Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
Maria Catarina Paz
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Campo Grande, Edifício C1, Piso 1, 1749-016 Lisbon, Portugal
CIQuiBio, Barreiro School of Technology, Polytechnic Institute of
Setúbal, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal
Mohammad Farzamian
CORRESPONDING AUTHOR
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Campo Grande, Edifício C1, Piso 1, 1749-016 Lisbon, Portugal
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Ana Marta Paz
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Nádia Luísa Castanheira
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Maria Conceição Gonçalves
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Fernando Monteiro Santos
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Campo Grande, Edifício C1, Piso 1, 1749-016 Lisbon, Portugal
Related authors
No articles found.
Dario Autovino, Antonio Coppola, Roberto De Mascellis, Mohammad Farzamian, and Angelo Basile
EGUsphere, https://doi.org/10.5194/egusphere-2025-2696, https://doi.org/10.5194/egusphere-2025-2696, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
In this article, we developed a method to better understand how soil water moisture and salt content affect electrical signals measured from the surface by electromagnetic induction technique. This helps farmers manage irrigation, especially in areas using salty water. By combining field and lab data, we could tell how much each factor—water or salt—affected the signal. This technique offers a faster, easier way to track soil health and could improve how we use water in farming.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Giovanna Dragonetti, Mohammad Farzamian, Angelo Basile, Fernando Monteiro Santos, and Antonio Coppola
Hydrol. Earth Syst. Sci., 26, 5119–5136, https://doi.org/10.5194/hess-26-5119-2022, https://doi.org/10.5194/hess-26-5119-2022, 2022
Short summary
Short summary
Soil hydraulic and hydrodispersive properties are necessary for modeling water and solute fluxes in agricultural and environmental systems. Despite the major efforts in developing methods (e.g., lab-based, pedotransfer functions), their characterization at applicative scales remains an imperative requirement. Thus, this paper proposes a noninvasive in situ method integrating electromagnetic induction and hydrological modeling to estimate soil hydraulic and transport properties at the plot scale.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Cited articles
Barrett-Lennard, E. G., Bennett, S. J., and Colmer, T. D.: Standardising the terminology for describing the level of salinity in soils. In: Proceedings of the 2nd international salinity forum: Salinity, water and society global issues, local action, Adelaide, SA, Australia, 31 Mar.–3 Apr. 2008. Geological Society of Australia, Hornsby, NSW, Australia, 2008.
Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R.: Electromagnetic inductionprediction of soil salinity and groundwater properties in a Tunisian Saharan oasis, Hydrol. Sci. J., 57, 1473–1486, https://doi.org/10.1080/02626667.2012.717701, 2012.
Corwin, D. L. and Lesch, S. M.: Characterizing soil spatial variability with apparent soilelectrical conductivity: I. Survey protocols, Comp. Elec. Agri. Appl. Apparent Soil Elec. Conductivity Precis. Agri., 46, 103–133,
https://doi.org/10.1016/j.compag.2004.11.002, 2005.
Corwin, D. L. and Scudiero, E.: Chapter One - Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors, Adv. Agron., 158, 1–130, https://doi.org/10.1016/bs.agron.2019.07.001, 2019.
Dafflon, B., Hubbard, S., Ulrich, C., and Peterson, J. E.: Electrical conductivity imaging of active layer and permafrost in an arctic ecosystem, through advanced inversion of electromagnetic induction data, Vadose Zone
J., 12, 1–19, https://doi.org/10.2136/vzj2012.0161, 2013.
De Groot-Hedlin, C. and Constable, S. C.: Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55, 1613–1624, https://doi.org/10.1190/1.1442813, 1990.
Farzamian, M., Monteiro Santos, F. A., and Khalil, A. M.: Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil, J. Appl. Geophys., 112, 175–189, https://doi.org/10.1016/j.jappgeo.2014.11.016, 2015.
Farzamian, M., Paz, M. C., Paz, A. M., Castanheira, N. L., Gonçalves, M. C., Santos, F. A. M., and Triantafilis, J.: Mapping soil salinity using electromagnetic conductivity imaging-a comparison of regional and
location-specific calibrations, Land Degrad. Dev., 30, 1393–1406, https://doi.org/10.1002/ldr.3317, 2019.
Fischer, G., Nachtergaele, F. O., Prieler, S., Teixeira, E., Toth, G., van Velthuizen, H., Verelst, L., and Wiberg, D.: Global Agro-ecological Zones (GAEZ v3.0)-Model Documentation [WWW Document], available at:
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (last access: 17 December 2018), 2012.
Huang, J., Purushothaman, R., McBratney, A., and Bramley, H.: Soil water extraction monitored per plot across a field experiment using repeated electromagnetic induction surveys, Soil Syst., 2, 11, https://doi.org/10.3390/soilsystems2010011, 2018.
Huang, J., Scudiero, E., Clary, W., Corwin, D. L., and Triantafilis, J.: Time-lapse monitoring of soil water content using electromagnetic conductivity imaging, Soil Use Manage., 33, 191–204, https://doi.org/10.1111/sum.12261, 2017.
Jadoon, K. Z., Moghadas, D., Jadoon, A., Missimer, T. M., Al-Mashharawi, S. K., and McCabe, M. F.: Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements, Water Resour. Res., 51, 3490–3504, https://doi.org/10.1002/2014WR016245, 2015.
Kaufman, A. A. and Keller, G. V.: Frequency and transient soundings. Methods in Geochemistry and Geophysics, 16. Elsevier, New York, https://doi.org/10.1111/j.1365-246X.1984.tb02230.x, 1983.
Kaufmann, M. S., von Hebel, C., Weihermüller, L., Baumecker, M., Döring, T., Schweitzer, K., Hobley, E., Bauke, S. L., Amelung, W., Vereecken, H., et al., and van der Kruk, J.: Effect of fertilizers and irrigation on multi-configuration electromagnetic induction measurements, Soil Use Manage., 36, 104–116, https://doi.org/10.1111/sum.12530, 2019.
Kvålseth, T. O.: Cautionary note about R2, Am. Stat., 39, 279–285, https://doi.org/10.1080/00031305.1985.10479448, 1985.
Lin, L. I. K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268, https://doi.org/10.2136/sssaj1998.03615995006200010030x, 1989.
Moghadas, D., Jadoon, K. Z., and McCabe, M. F.: Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data, Adv. Water Resour., 110, 238–248, https://doi.org/10.1016/j.advwatres.2017.10.019, 2017.
Monteiro Santos, F. A.: 1-D laterally constrained inversion of EM34 profiling data, J. Appl. Geophys., 56, 123–134, https://doi.org/10.1016/j.jappgeo.2004.04.005, 2004.
Monteiro Santos, F. A., Triantafilis, J., and Bruzgulis, K.: A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: application to DUALEM-421 data collected in a riverine plain, Geophysics, 76, B43–B53, https://doi.org/10.1190/1.3537834, 2011.
Paz, A., Castanheira, N., Farzamian, M., Paz, M. C., Gonçalves, M., Monteiro Santos, F., and Triantafilis, J.: Prediction of soil salinity and sodicity using electromagnetic conductivity imaging, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114086, 2019a.
Paz, M. C., Farzamian, M., Monteiro Santos, F., Gonçalves, M. C., Paz, A. M., Castanheira, N. L., and Triantafilis, J.: Potential to map soil salinity using inversion modelling of EM38 sensor data, First Break, 37, 35–39, https://doi.org/10.3997/1365-2397.2019019, 2019b.
Richards, L. A. (Ed.): Diagnosis and Improvement of Saline and Alkali Soils. Agricultural Handbook, USDA, Washington, D.C., USA, 1954.
Shanahan, P. W., Binley, A., Whalley, W. R., and Watts, C. W.: The use of electromagnetic induction to monitor changes in soil moisture profiles beneath different wheat genotypes, Soil Sci. Soc. Am. J., 79, 459–466, https://doi.org/10.2136/sssaj2014.09.0360, 2015.
Triantafilis, J., Laslett, G. M., and McBratney, A. B.: Calibrating an electromagnetic induction instrument to measure salinity in soil under irrigated cotton, Soil Sci. Soc. Am. J., 64, 1008–1017, https://doi.org/10.2136/sssaj2000.6431009x, 2000.
Triantafilis, J., Odeh, I. O. A. V., and McBratney, A. B.: Five geostatistical methods to predict soil salinity from electromagnetic induction data across irrigated cotton, Soil Sci. Soc. Am. J., 65, 869–978, https://doi.org/10.2136/sssaj2001.653869x, 2001.
von Hebel, C., van der Kruk, J., Huisman, J. A., Mester, A., Altdorff, D., Endres, A. L., Zimmermann, E., Garré, S., and Vereecken, H.: Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction, Sensors, 19, 4753, https://doi.org/10.3390/s19214753, 2019.
von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., and van der Kruk, J.: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multi-configuration
electromagnetic induction data, Water Resour. Res., 50, 2732–2748, https://doi.org/10.1002/2013wr014864, 2014.
Short summary
In this study electromagnetic induction (EMI) surveys and soil sampling were repeated over time to monitor soil salinity dynamics in an important agricultural area that faces risk of soil salinization. EMI data were converted to electromagnetic conductivity imaging through a mathematical inversion algorithm and converted to 2-D soil salinity maps until a depth of 1.35 m through a regional calibration. This is a non-invasive and cost-effective methodology that can be employed over large areas.
In this study electromagnetic induction (EMI) surveys and soil sampling were repeated over time...