Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-499-2020
https://doi.org/10.5194/soil-6-499-2020
Original research article
 | 
12 Oct 2020
Original research article |  | 12 Oct 2020

Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging

Maria Catarina Paz, Mohammad Farzamian, Ana Marta Paz, Nádia Luísa Castanheira, Maria Conceição Gonçalves, and Fernando Monteiro Santos

Related authors

Detailed detection of active layer freeze–thaw dynamics using quasi-continuous electrical resistivity tomography (Deception Island, Antarctica)
Mohammad Farzamian, Gonçalo Vieira, Fernando A. Monteiro Santos, Borhan Yaghoobi Tabar, Christian Hauck, Maria Catarina Paz, Ivo Bernardo, Miguel Ramos, and Miguel Angel de Pablo
The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020,https://doi.org/10.5194/tc-14-1105-2020, 2020
Short summary

Related subject area

Soil pollution and remediation
Soil contamination in arid environments and assessment of remediation applying surface evaporation capacitor model: a case study from the Judean Desert, Israel
Rotem Golan, Ittai Gavrieli, Roee Katzir, Galit Sharabi, and Uri Nachshon
SOIL, 11, 395–412, https://doi.org/10.5194/soil-11-395-2025,https://doi.org/10.5194/soil-11-395-2025, 2025
Short summary
The clay mineralogy rather than the clay content determines radiocaesium adsorption in soils on a global scale
Margot Vanheukelom, Nina Haenen, Talal Almahayni, Lieve Sweeck, Nancy Weyns, May Van Hees, and Erik Smolders
SOIL, 11, 339–362, https://doi.org/10.5194/soil-11-339-2025,https://doi.org/10.5194/soil-11-339-2025, 2025
Short summary
Cr(VI) reduction, electricity production, and microbial resistance variation in paddy soil under microbial fuel cell operation
Huan Niu, Can Wang, Xia Luo, Peihan Li, Hang Qiu, Liyue Jiang, Subati Maimaitiaili, Minghui Wu, Fei Xu, and Heng Xu
SOIL, 11, 323–338, https://doi.org/10.5194/soil-11-323-2025,https://doi.org/10.5194/soil-11-323-2025, 2025
Short summary
Organic pollutant oxidation on manganese oxides in soils – the role of calcite indicated by geoelectrical and chemical analyses
Sonya S. Altzitser, Yael G. Mishael, and Nimrod Schwartz
SOIL, 11, 95–104, https://doi.org/10.5194/soil-11-95-2025,https://doi.org/10.5194/soil-11-95-2025, 2025
Short summary
Portable X-Ray Fluorescence as a Tool for Urban Soil Contamination Analysis: Accuracy, Precision, and Practicality
Eriell Jenkins, John Galbraith, and Anna Paltseva
EGUsphere, https://doi.org/10.5194/egusphere-2024-3101,https://doi.org/10.5194/egusphere-2024-3101, 2024
Short summary

Cited articles

Barrett-Lennard, E. G., Bennett, S. J., and Colmer, T. D.: Standardising the terminology for describing the level of salinity in soils. In: Proceedings of the 2nd international salinity forum: Salinity, water and society global issues, local action, Adelaide, SA, Australia, 31 Mar.–3 Apr. 2008. Geological Society of Australia, Hornsby, NSW, Australia, 2008. 
Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R.: Electromagnetic inductionprediction of soil salinity and groundwater properties in a Tunisian Saharan oasis, Hydrol. Sci. J., 57, 1473–1486, https://doi.org/10.1080/02626667.2012.717701, 2012. 
Corwin, D. L. and Lesch, S. M.: Characterizing soil spatial variability with apparent soilelectrical conductivity: I. Survey protocols, Comp. Elec. Agri. Appl. Apparent Soil Elec. Conductivity Precis. Agri., 46, 103–133, https://doi.org/10.1016/j.compag.2004.11.002, 2005. 
Corwin, D. L. and Scudiero, E.: Chapter One - Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors, Adv. Agron., 158, 1–130, https://doi.org/10.1016/bs.agron.2019.07.001, 2019. 
Dafflon, B., Hubbard, S., Ulrich, C., and Peterson, J. E.: Electrical conductivity imaging of active layer and permafrost in an arctic ecosystem, through advanced inversion of electromagnetic induction data, Vadose Zone J., 12, 1–19, https://doi.org/10.2136/vzj2012.0161, 2013. 
Download
Short summary
In this study electromagnetic induction (EMI) surveys and soil sampling were repeated over time to monitor soil salinity dynamics in an important agricultural area that faces risk of soil salinization. EMI data were converted to electromagnetic conductivity imaging through a mathematical inversion algorithm and converted to 2-D soil salinity maps until a depth of 1.35 m through a regional calibration. This is a non-invasive and cost-effective methodology that can be employed over large areas.
Share