt, A., and Fiener, P.:
Soil erosion as transport pathway of microplastic from agriculture soils to aquatic ecosystems, Sci. Total Environ., 795, 148774, 2021.
Rejman, J. and Brodowski, R.:
Rill characteristics and sediment transport as a function of slope length during a storm event on loess soil, Earth Surf. Proc. Land., 30, 231–239, https://doi.org/10.1002/esp.1177, 2005.
Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A., and Yang, X. M.:
Use of indicators and pore volume-function characteristics to quantify soil physical quality, Geoderma, 152, 252–263, 2009.
Ries, J. B., Seeger, M., Iserloh, T., Wistorf, S., and Fister, W.:
Calibration of simulated rainfall characteristics for the study of soil erosion on agricultural land, Soil Tillage Res., 106, 109–116, 2009.
Rillig, M. C. and Lehmann, A.:
Microplastic in terrestrial ecosystems, Science, 368, 1430–1431, https://doi.org/10.1126/science.abb5979, 2020.
Rillig, M. C., Ingraffia, R., and de Souza Machado, A. A.:
Microplastic Incorporation into Soil in Agroecosystems, Front. Plant Sci., 8, p. 1805, https://doi.org/10.3389/fpls.2017.01805, 2017a.
Rillig, M. C., Ziersch, L., and Hempel, S.:
Microplastic transport in soil by earthworms, Sci. Rep., 7, 1362, https://doi.org/10.1038/s41598-017-01594-7, 2017b.
Topp, G. C., Reynolds, W. D., Cook, F. J., Kirby, J. M., and Carter, M. R.:
Physical attributes of soil quality, in: Developments in soil science, vol. 25, Elsevier, 21–58, 1997.
van Genuchten, M. Th.:
A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Waldman, W. R. and Rillig, M. C.:
Microplastic Research Should Embrace the Complexity of Secondary Particles, Environ. Sci. Technol., 54, 7751–7753, https://doi.org/10.1021/acs.est.0c02194, 2020.
Wasserstein, R. L. and Lazar, N. A.:
ASA Statement on Statistical Significance and p-Values, in: The Theory of Statistics in Psychology: Applications, Use, and Misunderstandings, edited by: Gruber, C. W., Springer International Publishing, Cham, 1–10, https://doi.org/10.1007/978-3-030-48043-1_1, 2020.
Weithmann, N., Möller, J. N., Löder, M. G. J., Piehl, S., Laforsch, C., and Freitag, R.:
Organic fertilizer as a vehicle for the entry of microplastic into the environment, Sci. Adv., 4, eaap8060, https://doi.org/10.1126/sciadv.aap8060, 2018.
Wischmeier, W. H. and Smith, D. D.:
Predicting rainfall erosion losses: a guide to conservation planning, Department of Agriculture, Science and Education Administration, 1978.
Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P. C., Tang, C., Gan, J., and Xu, J.:
Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review, Crit. Rev. Env. Sci. Tec., 50, 2175–2222, https://doi.org/10.1080/10643389.2019.1694822, 2020.
Zhang, B., Yang, X., Chen, L., Chao, J., Teng, J., and Wang, Q.:
Microplastics in soils: a review of possible sources, analytical methods and ecological impacts, J. Chem. Technol. Biot., 95, 2052–2068, https://doi.org/10.1002/jctb.6334, 2020.
Zhang, G. S. and Liu, Y. F.:
The distribution of microplastics in soil aggregate fractions in southwestern China, Sci. Total Environ., 642, 12–20, https://doi.org/10.1016/j.scitotenv.2018.06.004, 2018.
Zhang, G. S., Zhang, F. X., and Li, X. T.:
Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment, Sci. Total Environ., 670, 1–7, https://doi.org/10.1016/j.scitotenv.2019.03.149, 2019.
Zhang, G.-H., Wang, L.-L., Tang, K.-M., Luo, R.-T., and Zhang, X. C.:
Effects of sediment size on transport capacity of overland flow on steep slopes, Hydrol. Sci. J., 56, 1289–1299, https://doi.org/10.1080/02626667.2011.609172, 2011.
Zubris, K. A. V. and Richards, B. K.:
Synthetic fibers as an indicator of land application of sludge, Environ. Pollut., 138, 201–211, https://doi.org/10.1016/j.envpol.2005.04.013, 2005.
Short summary
The presence of microplastics in soil environments has received increased attention, but little research exists on the effects on different soil types and soil water erosion. We performed two experiments on the effects of polyester microplastic fiber on soil properties, soil aggregation, and soil erosion in three agricultural soils. Results showed that polyester microplastic fibers affect the formation of new aggregates and soil erosion and that such effects are strongly dependent on soil type.
The presence of microplastics in soil environments has received increased attention, but little...