Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
Maria Catarina Paz
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Campo Grande, Edifício C1, Piso 1, 1749-016 Lisbon, Portugal
CIQuiBio, Barreiro School of Technology, Polytechnic Institute of
Setúbal, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal
Mohammad Farzamian
CORRESPONDING AUTHOR
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Campo Grande, Edifício C1, Piso 1, 1749-016 Lisbon, Portugal
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Ana Marta Paz
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Nádia Luísa Castanheira
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Maria Conceição Gonçalves
Instituto Nacional de Investigação Agrária e
Veterinária, Avenida da República, Quinta do Marquês
(edifício sede), 2780-157 Oeiras, Portugal
Fernando Monteiro Santos
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Campo Grande, Edifício C1, Piso 1, 1749-016 Lisbon, Portugal
Related authors
Mohammad Farzamian, Gonçalo Vieira, Fernando A. Monteiro Santos, Borhan Yaghoobi Tabar, Christian Hauck, Maria Catarina Paz, Ivo Bernardo, Miguel Ramos, and Miguel Angel de Pablo
The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, https://doi.org/10.5194/tc-14-1105-2020, 2020
Short summary
Short summary
A 2-D automated electrical resistivity tomography (A-ERT) system was installed for the first time in Antarctica at Deception Island to (i) monitor subsurface freezing and thawing processes on a daily and seasonal basis and map the spatial and temporal variability of thaw depth and to (ii) study the impact of short-lived extreme meteorological events on active layer dynamics.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Giovanna Dragonetti, Mohammad Farzamian, Angelo Basile, Fernando Monteiro Santos, and Antonio Coppola
Hydrol. Earth Syst. Sci., 26, 5119–5136, https://doi.org/10.5194/hess-26-5119-2022, https://doi.org/10.5194/hess-26-5119-2022, 2022
Short summary
Short summary
Soil hydraulic and hydrodispersive properties are necessary for modeling water and solute fluxes in agricultural and environmental systems. Despite the major efforts in developing methods (e.g., lab-based, pedotransfer functions), their characterization at applicative scales remains an imperative requirement. Thus, this paper proposes a noninvasive in situ method integrating electromagnetic induction and hydrological modeling to estimate soil hydraulic and transport properties at the plot scale.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Mohammad Farzamian, Gonçalo Vieira, Fernando A. Monteiro Santos, Borhan Yaghoobi Tabar, Christian Hauck, Maria Catarina Paz, Ivo Bernardo, Miguel Ramos, and Miguel Angel de Pablo
The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, https://doi.org/10.5194/tc-14-1105-2020, 2020
Short summary
Short summary
A 2-D automated electrical resistivity tomography (A-ERT) system was installed for the first time in Antarctica at Deception Island to (i) monitor subsurface freezing and thawing processes on a daily and seasonal basis and map the spatial and temporal variability of thaw depth and to (ii) study the impact of short-lived extreme meteorological events on active layer dynamics.
Related subject area
Soil pollution and remediation
Long-term legacy of phytoremediation on plant succession and soil microbial communities in petroleum-contaminated sub-Arctic soils
Investigating the synergistic potential of Si and biochar to immobilize Ni in a Ni-contaminated calcareous soil after Zea mays L. cultivation
Estimations of soil metal accumulation or leaching potentials under climate change scenarios: the example of copper on a European scale
Model-based analysis of erosion-induced microplastic delivery from arable land to the stream network of a mesoscale catchment
Increase in bacterial community induced tolerance to Cr in response to soil properties and Cr level in the soil
Organic and inorganic nitrogen amendments reduce biodegradation of biodegradable plastic mulch films
Research and management challenges following soil and landscape decontamination at the onset of the reopening of the Difficult-to-Return Zone, Fukushima (Japan)
Impact of agricultural management on soil aggregates and associated organic carbon fractions: analysis of long-term experiments in Europe
Miniaturised visible and near-infrared spectrometers for assessing soil health indicators in mine site rehabilitation
The application of biochar and oyster shell reduced cadmium uptake by crops and modified soil fertility and enzyme activities in contaminated soil
Reusing Fe water treatment residual as a soil amendment to improve physical function and flood resilience
Are agricultural plastic covers a source of plastic debris in soil? A first screening study
Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape
Effectiveness of landscape decontamination following the Fukushima nuclear accident: a review
Evaluating the carbon sequestration potential of volcanic soils in southern Iceland after birch afforestation
Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms
Development of a statistical tool for the estimation of riverbank erosion probability
Sediment loss and its cause in Puerto Rico watersheds
Carbon nanomaterials in clean and contaminated soils: environmental implications and applications
Mary-Cathrine Leewis, Christopher Kasanke, Ondrej Uhlik, and Mary Beth Leigh
SOIL, 10, 551–566, https://doi.org/10.5194/soil-10-551-2024, https://doi.org/10.5194/soil-10-551-2024, 2024
Short summary
Short summary
In 1995, an initial study determined that using plants and fertilizers increased degradation of petroleum in soil; the site was then abandoned. In 2010, we returned to find that initial choices of plant and fertilizer use continued to cause changes in the plant and soil microbiomes. We also found evidence for the restoration of native vegetation with certain treatments, which indicates that this could be an important tool for communities that experience soil contamination.
Hamid Reza Boostani, Ailsa G. Hardie, Mahdi Najafi-Ghiri, Ehsan Bijanzadeh, Dariush Khalili, and Esmaeil Farrokhnejad
SOIL, 10, 487–503, https://doi.org/10.5194/soil-10-487-2024, https://doi.org/10.5194/soil-10-487-2024, 2024
Short summary
Short summary
In this work, the combined SM500 + S2 treatment was the most effective with respect to reducing the Ni water-soluble and exchangeable fraction. Application of Si and biochars decreased the soil Ni diethylenetriaminepentaacetic acid and corn Ni shoot content. The study shows the synergistic potential of Si and sheep manure biochars for immobilizing soil Ni.
Laura Sereni, Julie-Maï Paris, Isabelle Lamy, and Bertrand Guenet
SOIL, 10, 367–380, https://doi.org/10.5194/soil-10-367-2024, https://doi.org/10.5194/soil-10-367-2024, 2024
Short summary
Short summary
We estimate the tendencies of copper (Cu) export in freshwater or accumulation in soils in Europe for the 21st century and highlight areas of importance for environmental monitoring. We develop a method combining computations of Cu partitioning coefficients between solid and solution phases with runoff data. The surfaces with potential for export or accumulation are roughly constant over the century, but the accumulation potential of Cu increases while leaching potential decreases for 2000–2095.
Raphael Rehm and Peter Fiener
SOIL, 10, 211–230, https://doi.org/10.5194/soil-10-211-2024, https://doi.org/10.5194/soil-10-211-2024, 2024
Short summary
Short summary
A carbon transport model was adjusted to study the importance of water and tillage erosion processes for particular microplastic (MP) transport across a mesoscale landscape. The MP mass delivered into the stream network represented a serious amount of MP input in the same range as potential MP inputs from wastewater treatment plants. In addition, most of the MP applied to arable soils remains in the topsoil (0–20 cm) for decades. The MP sink function of soil results in a long-term MP source.
Claudia Campillo-Cora, Daniel Arenas-Lago, Manuel Arias-Estévez, and David Fernández-Calviño
SOIL, 9, 561–571, https://doi.org/10.5194/soil-9-561-2023, https://doi.org/10.5194/soil-9-561-2023, 2023
Short summary
Short summary
Cr pollution is a global concern. The use of methodologies specifically related to Cr toxicity is appropriate, such as the pollution-induced community tolerance (PICT) methodology. The development of PICT was determined in 10 soils after Cr addition in the laboratory. The Cr-soluble fraction and dissolved organic carbon were the main variables determining the development of PICT (R2 = 95.6 %).
Sreejata Bandopadhyay, Marie English, Marife B. Anunciado, Mallari Starrett, Jialin Hu, José E. Liquet y González, Douglas G. Hayes, Sean M. Schaeffer, and Jennifer M. DeBruyn
SOIL, 9, 499–516, https://doi.org/10.5194/soil-9-499-2023, https://doi.org/10.5194/soil-9-499-2023, 2023
Short summary
Short summary
We added organic and inorganic nitrogen amendments to two soil types in a laboratory incubation study in order to understand how that would impact biodegradable plastic mulch (BDM) decomposition. We found that nitrogen amendments, particularly urea and inorganic nitrogen, suppressed BDM degradation in both soil types. However, we found limited impact of BDM addition on soil nitrification, suggesting that overall microbial processes were not compromised due to the addition of BDMs.
Olivier Evrard, Thomas Chalaux-Clergue, Pierre-Alexis Chaboche, Yoshifumi Wakiyama, and Yves Thiry
SOIL, 9, 479–497, https://doi.org/10.5194/soil-9-479-2023, https://doi.org/10.5194/soil-9-479-2023, 2023
Short summary
Short summary
Twelve years after the nuclear accident that occurred in Fukushima in March 2011, radioactive contamination remains a major concern in north-eastern Japan. The Japanese authorities completed an unprecedented decontamination programme. The central objective was to not expose local inhabitants to excessive radioactive doses. At the onset of the full reopening of the Difficult-to-Return Zone in 2023, the current review provides an update of a previous synthesis published in 2019.
Ioanna S. Panagea, Antonios Apostolakis, Antonio Berti, Jenny Bussell, Pavel Čermak, Jan Diels, Annemie Elsen, Helena Kusá, Ilaria Piccoli, Jean Poesen, Chris Stoate, Mia Tits, Zoltan Toth, and Guido Wyseure
SOIL, 8, 621–644, https://doi.org/10.5194/soil-8-621-2022, https://doi.org/10.5194/soil-8-621-2022, 2022
Short summary
Short summary
The potential to reverse the negative effects caused in topsoil by inversion tillage, using alternative agricultural practices, was evaluated. Reduced and no tillage, and additions of manure/compost, improved topsoil structure and OC content. Residue retention had a positive impact on structure. We concluded that the negative effects of inversion tillage can be mitigated by reducing tillage intensity or adding organic materials, optimally combined with non-inversion tillage.
Zefang Shen, Haylee D'Agui, Lewis Walden, Mingxi Zhang, Tsoek Man Yiu, Kingsley Dixon, Paul Nevill, Adam Cross, Mohana Matangulu, Yang Hu, and Raphael A. Viscarra Rossel
SOIL, 8, 467–486, https://doi.org/10.5194/soil-8-467-2022, https://doi.org/10.5194/soil-8-467-2022, 2022
Short summary
Short summary
We compared miniaturised visible and near-infrared spectrometers to a portable visible–near-infrared instrument, which is more expensive. Statistical and machine learning algorithms were used to model 29 key soil health indicators. Accuracy of the miniaturised spectrometers was comparable to the portable system. Soil spectroscopy with these tiny sensors is cost-effective and could diagnose soil health, help monitor soil rehabilitation, and deliver positive environmental and economic outcomes.
Bin Wu, Jia Li, Mingping Sheng, He Peng, Dinghua Peng, and Heng Xu
SOIL, 8, 409–419, https://doi.org/10.5194/soil-8-409-2022, https://doi.org/10.5194/soil-8-409-2022, 2022
Short summary
Short summary
Cadmium (Cd) contamination in soil has severely threatened human health. In this study, we investigated the possibility of applying oyster shell and biochar to reduce Cd uptake by crops and improve soil fertility and enzyme activities in field experiments under rice–oilseed rape rotation, which provided an economical and effective pathway to achieving an in situ remediation of the Cd-contaminated farmland.
Heather C. Kerr, Karen L. Johnson, and David G. Toll
SOIL, 8, 283–295, https://doi.org/10.5194/soil-8-283-2022, https://doi.org/10.5194/soil-8-283-2022, 2022
Short summary
Short summary
Adding an organo-mineral waste product from clean water treatment (WTR) is beneficial for a soil’s water retention, permeability, and strength properties. WTR added on its own significantly improves the shear strength and saturated hydraulic conductivity of soil. The co-application of WTR with compost provides the same benefits whilst also improving soil’s water retention properties, which is beneficial for environmental applications where the soil health is critical.
Zacharias Steinmetz, Paul Löffler, Silvia Eichhöfer, Jan David, Katherine Muñoz, and Gabriele E. Schaumann
SOIL, 8, 31–47, https://doi.org/10.5194/soil-8-31-2022, https://doi.org/10.5194/soil-8-31-2022, 2022
Short summary
Short summary
To scrutinize the contribution of agricultural plastic covers to plastic pollution, we quantified soil-associated plastic debris (≤ 2 mm) in and around agricultural fields covered with different plastics. PP fleeces and 50 µm thick PE films did not emit significant amounts of plastic debris into soil during their 4-month use. However, thinner and perforated PE foils (40 µm) were associated with elevated PE contents of up to 35 mg kg−1. Their long-term use may thus favor plastic accumulation.
Edward J. Jones, Patrick Filippi, Rémi Wittig, Mario Fajardo, Vanessa Pino, and Alex B. McBratney
SOIL, 7, 33–46, https://doi.org/10.5194/soil-7-33-2021, https://doi.org/10.5194/soil-7-33-2021, 2021
Short summary
Short summary
Soil physical health is integral to maintaining functional agro-ecosystems. A novel method of assessing soil physical condition using a smartphone app has been developed – SLAKES. In this study the SLAKES app was used to investigate aggregate stability in a mixed agricultural landscape. Cropping areas were found to have significantly poorer physical health than similar soils under pasture. Results were mapped across the landscape to identify problem areas and pinpoint remediation efforts.
Olivier Evrard, J. Patrick Laceby, and Atsushi Nakao
SOIL, 5, 333–350, https://doi.org/10.5194/soil-5-333-2019, https://doi.org/10.5194/soil-5-333-2019, 2019
Short summary
Short summary
The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 resulted in the contamination of Japanese landscapes with radioactive fallout. The objective of this review is to provide an overview of the decontamination strategies and their potential effectiveness in Japan. Overall, we believe it is important to synthesise the remediation lessons learnt following the FDNPP nuclear accident, which could be fundamental if radioactive fallout occurred somewhere on Earth in the future.
Matthias Hunziker, Olafur Arnalds, and Nikolaus J. Kuhn
SOIL, 5, 223–238, https://doi.org/10.5194/soil-5-223-2019, https://doi.org/10.5194/soil-5-223-2019, 2019
Short summary
Short summary
Afforestation on severely degraded volcanic soils/landscapes is an important process concerning ecological restoration in Iceland. These landscapes have a high potential to act as carbon sinks. We tested the soil (0–30 cm) of different stages of afforested (mountain birch) landscapes and analysed the quantity and quality of the soil organic carbon. There is an increase in the total SOC stock during the encroachment. The increase is mostly because of POM SOC. Such soils demand SOC quality tests.
Belinda C. Martin, Suman J. George, Charles A. Price, Esmaeil Shahsavari, Andrew S. Ball, Mark Tibbett, and Megan H. Ryan
SOIL, 2, 487–498, https://doi.org/10.5194/soil-2-487-2016, https://doi.org/10.5194/soil-2-487-2016, 2016
Short summary
Short summary
The aim of this paper was to determine the impact of citrate and malonate on microbial activity and community structure in uncontaminated and diesel-contaminated soil. The results suggest that these carboxylates can stimulate microbial activity and alter microbial community structure but appear to have a minimal effect on enhancing degradation of diesel. However, our results suggest that carboxylates may have an important role in shaping microbial communities even in contaminated soils.
E. A. Varouchakis, G. V. Giannakis, M. A. Lilli, E. Ioannidou, N. P. Nikolaidis, and G. P. Karatzas
SOIL, 2, 1–11, https://doi.org/10.5194/soil-2-1-2016, https://doi.org/10.5194/soil-2-1-2016, 2016
Short summary
Short summary
A statistical methodology is proposed to predict the probability of presence or absence of erosion in a river section considering locally spatial correlated independent variables.
The proposed tool is easy to use and accurate and can be applied to any region and river. It requires information from easy-to-determine geomorphological and/or hydrological variables to provide the vulnerable locations. This tool could be used to assist in managing erosion and flooding events.
Y. Yuan, Y. Jiang, E. V. Taguas, E. G. Mbonimpa, and W. Hu
SOIL, 1, 595–602, https://doi.org/10.5194/soil-1-595-2015, https://doi.org/10.5194/soil-1-595-2015, 2015
Short summary
Short summary
A major environmental concern in the Commonwealth of Puerto Rico is increased sediment load to water reservoirs, to estuaries, and finally to coral reef areas. Our research found that sediment loss was mainly caused by interactions of development, heavy rainfall events, and steep mountainous slopes. These results improve our understanding of sediment loss resulting from changes in land use/cover, and will allow stakeholders to make more informed decisions about future land use planning.
M. J. Riding, F. L. Martin, K. C. Jones, and K. T. Semple
SOIL, 1, 1–21, https://doi.org/10.5194/soil-1-1-2015, https://doi.org/10.5194/soil-1-1-2015, 2015
Short summary
Short summary
The behaviour of carbon nanomaterials (CNMs) in soils is highly complex and dynamic. As a result, assessments of the possible risks CNMs pose within soil should be conducted on a case-by-case basis. Further work to assess the long-term stability and toxicity of CNM-sorbed contaminants, as well as the toxicity of CNMs themselves, is required to determine if their sorptive abilities can be applied to remedy environmental issues such as land contamination.
Cited articles
Barrett-Lennard, E. G., Bennett, S. J., and Colmer, T. D.: Standardising the terminology for describing the level of salinity in soils. In: Proceedings of the 2nd international salinity forum: Salinity, water and society global issues, local action, Adelaide, SA, Australia, 31 Mar.–3 Apr. 2008. Geological Society of Australia, Hornsby, NSW, Australia, 2008.
Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R.: Electromagnetic inductionprediction of soil salinity and groundwater properties in a Tunisian Saharan oasis, Hydrol. Sci. J., 57, 1473–1486, https://doi.org/10.1080/02626667.2012.717701, 2012.
Corwin, D. L. and Lesch, S. M.: Characterizing soil spatial variability with apparent soilelectrical conductivity: I. Survey protocols, Comp. Elec. Agri. Appl. Apparent Soil Elec. Conductivity Precis. Agri., 46, 103–133,
https://doi.org/10.1016/j.compag.2004.11.002, 2005.
Corwin, D. L. and Scudiero, E.: Chapter One - Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors, Adv. Agron., 158, 1–130, https://doi.org/10.1016/bs.agron.2019.07.001, 2019.
Dafflon, B., Hubbard, S., Ulrich, C., and Peterson, J. E.: Electrical conductivity imaging of active layer and permafrost in an arctic ecosystem, through advanced inversion of electromagnetic induction data, Vadose Zone
J., 12, 1–19, https://doi.org/10.2136/vzj2012.0161, 2013.
De Groot-Hedlin, C. and Constable, S. C.: Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55, 1613–1624, https://doi.org/10.1190/1.1442813, 1990.
Farzamian, M., Monteiro Santos, F. A., and Khalil, A. M.: Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil, J. Appl. Geophys., 112, 175–189, https://doi.org/10.1016/j.jappgeo.2014.11.016, 2015.
Farzamian, M., Paz, M. C., Paz, A. M., Castanheira, N. L., Gonçalves, M. C., Santos, F. A. M., and Triantafilis, J.: Mapping soil salinity using electromagnetic conductivity imaging-a comparison of regional and
location-specific calibrations, Land Degrad. Dev., 30, 1393–1406, https://doi.org/10.1002/ldr.3317, 2019.
Fischer, G., Nachtergaele, F. O., Prieler, S., Teixeira, E., Toth, G., van Velthuizen, H., Verelst, L., and Wiberg, D.: Global Agro-ecological Zones (GAEZ v3.0)-Model Documentation [WWW Document], available at:
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (last access: 17 December 2018), 2012.
Huang, J., Purushothaman, R., McBratney, A., and Bramley, H.: Soil water extraction monitored per plot across a field experiment using repeated electromagnetic induction surveys, Soil Syst., 2, 11, https://doi.org/10.3390/soilsystems2010011, 2018.
Huang, J., Scudiero, E., Clary, W., Corwin, D. L., and Triantafilis, J.: Time-lapse monitoring of soil water content using electromagnetic conductivity imaging, Soil Use Manage., 33, 191–204, https://doi.org/10.1111/sum.12261, 2017.
Jadoon, K. Z., Moghadas, D., Jadoon, A., Missimer, T. M., Al-Mashharawi, S. K., and McCabe, M. F.: Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements, Water Resour. Res., 51, 3490–3504, https://doi.org/10.1002/2014WR016245, 2015.
Kaufman, A. A. and Keller, G. V.: Frequency and transient soundings. Methods in Geochemistry and Geophysics, 16. Elsevier, New York, https://doi.org/10.1111/j.1365-246X.1984.tb02230.x, 1983.
Kaufmann, M. S., von Hebel, C., Weihermüller, L., Baumecker, M., Döring, T., Schweitzer, K., Hobley, E., Bauke, S. L., Amelung, W., Vereecken, H., et al., and van der Kruk, J.: Effect of fertilizers and irrigation on multi-configuration electromagnetic induction measurements, Soil Use Manage., 36, 104–116, https://doi.org/10.1111/sum.12530, 2019.
Kvålseth, T. O.: Cautionary note about R2, Am. Stat., 39, 279–285, https://doi.org/10.1080/00031305.1985.10479448, 1985.
Lin, L. I. K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268, https://doi.org/10.2136/sssaj1998.03615995006200010030x, 1989.
Moghadas, D., Jadoon, K. Z., and McCabe, M. F.: Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data, Adv. Water Resour., 110, 238–248, https://doi.org/10.1016/j.advwatres.2017.10.019, 2017.
Monteiro Santos, F. A.: 1-D laterally constrained inversion of EM34 profiling data, J. Appl. Geophys., 56, 123–134, https://doi.org/10.1016/j.jappgeo.2004.04.005, 2004.
Monteiro Santos, F. A., Triantafilis, J., and Bruzgulis, K.: A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: application to DUALEM-421 data collected in a riverine plain, Geophysics, 76, B43–B53, https://doi.org/10.1190/1.3537834, 2011.
Paz, A., Castanheira, N., Farzamian, M., Paz, M. C., Gonçalves, M., Monteiro Santos, F., and Triantafilis, J.: Prediction of soil salinity and sodicity using electromagnetic conductivity imaging, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114086, 2019a.
Paz, M. C., Farzamian, M., Monteiro Santos, F., Gonçalves, M. C., Paz, A. M., Castanheira, N. L., and Triantafilis, J.: Potential to map soil salinity using inversion modelling of EM38 sensor data, First Break, 37, 35–39, https://doi.org/10.3997/1365-2397.2019019, 2019b.
Richards, L. A. (Ed.): Diagnosis and Improvement of Saline and Alkali Soils. Agricultural Handbook, USDA, Washington, D.C., USA, 1954.
Shanahan, P. W., Binley, A., Whalley, W. R., and Watts, C. W.: The use of electromagnetic induction to monitor changes in soil moisture profiles beneath different wheat genotypes, Soil Sci. Soc. Am. J., 79, 459–466, https://doi.org/10.2136/sssaj2014.09.0360, 2015.
Triantafilis, J., Laslett, G. M., and McBratney, A. B.: Calibrating an electromagnetic induction instrument to measure salinity in soil under irrigated cotton, Soil Sci. Soc. Am. J., 64, 1008–1017, https://doi.org/10.2136/sssaj2000.6431009x, 2000.
Triantafilis, J., Odeh, I. O. A. V., and McBratney, A. B.: Five geostatistical methods to predict soil salinity from electromagnetic induction data across irrigated cotton, Soil Sci. Soc. Am. J., 65, 869–978, https://doi.org/10.2136/sssaj2001.653869x, 2001.
von Hebel, C., van der Kruk, J., Huisman, J. A., Mester, A., Altdorff, D., Endres, A. L., Zimmermann, E., Garré, S., and Vereecken, H.: Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction, Sensors, 19, 4753, https://doi.org/10.3390/s19214753, 2019.
von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., and van der Kruk, J.: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multi-configuration
electromagnetic induction data, Water Resour. Res., 50, 2732–2748, https://doi.org/10.1002/2013wr014864, 2014.
Short summary
In this study electromagnetic induction (EMI) surveys and soil sampling were repeated over time to monitor soil salinity dynamics in an important agricultural area that faces risk of soil salinization. EMI data were converted to electromagnetic conductivity imaging through a mathematical inversion algorithm and converted to 2-D soil salinity maps until a depth of 1.35 m through a regional calibration. This is a non-invasive and cost-effective methodology that can be employed over large areas.
In this study electromagnetic induction (EMI) surveys and soil sampling were repeated over time...