Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-373-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-373-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What comes after the Sun? On the integration of soil biogeochemical pre-weathering into microplastic experiments
Frederick Büks
CORRESPONDING AUTHOR
Chair of Soil Science, Department of Ecology, Technische Universität Berlin, 10587 Berlin, Germany
Martin Kaupenjohann
Chair of Soil Science, Department of Ecology, Technische Universität Berlin, 10587 Berlin, Germany
Related authors
Frederick Büks, Sabine Dumke, and Julia König
Biogeosciences, 22, 4679–4687, https://doi.org/10.5194/bg-22-4679-2025, https://doi.org/10.5194/bg-22-4679-2025, 2025
Short summary
Short summary
Ultrasonication followed by density fractionation is a frequently used method to determine soil structural stability and the amount of occluded particulate organic matter. Our analyses of three soils (sandy, silty and loamy) showed that air drying and gentle rewetting change SOM (soil organic matter) fractions depending on the subsequent time of re-incubation compared to field-fresh samples. This is important, since, e.g., the measurement of archived soils requires the handling of air-dried samples.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021, https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
Short summary
Ultrasonication/density fractionation is a common method used to extract particulate organic matter (POM) and, recently, microplastic (MP) from soil samples. In this study, ultrasonic treatment with mechanical stress increasing from 0 to 500 J mL−1 caused comminution and a reduced recovery rate of soil-derived POMs but no such effects with MP particles. In consequence, the extraction of MP from soils is not affected by particle size and recovery rate artifacts.
Frederick Büks and Martin Kaupenjohann
SOIL, 6, 649–662, https://doi.org/10.5194/soil-6-649-2020, https://doi.org/10.5194/soil-6-649-2020, 2020
Short summary
Short summary
Laboratory experiments that assess microplastic (MP) impact on the terrestrial environment require information on common soil MP concentrations. We reviewed item numbers and mass concentrations recorded in 23 studies, with 223 sampling sites in total with respect to the underlying entry pathways, land uses and vicinities. Common values included amounts of up to 13 000 items kg−1 and 4.5 mg kg−1 dry soil. Based on the collected data, we identified problems in past field studies.
Frederick Büks, Sabine Dumke, and Julia König
Biogeosciences, 22, 4679–4687, https://doi.org/10.5194/bg-22-4679-2025, https://doi.org/10.5194/bg-22-4679-2025, 2025
Short summary
Short summary
Ultrasonication followed by density fractionation is a frequently used method to determine soil structural stability and the amount of occluded particulate organic matter. Our analyses of three soils (sandy, silty and loamy) showed that air drying and gentle rewetting change SOM (soil organic matter) fractions depending on the subsequent time of re-incubation compared to field-fresh samples. This is important, since, e.g., the measurement of archived soils requires the handling of air-dried samples.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021, https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
Short summary
Ultrasonication/density fractionation is a common method used to extract particulate organic matter (POM) and, recently, microplastic (MP) from soil samples. In this study, ultrasonic treatment with mechanical stress increasing from 0 to 500 J mL−1 caused comminution and a reduced recovery rate of soil-derived POMs but no such effects with MP particles. In consequence, the extraction of MP from soils is not affected by particle size and recovery rate artifacts.
Frederick Büks and Martin Kaupenjohann
SOIL, 6, 649–662, https://doi.org/10.5194/soil-6-649-2020, https://doi.org/10.5194/soil-6-649-2020, 2020
Short summary
Short summary
Laboratory experiments that assess microplastic (MP) impact on the terrestrial environment require information on common soil MP concentrations. We reviewed item numbers and mass concentrations recorded in 23 studies, with 223 sampling sites in total with respect to the underlying entry pathways, land uses and vicinities. Common values included amounts of up to 13 000 items kg−1 and 4.5 mg kg−1 dry soil. Based on the collected data, we identified problems in past field studies.
Cited articles
Abbasi, S., Turner, A., Hoseini, M., and Amiri, H.: Microplastics in the Lut
and Kavir Deserts, Iran, Environ. Sci. Technol., 55, 5993–6000,
https://doi.org/10.1021/acs.est.1c00615, 2021.
Adhikary, K. B., Pang, S., and Staiger, M. P.: Effects of the accelerated
freeze-thaw cycling on physical and mechanical properties of wood
flour-recycled thermoplastic composites, Polym. Compos., 31, 185–194,
https://doi.org/10.1002/pc.20782, 2009.
Andrady, A. L., Pegram, J. E., and Tropsha, Y.: Changes in carbonyl index and
average molecular weight on embrittlement of enhanced-photodegradable
polyethylenes, J. Environ. Polym. Degrad., 1, 171–179,
https://doi.org/10.1007/bf01458025, 1993.
Bertling, J., Zimmermann, T., and Rödig, L.: Kunststoffe in der Umwelt:
Emissionen in landwirtschaftlich genutzte Böden, Fraunhofer Institut,
UMSICHT Bericht, https://doi.org/10.24406/umsicht-n-633611, 2021.
Bhardwaj, H., Gupta, R., and Tiwari, A.: Communities of microbial enzymes
associated with biodegradation of plastics, J. Polym. Environ., 21,
575–579, https://doi.org/10.1007/s10924-012-0456-z, 2013.
Brandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu,
W. M., and Criddle, C. S.: Biodegradation of polyethylene and plastic
mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut
microbiome, Environ. Sci. Technol., 52, 6526–6533, https://doi.org/10.1021/acs.est.8b02301, 2018.
Bronick, C. J. and Lal, R.: Soil structure and management: a review,
Geoderma, 124, 3–22, https://doi.org/10.1016/j.geoderma.2004.03.005, 2005.
Büks, F. and Kaupenjohann, M.: Global concentrations of microplastics in
soils – a review, SOIL, 6, 649–662, https://doi.org/10.5194/soil-6-649-2020, 2020.
Büks, F., van Schaik, N., and Kaupenjohann, M.: What do we know about
how the terrestrial multicellular soil fauna reacts to microplastic?, SOIL,
6, 245–267, https://doi.org/10.5194/soil-6-245-2020, 2020a.
Büks, F., van Schaik, N. L., and Kaupenjohann, M.: Mikroplastik aus
Klärschlämmen hat das Potential Bodenleben zu schädigen, KW
Korrespondenz Wasserwirtschaft, 9, 471–476, https://doi.org/10.3243/kwe2020.09.001,
2020b.
Büks, F., Kayser, G., Zieger, A., Lang, F., and Kaupenjohann, M.:
Particles under stress: ultrasonication causes size and recovery rate
artifacts with soil-derived POM but not with microplastics, Biogeosciences,
18, 159–167, https://doi.org/10.5194/bg-18-159-2021, 2021.
Chai, B., Li, X., Liu, H., Lu, G., Dang, Z., and Yin, H.: Bacterial
communities on soil microplastic at Guiyu, an E-Waste dismantling zone of
China, Ecotox. Environ. Safe., 195, 110521, https://doi.org/10.1016/j.ecoenv.2020.110521, 2020.
Cole, M., Lindeque, P., Halsband, C., and Galloway, T. S.: Microplastics as
contaminants in the marine environment: a review, Mar. Pollut. Bull.,
62, 2588–2597, https://doi.org/10.1016/j.marpolbul.2011.09.025, 2011.
Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., and
Geissen, V.: Evidence of microplastic accumulation in agricultural soils
from sewage sludge disposal, Sci. Total Environ., 671, 411–420, https://doi.org/10.1016/j.scitotenv.2019.03.368, 2019.
Danso, D., Chow, J., and Streit, W. R.: Plastics: environmental and
biotechnological perspectives on microbial degradation, Appl. Environ.
Microbiol., 85, e01095-19, https://doi.org/10.1128/AEM.01095-19, 2019.
de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A.,
Becker, R., and Rillig, M. C.: Impacts of microplastics on the soil
biophysical environment, Environ. Sci. Technol., 52, 9656–9665,
https://doi.org/10.1021/acs.est.8b02212, 2018.
de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J.
B., Faltin, E., Becker, R., Görlich, A. S., and Rillig, M. C.:
Microplastics can change soil properties and affect plant performance,
Environ. Sci. Technol., 53, 6044–6052, https://doi.org/10.1021/acs.est.9b01339, 2019.
Dierkes, G., Lauschke, T., Becher, S., Schumacher, H., Földi, C., and
Ternes, T.: Quantification of microplastics in environmental samples via
pressurized liquid extraction and pyrolysis-gas chromatography, Anal.
Bioanal. Chem., 411, 6959–6968, https://doi.org/10.1007/s00216-019-02066-9, 2019.
Dong, M., Zhang, Q., Xing, X., Chen, W., She, Z., and Luo, Z.: Raman spectra
and surface changes of microplastics weathered under natural environments,
Sci. Total Environ., 739, 139990, https://doi.org/10.1016/j.scitotenv.2020.139990, 2020.
Dussud, C., Meistertzheim, A. L., Conan, P., Pujo-Pay, M., George, M.,
Fabre, P., Coudane, J., Higgs, P., Elineau, A., Pedrotti, M. L., Gorsky, G.,
and Ghiglione, J. F.: Evidence of niche partitioning among bacteria living
on plastics, organic particles and surrounding seawaters, Environ. Pollut.,
236, 807–816, https://doi.org/10.1016/j.envpol.2017.12.027, 2018.
Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas,
F., and Rosal, R.: Fate of microplastics in wastewater treatment plants and
their environmental dispersion with effluent and sludge, Environ. Pollut.,
259, 113837, https://doi.org/10.1016/j.envpol.2019.113837, 2020.
Eerkes-Medrano, D., Thompson, R. C., and Aldridge, D. C.: Microplastics in
freshwater systems: a review of the emerging threats, identification of
knowledge gaps and prioritisation of research needs, Water Res., 75, 63–82,
https://doi.org/10.1016/j.watres.2015.02.012, 2015.
Enders, K., Lenz, R., Beer, S., and Stedmon, C. A.: Extraction of
microplastic from biota: recommended acidic digestion destroys common
plastic polymers, ICES J. Mar. Sci., 74, 326–331, https://doi.org/10.1093/icesjms/fsw173, 2017.
Flemming, H. C. and Wingender, J.: The biofilm matrix, Nat. Rev. Microbiol.,
8, 623–633, https://doi.org/10.1038/nrmicro2415, 2010.
Fotopoulou, K. N. and Karapanagioti, H. K.: Surface properties of beached
plastic pellets, Mar. Environ. Res., 81, 70–77, https://doi.org/10.1016/j.marenvres.2012.08.010, 2012.
Fotopoulou, K. N. and Karapanagioti, H. K.: Surface properties of beached
plastics, Environ. Sci. Pollut. Res., 22, 11022–11032, https://doi.org/10.1007/s11356-015-4332-y, 2015.
Fuller, S. and Gautam, A.: A procedure for measuring microplastics using
pressurized fluid extraction, Environ. Sci. Technol., 50, 5774–5780,
https://doi.org/10.1021/acs.est.6b00816, 2016.
Gebhardt, C. and Forster, S.: Size-selective feeding of Arenicola marina
promotes long-term burial of microplastic particles in marine sediments,
Environ. Pollut., 242, 1777–1786, https://doi.org/10.1016/j.envpol.2018.07.090, 2018.
He, P., Chen, L., Shao, L., Zhang, H., and Lü, F.: Municipal solid waste
(MSW) landfill: A source of microplastics? – Evidence of microplastics in
landfill leachate, Water Res., 159, 38–45, https://doi.org/10.1016/j.watres.2019.04.060, 2019.
Huang, Y., Liu, Q., Jia, W., Yan, C., and Wang, J.: Agricultural plastic
mulching as a source of microplastics in the terrestrial environment,
Environ. Pollut., 260, 114096, https://doi.org/10.1016/j.envpol.2020.114096, 2020.
Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van
der Ploeg, M., Besseling, E., Koelmans, A. A., and Geissen, V.: Microplastics
in the terrestrial ecosystem: implications for Lumbricus terrestris
(Oligochaeta, Lumbricidae), Environ. Sci. Technol., 50, 2685–2691,
https://doi.org/10.1021/acs.est.5b05478, 2016.
Huerta Lwanga, E., Vega, J. M., Quej, V. K., de los Angeles Chi, J., del
Cid, L. S., Chi, C., Segura, G. E., Gertsen, H., Salánki, T., van der
Ploeg, M., Koelmans, A. A., and Geissen, V.: Field evidence for transfer of
plastic debris along a terrestrial food chain, Sci. Rep.-UK, 7, 14071,
https://doi.org/10.1038/s41598-017-14588-2, 2017a.
Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van
der Ploeg, M., Besseling, E., Koelmans, A. A., and Geissen, V.: Incorporation
of microplastics from litter into burrows of Lumbricus terrestris, Environ.
Pollut., 220, 523–531, https://doi.org/10.1016/j.envpol.2016.09.096, 2017b.
Jiang, P., Zhao, S., Zhu, L., and Li, D.: Microplastic-associated bacterial
assemblages in the intertidal zone of the Yangtze Estuary, Sci. Total
Environ., 624, 48–54, https://doi.org/10.1016/j.scitotenv.2017.12.105, 2018.
Johansen, M. P., Cresswell, T., Davis, J., Howard, D. L., Howell, N. R., and
Prentice, E.: Biofilm-enhanced adsorption of strong and weak cations onto
different microplastic sample types: Use of spectroscopy, microscopy and
radiotracer methods, Water Res., 158, 392–400, https://doi.org/10.1016/j.watres.2019.04.029, 2019.
Kale, S. K., Deshmukh, A. G., Dudhare, M. S., and Patil, V. B.: Microbial
degradation of plastic: a review, J. Biochem. Technol., 6, 952–961, ISSN
0974-2328, 2015.
Katsumi, N., Kusube, T., Nagao, S., and Okochi, H.: Accumulation of
microcapsules derived from coated fertilizer in paddy fields, Chemosphere,
267, 129185, https://doi.org/10.1016/j.chemosphere.2020.129185, 2021.
Kockott, D.: Natural and artificial weathering of polymers, Polym. Degrad.
Stabil., 25, 181–208, https://doi.org/10.1016/S0141-3910(89)81007-9, 1989.
Lenz, M., Creffield, J. W., Evans, T. A., Kard, B., Vongkaluang, C.,
Sornnuwat, Y., Lee, C.-Y., Yoshimura, T., and Tsunoda, K.: Resistance of
polyamide and polyethylene cable sheathings to termites in Australia,
Thailand, USA, Malaysia and Japan: a comparison of four field assessment
methods, Int. Biodeter. Biodegr., 66, 53–62, https://doi.org/10.1016/j.ibiod.2011.11.001, 2012.
Liang, Y., Lehmann, A., Ballhausen, M., Muller, L., and Rillig, M. C.:
Increasing temperature and microplastic fibers jointly influence soil
aggregation by saprobic fungi, Front. Microbiol., 10, 2018, https://doi.org/10.3389/fmicb.2019.02018, 2019.
Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A., and Rillig, M. C.:
Microplastic shape, polymer type, and concentration affect soil properties
and plant biomass, Front. Plant Sci., 12, 616645, https://doi.org/10.3389/fpls.2021.616645, 2021.
Martin-Closas, L., J., Costa, A., Cirujeda, Aibar, J., Zaragoza, C., A.,
Pardo, Suso, M. L.,Moreno, M. M., Moreno, C., Lahoz, I., Macua, J. I., and
Pelacho, A. M.: Above – soil and in-soil degradation of oxo- and
bio-degradable mulches: a qualitative approach, Soil Res. 54, 225–236,
https://doi.org/10.1071/SR15133, 2016.
McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., and Kelly, J. J.:
Microplastic is an abundant and distinct microbial habitat in an urban
river, Environ. Sci. Technol., 48, 11863–11871, https://doi.org/10.1021/es503610r, 2014.
Ng, E. L., Lin, S. Y., Dungan, A. M., Colwell, J. M., Ede, S., Lwanga, E.
H., Meng, K., Geissen, V., Blackall, L. L., and Chen, D.: Microplastic
pollution alters forest soil microbiome, J. Hazard. Mater., 409, 124606,
https://doi.org/10.1016/j.jhazmat.2020.124606, 2020.
Oberbeckmann, S. and Labrenz, M.: Marine microbial assemblages on
microplastics: diversity, adaptation, and role in degradation, Annu. Rev.
Mar. Sci., 12, 209–232, https://doi.org/10.1146/annurev-marine-010419-010633, 2020.
Oberbeckmann, S., Löder, M. G., and Labrenz, M.: Marine
microplastic-associated biofilms – a review, Environ. Chem., 12, 551–562,
https://doi.org/10.1071/EN15069, 2015.
Pickett, J. E.: Weathering of plastics, in Handbook of Environmental
Degradation of Materials, 163–184, William Andrew Publishing, Oxford,
ISBN 978-0-323-52472-8, 2018.
Raziyafathima, M., Praseetha, P. K., and Rimal, I. R. S.: Microbial
degradation of plastic waste: a review, J. Pharm. ChemBiol. Sci.,
4, 231–242, 2016.
Rodríguez-Seijo, A., da Costa, J. P., Rocha-Santos, T., Duarte, A. C.,
and Pereira, R.: Oxidative stress, energy metabolism and molecular responses
of earthworms (Eisenia fetida) exposed to low-density polyethylene
microplastics, Environ. Sci. Pollut. R., 25, 33599–33610, https://doi.org/10.1007/s11356-018-3317-z, 2018.
Rodríguez-Seijo, A., Santos, B., da Silva, E. F., Cachada, A., and
Pereira, R.: Low-density polyethylene microplastics as a source and carriers
of agrochemicals to soil and earthworms, Environ. Chem., 16, 8–17,
https://doi.org/10.1071/EN18162, 2019.
Roohi, M., Bano, K., Kuddus, M., R Zaheer, M., Zia, Q., F Khan, M., Gupta,
A., and Aliev, G.: Microbial enzymatic degradation of biodegradable plastics,
Curr. Pharm. Biotechnol., 18, 429–440, https://doi.org/10.2174/1389201018666170523165742, 2017.
Shimao, M.: Biodegradation of plastics, Curr. Opin. Biotech., 12,
242–247, https://doi.org/10.1016/S0958-1669(00)00206-8, 2001.
Szewc, K., Graca, B., and Dołęga, A.: Atmospheric deposition of
microplastics in the coastal zone: Characteristics and relationship with
meteorological factors, Sci. Total Environ., 761, 143272, https://doi.org/10.1016/j.scitotenv.2020.143272, 2021.
ter Halle, A., Ladirat, L., Martignac, M., Mingotaud, A. F., Boyron, O., and
Perez, E.: To what extent are microplastics from the open ocean weathered?,
Environ. Pollut., 227, 167–174, https://doi.org/10.1016/j.envpol.2017.04.051, 2017.
Thiele-Bruhn, S., Bloem, J., de Vries, F. T., Kalbitz, K., and Wagg, C.:
Linking soil biodiversity and agricultural soil management, Curr. Opin.
Environ. Sustain., 4, 523–528, https://doi.org/10.1016/j.cosust.2012.06.004, 2012.
Thompson R. C., Swan S. H., Moore C. J., and vom Saal F. S.: Our plastic age,
Philos. T. R. Soc. B, 364, 1973–1976, https://doi.org/10.1098/rstb.2009.0054, 2009.
Trainic, M., Flores, J. M., Pinkas, I., Pedrotti, M. L., Lombard, F.,
Bourdin, G., Gorsky, G., Boss, E., Rudich, Y., Lombard, F., Vardi, A., and
Koren, I.: Airborne microplastic particles detected in the remote marine
atmosphere, Nat. Comm. Earth Environ., 1, 1–9, https://doi.org/10.1038/s43247-020-00061-y, 2020.
Tsunoda, K., Rosenblat, G., and Dohi, K.: Laboratory evaluation of the
resistance of plastics to the subterranean termite Coptotermes formosanus
(Blattodea: Rhinotermitidae), Int. Biodeter. Biodegr., 64, 232–237,
https://doi.org/10.1016/j.ibiod.2009.12.008, 2010.
Wang, J., Coffin, S., Sun, C., Schlenk, D., and Gan, J.: Negligible effects
of microplastics on animal fitness and HOC bioaccumulation in earthworm
Eisenia fetida in soil, Environ. Pollut., 249, 776–784, https://doi.org/10.1016/j.envpol.2019.03.102, 2019.
Wang, J., Huang, M., Wang, Q., Sun, Y., Zhao, Y., and Huang, Y.: LDPE
microplastics significantly alter the temporal turnover of soil microbial
communities, Sci. Total Environ., 726, 138682, https://doi.org/10.1016/j.scitotenv.2020.138682, 2020.
Wang, W. H., Wang, Q. W., Xiao, H., and Morrell, J. J.: Effects of moisture
and freeze-thaw cycling on the quality of rice-hull-PE composite, Pigment.
Resin Technol., 36, 344–349, https://doi.org/10.1108/03699420710831764, 2007.
Wei, R. and Zimmermann, W.: Microbial enzymes for the recycling of
recalcitrant petroleum-based plastics: how far are we?, Microb. Biotechnol.,
10, 1308–1322, https://doi.org/10.1111/1751-7915.12710, 2017.
Weithmann N., Möller J. N., Löder M. G., Piehl S., Laforsch C., and
Freitag R.: Organic fertilizer as a vehicle for the entry of microplastic
into the environment, Sci. Adv., 4, eaap8060, https://doi.org/10.1126/sciadv.aap8060, 2018.
Wiedner, K. and Polifka, S.: Effects of microplastic and microglass
particles on soil microbial community structure in an arable soil
(Chernozem), SOIL, 6, 315–324, https://doi.org/10.5194/soil-6-315-2020, 2020.
Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L., Coppock, R.,
Sleight, V., Calafat, A., Rogers, A. D., Narayanaswamy, B. E., and Thompson, R.
C.: The deep sea is a major sink for microplastic debris, R. Soc. Open Sci.,
1, 140317, https://doi.org/10.1098/rsos.140317, 2014.
Wu, C., Zhang, K., and Xiong, X.: Microplastic pollution in inland waters
focusing on Asia, in: Freshwater Microplastics, edited by: Wagner, M. and Lambert, S.,
85–99, The Handbook of Environmental Chemistry, Vol. 58, Springer,
Cham, https://doi.org/10.1007/978-3-319-61615-5_5, 2018.
Yang, X., Lwanga, E. H., Bemani, A., Gertsen, H., Salanki, T., Guo, X., Fu,
H., Xue, S., Ritsema, C., and Geissen, V.: Biogenic transport of glyphosate
in the presence of LDPE microplastics: A mesocosm experiment, Environ.
Pollut., 245, 829–835, https://doi.org/10.1016/j.envpol.2018.11.044, 2019.
Yan, Y., Chen, Z., Zhu, F., Zhu, C., Wang, C., and Gu, C.: Effect of
polyvinyl chloride microplastics on bacterial community and nutrient status
in two agricultural soils, B. Environ. Contam. Tox., 107, 1–8, https://doi.org/10.1007/s00128-020-02900-2, 2020.
Yi, M., Zhou, S., Zhang, L., and Ding, S.: The effects of three different
microplastics on enzyme activities and microbial communities in soil, Water
Environ. Res., 93, 24–32, https://doi.org/10.1002/wer.1327, 2020.
Yoon, M. G., Jeon, H. J., and Kim, M. N.: Biodegradation of polyethylene by a
soil bacterium and AlkB cloned recombinant cell, J. Bioremed. Biodegrad.,
3, 1–8, https://doi.org/10.4172/2155-6199.1000145, 2012.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y.,
Toyohara, K., Miyamoto, K., Kimura, Y., and Oda, K.: A bacterium that
degrades and assimilates poly (ethylene terephthalate), Science, 351,
1196–1199, https://doi.org/10.1126/science.aad6359, 2016.
Zettler, E. R., Mincer, T. J., and Amaral-Zettler, L. A.: Life in the
“plastisphere”: microbial communities on plastic marine debris, Environ.
Sci. Technol., 47, 7137–7146, https://doi.org/10.1021/es401288x, 2013.
Zhang, L., Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C.,
Anunciado, M. B., and Flury, M.: Interaction of Lumbricus terrestris with
macroscopic polyethylene and biodegradable plastic mulch, Sci. Total
Environ., 635, 1600–1608, https://doi.org/10.1016/j.scitotenv.2018.04.054, 2018.
Zhang, M., Zhao, Y., Qin, X., Jia, W., Chai, L., Huang, M., and Huang, Y.:
Microplastics from mulching film is a distinct habitat for bacteria in
farmland soil, Sci. Total Environ., 688, 470–478, https://doi.org/10.1016/j.scitotenv.2019.06.108, 2019.
Zhou, L., Wang, T., Qu, G., Jia, H., and Zhu, L.: Probing the aging processes
and mechanisms of microplastic under simulated multiple actions generated by
discharge plasma, J. Hazard. Mater., 398, 122956, https://doi.org/10.1016/j.jhazmat.2020.122956, 2020.
Zhou, X., Huang, S., Su, G., Yu, Y., and Chen, L.: Freeze-thaw cycles
weathering degrading properties of bamboo flour-polypropylene foamed
composites, Trans. Chin. Soc. Agr. Eng.,
30, 285–292, https://doi.org/10.3969/j.issn.1002-6819.2014.10.036, 2014.
Short summary
The adverse effect of microplastic (MP) on soil biota and soil structure depends on MP particle size and surface characteristics. Since weathering plays a major role in the genesis of these, it must be considered in both the analysis of environmental MP and the production of artificial MP for laboratory experiments. This work integrates recent findings on adverse effects and the genesis of its surface characteristics and discusses how to reproduce them to obtain closer-to-nature designer MP.
The adverse effect of microplastic (MP) on soil biota and soil structure depends on MP particle...