Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-499-2020
https://doi.org/10.5194/soil-6-499-2020
Original research article
 | 
12 Oct 2020
Original research article |  | 12 Oct 2020

Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging

Maria Catarina Paz, Mohammad Farzamian, Ana Marta Paz, Nádia Luísa Castanheira, Maria Conceição Gonçalves, and Fernando Monteiro Santos

Related authors

An in-situ methodology to separate the contribution of soil water content and salinity to EMI-based soil electrical conductivity
Dario Autovino, Antonio Coppola, Roberto De Mascellis, Mohammad Farzamian, and Angelo Basile
EGUsphere, https://doi.org/10.5194/egusphere-2025-2696,https://doi.org/10.5194/egusphere-2025-2696, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Employing automated electrical resistivity tomography for detecting short- and long-term changes in permafrost and active-layer dynamics in the maritime Antarctic
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024,https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
In situ estimation of soil hydraulic and hydrodispersive properties by inversion of electromagnetic induction measurements and soil hydrological modeling
Giovanna Dragonetti, Mohammad Farzamian, Angelo Basile, Fernando Monteiro Santos, and Antonio Coppola
Hydrol. Earth Syst. Sci., 26, 5119–5136, https://doi.org/10.5194/hess-26-5119-2022,https://doi.org/10.5194/hess-26-5119-2022, 2022
Short summary
Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021,https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021,https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary

Cited articles

Barrett-Lennard, E. G., Bennett, S. J., and Colmer, T. D.: Standardising the terminology for describing the level of salinity in soils. In: Proceedings of the 2nd international salinity forum: Salinity, water and society global issues, local action, Adelaide, SA, Australia, 31 Mar.–3 Apr. 2008. Geological Society of Australia, Hornsby, NSW, Australia, 2008. 
Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R.: Electromagnetic inductionprediction of soil salinity and groundwater properties in a Tunisian Saharan oasis, Hydrol. Sci. J., 57, 1473–1486, https://doi.org/10.1080/02626667.2012.717701, 2012. 
Corwin, D. L. and Lesch, S. M.: Characterizing soil spatial variability with apparent soilelectrical conductivity: I. Survey protocols, Comp. Elec. Agri. Appl. Apparent Soil Elec. Conductivity Precis. Agri., 46, 103–133, https://doi.org/10.1016/j.compag.2004.11.002, 2005. 
Corwin, D. L. and Scudiero, E.: Chapter One - Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors, Adv. Agron., 158, 1–130, https://doi.org/10.1016/bs.agron.2019.07.001, 2019. 
Dafflon, B., Hubbard, S., Ulrich, C., and Peterson, J. E.: Electrical conductivity imaging of active layer and permafrost in an arctic ecosystem, through advanced inversion of electromagnetic induction data, Vadose Zone J., 12, 1–19, https://doi.org/10.2136/vzj2012.0161, 2013. 
Download
Short summary
In this study electromagnetic induction (EMI) surveys and soil sampling were repeated over time to monitor soil salinity dynamics in an important agricultural area that faces risk of soil salinization. EMI data were converted to electromagnetic conductivity imaging through a mathematical inversion algorithm and converted to 2-D soil salinity maps until a depth of 1.35 m through a regional calibration. This is a non-invasive and cost-effective methodology that can be employed over large areas.
Share