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Abstract. Lezíria Grande de Vila Franca de Xira, located in Portugal, is an important agricultural system where
soil faces the risk of salinization due to climate change, as the level and salinity of groundwater are likely to
increase as a result of the rise of the sea water level and consequently of the estuary. These changes can also
affect the salinity of the irrigation water which is collected upstream of the estuary. Soil salinity can be assessed
over large areas by the following rationale: (1) use of electromagnetic induction (EMI) to measure the soil appar-
ent electrical conductivity (ECa, mS m−1); (2) inversion of ECa to obtain electromagnetic conductivity imaging
(EMCI) which provides the spatial distribution of the soil electrical conductivity (σ , mS m−1); (3) calibration
process consisting of a regression between σ and the electrical conductivity of the saturated soil paste extract
(ECe, dS m−1), used as a proxy for soil salinity; and (4) conversion of EMCI into salinity cross sections using
the obtained calibration equation.

In this study, EMI surveys and soil sampling were carried out between May 2017 and October 2018 at four
locations with different salinity levels across the study area of Lezíria de Vila Franca. A previously developed
regional calibration was used for predicting ECe from EMCI. Using time-lapse EMCI data, this study aims
(1) to evaluate the ability of the regional calibration to predict soil salinity and (2) to perform a preliminary
qualitative analysis of soil salinity dynamics in the study area. The validation analysis showed that ECe was
predicted with a root mean square error (RMSE) of 3.14 dS m−1 in a range of 52.35 dS m−1, slightly overesti-
mated (−1.23 dS m−1), with a strong Lin’s concordance correlation coefficient (CCC) of 0.94 and high linearity
between measured and predicted data (R2

= 0.88). It was also observed that the prediction ability of the regional
calibration is more influenced by spatial variability of data than temporal variability of data. Soil salinity cross
sections were generated for each date and location of data collection, revealing qualitative salinity fluctuations
related to the input of salts and water either through irrigation, precipitation, or level and salinity of groundwater.
Time-lapse EMCI is developing into a valid methodology for evaluating the risk of soil salinization, so it can
further support the evaluation and adoption of proper agricultural management strategies, especially in irrigated
areas, where continuous monitoring of soil salinity dynamics is required.
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1 Introduction

Lezíria Grande de Vila Franca de Xira (hereafter called
Lezíria de Vila Franca) is an important agricultural system
of alluvial origin located by the estuary of the Tejo River,
north-east of Lisbon, Portugal (Fig. 1), where soil faces risk
of salinization due to the marine origin of part of the sedi-
ments, tidal influence of the estuary, irrigation practices, and
projected evolution of future climate with increasing temper-
ature and decreasing precipitation. Traditional soil salinity
investigations have been conducted in the study area using
the electrical conductivity of a saturated soil paste extract
(ECe, dS m−1) as a proxy for soil salinity. However, they
were limited to a few boreholes and involved soil sampling,
which restricted the analysis to point information, often lack-
ing representativeness at the field scale. In addition, borehole
drilling is invasive and not feasible to conduct over large ar-
eas, given the large number of boreholes that needs to be
made.

Electromagnetic induction (EMI) is widely used as a non-
invasive and cost-effective solution to map soil properties
over large areas. EMI measures the apparent electrical con-
ductivity of the soil (ECa, mS m−1), which is a function of
soil properties such as salinity, texture, cation exchange ca-
pacity, water content, and temperature. However, in a saline
soil, soil salinity is generally the dominant factor responsi-
ble for the spatiotemporal variability of soil ECa when soil
is moist. EMI surveys have been successfully used in con-
junction with soil sampling to assess soil salinity through
location-specific calibration between measured ECa and soil
salinity (e.g. Triantafilis et al., 2000, 2001; Corwin and
Lesch, 2005; Bouksila et al., 2012; Corwin and Scudiero,
2019; Kaufmann et al., 2019; von Hebel et al., 2019). How-
ever, the ability of this method to map soil salinity distri-
bution with depth is limited. This is because EMI measures
ECa, a depth-weighted average conductivity measurement,
which does not represent the soil electrical conductivity (σ ,
mS m−1) with depth. More recently, a state-of-the-art ap-
proach called electromagnetic conductivity imaging (EMCI)
has permitted the generation of σ from the inversion of multi-
height and/or multi-sensor ECa data (Monteiro Santos, 2004;
Dafflon et al., 2013; von Hebel et al., 2014; Farzamian et al.,
2015; Shanahan et al., 2015; Jadoon et al., 2015; Moghadas
et al., 2017). When comparing σ with the soil properties sam-
pled in boreholes, such as ECe, soil water content, and pH,
a calibration process is developed through a regression be-
tween σ and the soil properties. Thus, EMCI can be con-
verted to a cross section of the soil properties which show
strong correlation with σ . This methodology has been ap-
plied in Lezíria de Vila Franca to study soil salinity risk
(Farzamian et al., 2019; Paz et al., 2019b) and salinity and
sodicity risk (Paz et al., 2019a). In this later study, the au-
thors performed a principal component analysis of the soil
properties in the study area and found that the water content
was correlated with σ but with a relatively lower influence

when compared to the properties related to salinity and sodic-
ity (ECe, sodium adsorption ratio, and exchangeable sodium
percentage).

Because the inversion of ECa is relatively recent since the
use of EMI for soil characterization, the lack of validation
using an independent dataset still limits the use of this new
methodology (Corwin and Scudiero, 2019), making it there-
fore important to further test its accuracy in salinity monitor-
ing.

When repeated over a period of time at the same place,
EMCI becomes time-lapse EMCI and can be used to inves-
tigate the dynamics of soil properties such as soil water con-
tent (Huang et al., 2017, 2018; Moghadas et al., 2017). Us-
ing time-lapse EMCI data, this study aims (1) to evaluate
the ability of a previously developed regional calibration to
predict soil salinity and (2) to perform a preliminary qual-
itative analysis of soil salinity dynamics in the study area.
For this purpose, EMI measurements and soil sampling were
carried out between May 2017 and October 2018 at four lo-
cations with different salinity levels across the study area.
EMI measurements were performed with a single-coil in-
strument (EM38), collecting ECa data in the horizontal and
vertical orientations and at two heights, and then inverted to
obtain EMCI, which provides a vertical distribution of σ . Fi-
nally, σ was converted to ECe using the previously developed
regional calibration. Soil samples were collected along the
EMI transects and used for laboratory determination of ECe.
These data were used as an independent dataset to evaluate
the ability of the regional calibration to predict soil salinity
and to generate soil salinity cross sections for each date of
data collection.

2 Material and methods

2.1 Study area

The study was carried out in Lezíria de Vila Franca, a penin-
sula of alluvial origin surrounded by the Tejo and Sorraia
rivers, and the Tejo estuary, located 10 km north-east of Lis-
bon, Portugal, as shown in Fig. 1. Soils in this region have
fine to very fine texture and are classified as Fluvisols in the
northern part and as Solonchaks in the southern part, accord-
ing to the Harmonized World Soil Database (Fischer et al.,
2012). Climate is temperate with hot and dry summers, ac-
cording to the Köppen classification. Daily measurements of
precipitation, mean temperature, and reference evapotranspi-
ration recorded during the study period at the meteorological
station represented by the blue circle in Fig. 1b are shown
in Fig. 2. Land use in this area (of about 130 km2) is con-
stituted by irrigated annual crops in the northern part and
mainly by rainfed pastures in the southern part. Irrigation is
ensured by an infrastructure that covers most of the area, col-
lecting surface water at the confluence of the two rivers. The
irrigation water has low salinity with electrical conductivity
typically below 0.5 dS m−1 and a sodium adsorption ratio be-
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low 1 (mmolc L−1)0.5. The area exhibits a north–south soil
salinity gradient which influences the distribution of land-use
types and which is probably due to the regional distribution
of the marine fraction of sediments and to the saline influence
of the estuary on groundwater in the southern part.

Four locations were chosen in the study area, as presented
in Fig. 1b, with numbers 1 to 4. Locations 1, 2, and 3 are cul-
tivated with annual rotations of irrigated herbaceous crops in
spring and annual ryegrass (Lolium multiflorum) in the au-
tumn, with ploughing usually once a year. During the study
years (2017 and 2018), the spring crop at location 1 was
tomato drip irrigated, and at locations 2 and 3 it was maize ir-
rigated by centre pivots. Location 4 is a rainfed spontaneous
pasture that has not been ploughed at least in the last 10
years. During the study period, location 1 was irrigated from
12 April to 23 July 2017 and from 30 May to 23 Septem-
ber 2018; location 2 was irrigated from 17 June to 11 Octo-
ber 2017 and from 24 May to 22 September 2018; and lo-
cation 3 was irrigated from 17 May to 10 September 2017
and from 6 June to 17 September 2018. Groundwater level
is shallow, as expected in an estuarine environment, and has
saline characteristics. In the southern part of the study area,
closer to the estuary, the depth and salinity of groundwater
are influenced by tidal variation.

2.2 Electromagnetic induction data acquisition and
inversion

EMI data were acquired using the EM38 instrument (Geon-
ics Ltd, Mississauga, Canada). Technology of this instrument
is based on two coils, one transmitting the electromagnetic
signal and the other receiving it, distanced 1 m apart from
each other inside the instrument case. The position of these
coils can be controlled by placing the instrument in a vertical
position relative to the soil surface – horizontal dipole mode
(the coils stand in the horizontal position), which provides a
maximum depth of investigation of 1.5 m – or in a horizon-
tal position relative to the soil surface – vertical dipole mode
(the coils stand in the vertical position), which provides a
maximum depth of investigation of 0.75 m. EM38 surveys
were done on five dates at locations 1 and 4 and on six dates
at locations 2 and 3, during the period of May 2017 to Oc-
tober 2018. Measurements on the first two dates were con-
tinuously acquired at each location, along a 100 m transect,
using a GPS (Rikaline 6010, with 5 m position accuracy)
for registration of the position. Subsequent EMI measure-
ments were acquired at each location, along a 20 m transect.
The middle point of each 20 m transect was coincident with
the medium point of each previous 100 m transect. Measure-
ments were acquired at positions 1 m apart along the 20 m
transects (Fig. 1c), overlapping the medium section of the
100 m transects. ECa was collected at two heights from the
soil surface (0.15 and 0.4 m) in the horizontal and vertical
dipole orientations, which was ensured by placing the EM38
on a cart built specifically for this purpose. The cart has two

shelves to accommodate the instrument, one at 0.15 m from
the soil surface and the other at 0.40 m from the soil surface.
Inversion of ECa data to obtain σ was carried out using a 1-D
laterally constrained inversion algorithm (Monteiro Santos et
al., 2011). The ECa responses of the model were calculated
through forward modelling based on the full solution of the
Maxwell equations (Kaufman and Keller, 1983). The subsur-
face model used in the inversion process consisted of a set
of 1-D models distributed according to the position of the
ECa measurements. The subsurface model at each measure-
ment position was constrained by the neighbouring models,
allowing the use of the algorithm in regions characterized
by high conductivity contrast. An Occam regularization (De
Groot-Hedlin and Constable, 1990) based approach was used
to invert the ECa data. All ECa data, collected at the four
locations, were inverted by applying a five-layer earth ini-
tial model with electrical conductivity of 100 mS m−1 and a
fixed layer thickness of 0.30 m. To run the algorithm, several
parameters were selected, such as the type of inversion algo-
rithm, the number of iterations, and the smoothing factor (λ)
that controls the roughness of the model. The optimal inver-
sion parameters for the present conditions were obtained in
previous studies for the study area (Farzamian et al., 2019).

2.3 Soil sampling and laboratory analysis

Soil samples were collected at the same time as EMI sur-
veys along the transects, as shown in Fig. 1c. At each sam-
pling site, five soil samples were collected at 0.3 m incre-
ments, from a depth of 0.15 to 1.35 m, as a representation
of topsoil (0–0.3 m), subsurface (0.3–0.6 m), upper subsoil
(0.6–0.9 m), intermediate subsoil (0.9–1.2 m), and lower sub-
soil (1.2–1.5 m), to monitor water content and ECe. In the
laboratory, water content was obtained using the gravimet-
ric method and then converted to volumetric water content
(θ – m3 m−3) after bulk density (g m−3) determination from
undisturbed 100 cm3 soil samples. ECe was measured with a
conductivity meter (WTW 1C20-0211 inoLab) in the extract
collected from the soil saturation paste obtained from 300 g
of air-dry soil samples, according to the methods described
by Richards (1954). In this study, the soil is classified accord-
ing to its ECe level as non-saline (ECe<2 dS m−1), slightly
saline (2–4 dS m−1), moderately saline (4–8 dS m−1), highly
saline (8–16 dS m−1), and severely saline (>16 dS m−1), ac-
cording to the terminology proposed by Barrett-Lennard et
al. (2008).

2.4 Prediction of ECe from time-lapse EMCI

A regional calibration to predict ECe from σ was previously
developed for the study area, resulting in the linear equation
ECe = 0.03σ–1.05 (Farzamian et al., 2019). This calibration
was termed “regional” because the equation was obtained
using all ECe and σ data collected at four locations in the
study area. Farzamian et al. (2019) tested the regional and
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Figure 1. (a–b) Location of the study area in Portugal, showing the main geographical features and the four locations; (c) details of the four
locations showing the EM38 transects and the soil sampling sites © Google Earth.

Figure 2. Distribution of daily precipitation (P ), reference evapotranspiration (ET ), and mean temperature (T ) recorded at the meteorolog-
ical station located in the study area during the study period.

location-specific calibrations, verifying that they have com-
parable prediction ability. However, the regional calibration
can be used at any new location in the study area, within the
range of measured ECe, which makes it highly suitable for
mapping salinity in the study area. The regional calibration
was based on data collected during May and June 2017 and

was validated using a leave-one-out cross-validation method
with good results (RMSE= 2.54 dS m−1 in the 0–37 dS m−1

range). The detailed calibration and cross-validation proce-
dures are described in Farzamian et al. (2019).

In the present study, the regional calibration was used to
predict ECe from time-lapse EMCI (pECe). The predicted
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Table 1. Description and equations of the statistical indicators used to evaluate the prediction ability of the regional calibration in this work.

Statistics Equation∗ Description

Root mean square
error (RMSE)

RMSE=

√∑n
i=1

(
mECei−pECei

)2

n−2 (1) Evaluates matching between measured and predicted
data. When it is zero, it indicates perfect matching be-
tween measured and predicted data.

Mean error (ME) ME=
∑n
i=1

(
mECei−pECei

)
n (2) Evaluates whether the predicted data are over- or under-

estimated. A negative value means overestimation; a
positive value means underestimation.

Lin’s concordance
correlation
coefficient
(Lin’s CCC)

Lin′sCCC=
2smECe−pECe

s2
mECe+s

2
pECe
+
(
mECe−pECe

)2 (3) Evaluates agreement between measured and predicted
data. Ranges from −1 to 1. When it is 1, it indicates
perfect agreement between measured and predicted data
(Lin, 1989).

Coefficient of
determination (R2)

R2
= 1−

∑n
i=1

(
mECei−pECei

)2

∑n
i=1
(
mECei−mECe

)2 (4) Indicates the proportion of the total variation of mea-
sured data that is explained by the calibration. Ranges
from 0 to 1, although it may be negative values, which
indicates an inappropriate calibration (Kvålseth, 1985).
Above 0.5 is considered satisfactory.

∗ n is the total number of data; mECe is measured ECe; pECe is predicted ECe; the upper bar represents the mean of the indicated data; s2 is the variance of the indicated data.

ECe and ECe measured from soil samples (mECe), collected
at the same time as the EMI surveys, were used as an inde-
pendent dataset for the validation of the regional calibration.
The validation was performed by calculating the root mean
square error (RMSE), the coefficient of determination (R2)
between the measured and predicted ECe, Lin’s concordance
correlation coefficient (CCC), and the mean error (ME). De-
scription of these statistical indicators and the equations used
to calculate them are shown in Table 1. Calculations were
done using global data and also using data discriminated by
date of measurement (in this case we considered dates when
measurements were done at the four locations – January,
June, and October 2018).

To further explore the spatial and temporal sensitivity of
the regional calibration and to investigate whether the re-
gional calibration can be used to assess soil salinity variabil-
ity at different locations and depths, we calculated the RMSE
between the deviations of mECe (dmECe) and the deviations
of pECe (dpECe) for each soil depth and location. These de-
viations were calculated by using the following equations:

dmECei =mECei −mECe, (5)

dpECei = pECei − pECe, (6)

in which the means were calculated with the values referent
to each date of measurement for each soil depth and loca-
tion. RMSE was then calculated between dmECe and dpECe
according to Eq. (1).

3 Results and discussion

3.1 Temporal variation of measured θ and ECe

Figure 3 shows the variation of θ and ECe with time at the
sampling site located in the middle of each transect (Fig. 1c),
at locations 1 to 4. At location 1, θ increases with depth and
the lower subsoil (1.2–1.5 m) is permanently saturated within
the study period. In the more superficial layers until 0.9 m
depth, the influence of rainfall, evapotranspiration, and ir-
rigation is noticeable. For instance, in the topsoil, θ peaks
in January 2018 and lowers during the dry seasons, because
drip irrigation during the dry seasons has a localized effect
and there is high water uptake by the crop. At location 2,
unlike the other locations, the lower subsoil is unsaturated.
The influence of rainfall, evapotranspiration, and irrigation
is also noticeable. At locations 3 and 4, θ also increases with
depth and the intermediate and lower subsoil layers are per-
manently saturated.

Regarding ECe, at location 1 the values observed are al-
ways below 1 dS m−1, except for the topsoil in September
and October 2018, which is probably due to fertigation prac-
tices during the irrigation period. At location 2, ECe gen-
erally increases with depth. All layers show a peak in June
and July 2018, probably due to fertigation practices. At loca-
tion 3, ECe reaches higher levels than at the previous loca-
tions, exceeding 4 dS m−1, which is the generally accepted
threshold for the classification of saline soils. Location 4
presents the highest ECe of all locations. At the topsoil the
values are below 4 dS m−1 but increase consistently with
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depth to about 50 dS m−1 in the lower subsoil. The increase
in ECe during June 2018 can be due to the influence of saline
groundwater.

3.2 Time-lapse EMCIs

Figure 4 shows the obtained EMCIs at locations 1 to 4 for
each date of the EMI surveys. Globally, σ ranges from 19.44
to 1431.57 mS m−1, with the lowest values at location 1 and
the highest at location 4. A general increasing trend of σ
is quite evident from the north to the south, accompanying
the previously known soil salinity gradient. In addition, σ
increases with depth at locations 2, 3, and 4. At location 1,
σ ranges spatiotemporally from 19.44 to 128.08 mS m−1. At
location 2, σ ranges from 28.02 to 469.39 mS m−1, with the
highest values at depth. A similar pattern of σ is evident at
locations 3 and 4. However, a greater range of σ is seen at
location 3, with values from 36.23 to 706.32 mS m−1. Loca-
tion 4 exhibits the largest variations of σ , ranging from 48.57
to 1431.57 mS m−1.

3.3 Prediction of ECe using the regional calibration

Figure 5 shows ECe predicted with the regional calibration
versus the measured ECe and the 1 : 1 line, with points iden-
tified in terms of date of measurement (Fig. 5a) and depth
of measurement (Fig. 5b). Table 2 shows the statistical in-
dicators obtained using global data, i.e. data collected at all
locations, from July 2017 to October 2018, and the statistical
indicators for each date. The validation of the regional cali-
bration using global data resulted in a RMSE of 3.14 dS m−1

and aR2 of 0.88, which indicates satisfactory prediction abil-
ity, given the large range of ECe (52.35 dS m−1). High global
Lin’s CCC of 0.94 shows agreement between measured and
predicted ECe. The ME is −1.23 dS m−1, indicating that the
regional calibration generally overestimates ECe. Figure 5a
and b show that the points are generally scattered around the
1 : 1 line, and it is not possible to identify variations depend-
ing on the date or depth of the measurement. In order to anal-
yse the prediction ability at each location, Fig. 5c and d dis-
play an enlargement of the lower left parts of the previous
figures, displaying ECe values below 15 dS m−1. Figure 5c
and d show differences in the prediction ability according
to the location, namely at locations 2 and 3, where ECe is
generally overestimated. At location 2, ECe is more overes-
timated in deeper soil layers (Fig. 5d), which is likely due to
the clay content that consistently increases with depth at this
location, while it is rather uniform or declines with depth at
the other locations (Farzamian et al., 2019). At location 3,
ECe is also overestimated, most likely due to the influence of
θ and cation exchange capacity (Paz et al., 2019a), which are
higher on average compared to locations 2 and 4. Finally, the
ECe ranges of location 4 and of the lower subsoil are similar
to the ECe range of global data, showing dominance of lo-
cation 4 and of lower subsoil data on the calibration. On the

other hand, the statistical indicators discriminated by date of
measurement (in this case we considered only the dates when
measurements were done at the four locations – January,
June, and October 2018), shown in Table 2, reveal that the
prediction ability does not vary significantly when compar-
ing the statistical indicators of the three dates. These results
suggest that spatial variability of data has a much stronger
influence on the prediction ability of the regional calibration
than temporal variability of data.

Table 3 shows the RMSE between dmECe and dpECe ob-
tained for each soil depth and each location. The RMSE
is 1.04 dS m−1 at the topsoil, which is relatively high given
the small range of deviation variability (2.18 dS m−1). This
indicates that it is difficult to estimate soil salinity variability
at topsoil from time-lapse EMI data and regional calibration.
We attribute the weak prediction ability at topsoil to the small
range of ECe variability and to the larger variability of other
soil properties (e.g. θ and temperature) at topsoil, which are
due to different irrigation schemes and cultivated crops at
each location. The results of RMSE show better prediction
ability at the subsurface and very good prediction ability at
upper, intermediate, and lower subsoil, suggesting that the
time-lapse EMI data and regional calibration can be used to
assess soil salinity changes in these soil layers. On the other
hand, the RMSE results for each location show that the pre-
diction ability is poor for monitoring of soil salinity variabil-
ity at location 1 (1.06 dS m−1) and location 2 (2.00 dS m−1)
given the small range of deviation variability at these loca-
tions. This is not surprising as the soil is non-saline at loca-
tion 1, with a very small range of ECe (0.35–1.89 dS m−1),
and slightly saline at location 2, with a small range of ECe
(0.91–3.86 dS m−1). Thus, other soil properties such as θ and
clay content have a larger impact on the spatiotemporal vari-
ability of σ . In addition, larger variations of ECe and σ at
location 4 dominated the regional regression calibration, fur-
ther limiting the application of the regional calibration for
monitoring the small variability of soil salinity at locations 1
and 2. The RMSE results are better to some extent at loca-
tion 3 and very good at location 4, suggesting that the time-
lapse EMI data and regional calibration can fairly predict soil
salinity variability at location 3 and very well at location 4.

This spatial sensitivity of the regional calibration can be
improved by studying new locations across the study area to
include a wider variability of soil properties and ranges of
ECe in the regression calibration. On the other hand, longer
observation periods and more frequent EMI surveying and
soil sampling, as well as monitoring of other soil dynamic
properties that influence σ (i.e. θ , soil temperature, level and
salinity of groundwater), and finding ways to quantitatively
account for their impact on time-lapse EMCIs, can improve
the temporal sensitivity of regional calibrations.
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Figure 3. Volumetric water content (θ – m3 m−3) and electrical conductivity of the soil saturation extract (ECe – dS m−1) in the topsoil
(0–0.3 m), subsurface (0.3–0.6 m), upper subsoil (0.6–0.9 m), intermediate subsoil (0.9–1.2 m), and lower subsoil (1.2–1.5 m), measured in
the sampling site located at the middle of each transect, at locations 1 to 4, during the study period. Each circled number refers to each
location. Crosses refer to the dates when there were ECe measurements but no σ measurements, due to adverse field conditions.

Table 2. RMSE, ME, Lin’s CCC, R2, minimum, maximum, and range of ECe, and the number of data used to calculate these statistical
indicators, discriminated in terms of global and date of measurement.

RMSE ME Lin’s CCC R2 ECe min ECe max ECe range Number
(dS m−1) (dS m−1) (dS m−1) (dS m−1) (dS m−1) of data

Global 3.14 −1.23 0.94 0.88 0.35 52.70 52.35 103
Jan 2018 2.79 −1.33 0.96 0.91 0.59 35.90 35.31 30
Jun 2018 4.27 −0.08 0.94 0.90 0.35 52.70 52.35 20
Oct 2018 3.11 −0.71 0.96 0.91 0.44 42.50 42.06 19
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Figure 4. Time-lapse electromagnetic conductivity images (EMCIs) for locations 1 to 4.

3.4 Generation of soil salinity cross sections from
time-lapse EMCI

Figure 6 shows the soil salinity cross sections (ECe predicted
using the regional calibration) at locations 1 to 4 for each
date of the EMI surveys, categorized into six salinity classes,
ranging from non-saline to severely saline. The measured
ECe and the groundwater level at the sampling site located
in the middle of each EMI transect are also shown.

The salinity cross sections for location 1 show that the soil
is generally non-saline, with slightly saline zones on all dates
except for October 2018. These saline zones occur in the top
soil layers until 0.9 m depth (topsoil, subsurface and upper
subsoil) and represent an overestimation of the soil salin-
ity when compared to the measured ECe of the sampling
point (which is invariably non-saline). This overestimation
tendency is in agreement with Fig. 5d, where the very low
range of spatiotemporal variations of soil salinity at this lo-
cation can also be observed. In such conditions, other soil
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Figure 5. Plots of predicted ECe versus measured ECe and the 1 : 1 line, obtained for locations 1 to 4, identified in terms of date of
measurement (a) and depth of measurement (b). Plots (c) and (d) show enlargements of the lower left parts of plots (a) and (b), respectively.

Table 3. RMSE between dmECe and dpECe, range of dmECe, and
the number of data used to calculate RMSE, discriminated in terms
of depth of measurement and location.

RMSE (dS m−1) dmECe range Number
between dmECe (dS m−1) of data

and dpECe

0–0.3 m 1.04 2.18 21
0.3–0.6 m 1.14 4.91 21
0.6–0.9 m 1.38 10.63 21
0.9–1.2 m 2.76 22.61 21
1.2–1.5 m 4.18 36.88 19
Location 1 1.06 1.45 35
Location 2 2.00 2.85 24
Location 3 2.50 7.47 24
Location 4 3.88 49.64 20

properties, such as θ , dominate the small variations of σ , and
therefore the ability to predict salinity from σ at this location
was reduced as discussed in Sect. 4.3. Our previous studies
with both location-specific and regional calibrations tested at
this location showed similar results (Farzamian et al., 2019).

At location 2 the salinity cross sections show an increase
in salinity with depth from non-saline at the topsoil to highly
saline in the lower subsoil, with the exception of July 2018,
where the entire soil profile is moderately saline. The in-
crease in soil salinity in the upper soil layers in July 2018
can be attributed to fertigation practices for the maize culti-
vation that introduced salts into the soil profile. The salinity
cross sections also show the overestimation of salinity occur-
ring mainly in the deeper soil layers, which agrees with the
results presented in Fig. 5d and discussed in Sect. 4.3.

At location 3 soil salinity is well predicted in May 2017
but tends to be slightly overestimated on the remaining dates,
especially in July 2018. The salinity cross sections show
that salinity increases with depth, reaching severely saline in
May 2017 and October 2017. This can be due to the influence
of the saline groundwater (as seen in Fig. 3, the intermedi-
ate and lower subsoil layers are permanently saturated). The
groundwater level is above 1.5 m in January 2018, although
the salinity of the deeper soil layers (>0.9 m) decreases com-
pared to May and October 2017, which could be due to wash-
ing of the profile by rainfall. The increase in soil salinity in
the upper soil layers in July 2018, similarly to location 2 on
the same date, can be attributed to fertigation practices for
the maize cultivation.
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Figure 6. Cross sections of soil salinity (predicted ECe) for locations 1 to 4, with representation of measured ECe (in circles) and groundwater
level (blue triangles) at the sampling sites located in the middle of each transect. Note that in June 2018 at location 3 and in July 2017 at
location 4 there was no soil sampling.

At location 4 the trend of increasing salinity with depth
is accurate on all dates, but it tends to be slightly under-
estimated. The salinity cross sections show that salinity in-
creases from non-saline in topsoil to severely saline in lower
subsoil. This is probably related to the saline groundwater
level above 1.5 m. During the dry period of the year, salinity
of the lower subsoil reaches the highest values (June 2018).

Comparison of the salinity cross sections between loca-
tions confirms the previously known north–south soil salinity
spatial gradient of the study area; that is, from location 1 to
location 4, soil salinity generally increases. Soil salinity dy-
namics at each location reveals fluctuations in time related to
the input of salts and water either through irrigation, precip-
itation, or groundwater level and salinity. Location 1 tends
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to have non-saline characteristics, which can be attributed to
good-quality irrigation. In addition, this location is far from
the estuary, making it less prone to the presence of saline
groundwater. At locations 2 and 3, the salinity cross sections
show an increase in soil salinity in the upper layers during
the dry season (when irrigation occurs), which decreases in
the following months with increased rainfall (Fig. 2). At lo-
cation 4, an increment of salinity along the entire profile is
visible during the dry season. This is likely due to the influ-
ence of the saline groundwater and capillary rise along the
profile.

4 Conclusions

In this study, EMI and soil sampling data collected between
May 2017 and October 2018 were used, together with a pre-
viously developed regional calibration, to predict soil salin-
ity. This procedure allowed further validation of the regional
calibration with an independent dataset and a preliminary
qualitative analysis of soil salinity dynamics in the study
area. Based on the comprehensive analysis of the statistical
indicators obtained from the validation process and the ob-
tained soil salinity cross sections, the following main con-
clusions can be drawn.

The validation performed in this study resulted in a RMSE
of 3.14 dS m−1, which is acceptable given the large range
of ECe (52.35 dS m−1). This validation resulted in lower
prediction ability than that previously resulting from cross-
validation (which had a RMSE of 2.54 dS m−1). This is ex-
pected because the test set is completely independent of the
dataset used to develop the calibration and was collected over
a wider period of time (18 months). During this period, soil
properties, which are also known to influence σ , such as tem-
perature and θ , change, which introduces larger variability in
data.

The prediction ability of the regional calibration does not
vary significantly over time. As a result, the regional calibra-
tion approach still stands as an expeditious method to predict
soil salinity from EMI surveys at any new location in the
study area. However, prediction ability of the regional cal-
ibration in assessing variability of soil salinity at different
depths and locations varies significantly due to variability of
soil properties at each depth and location. Our investigation
shows that significantly larger variations of ECe and σ at lo-
cation 4 dominated the regional regression calibration, sug-
gesting a good prediction ability of the regional calibration
in the south of the study area and close to location 4, where
the soil salinization is of major concern and can compromise
agricultural activity.

The methodology used in this study allowed the genera-
tion of soil salinity cross sections displaying the patterns of
soil salinity at different dates, at four locations in the study
area. The salinity cross sections show a qualitative response
of soil salinity to the input of salts and water either through

irrigation, precipitation, or level and salinity of groundwa-
ter. In a regional perspective, soil salinity dynamics in the
study area may be preliminarily explained by a combination
of spatial distribution of the marine fraction of soil, with ir-
rigation practices in the study area and saline groundwater in
the southern part.

Application of time-lapse EMCI and calibration for as-
sessing soil salinity dynamics is a developing methodol-
ogy that can further support the evaluation and adoption of
proper agricultural management strategies in irrigated re-
gions. Some aspects can and will be addressed in future stud-
ies so as to improve its performance. From this study, we
identify some of these aspects. First, relative to the inversion
process and in the absence of a time-lapse inversion algo-
rithm, ECa data were inverted independently. This method
can distort the inversion results, since the reference model
and a priori information are not considered. Further research
involves time-lapse inversion algorithms that are being de-
veloped to invert data collected with EMI sensors, which can
generate EMCIs of higher precision. Secondly, the influence
of static soil properties (i.e. that do not vary in time), such as
clay content and cation exchange capacity, could be tackled
with the use of cross sections of the variation of soil salin-
ity between two consecutive dates, which allows removal of
the static effect from the time-lapse EMCIs. Finally, tem-
poral soil salinity assessment can be optimized by quantita-
tively taking into account the influence of soil dynamic prop-
erties on the time-lapse EMCIs. Specifically, in Lezíria, re-
gional calibrations can be improved by studying new loca-
tions across the study area for a longer period of time with
more frequent surveying and sampling and also by including
new parameters, such as θ , soil temperature, level, and salin-
ity of groundwater. However, the temporal variations of these
properties are connected to location-specific conditions. For
instance, θ can vary significantly in the study area, partic-
ularly in the root zone, due to different irrigation practices,
root uptake of different crops, and fluctuation of groundwater
level. These facts highlight the necessity of using location-
specific calibrations for a more precise assessment of soil
salinity changes at each location.
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