Articles | Volume 3, issue 4
SOIL, 3, 177–189, 2017
https://doi.org/10.5194/soil-3-177-2017
SOIL, 3, 177–189, 2017
https://doi.org/10.5194/soil-3-177-2017

Original research article 23 Oct 2017

Original research article | 23 Oct 2017

Quantitative imaging of the 3-D distribution of cation adsorption sites in undisturbed soil

Hannes Keck et al.

Related authors

Dynamic upscaling of decomposition kinetics for carbon cycling models
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020,https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Assessing the impact of acid rain and forest harvest intensity with the HD-MINTEQ model – soil chemistry of three Swedish conifer sites from 1880 to 2080
Eric McGivney, Jon Petter Gustafsson, Salim Belyazid, Therese Zetterberg, and Stefan Löfgren
SOIL, 5, 63–77, https://doi.org/10.5194/soil-5-63-2019,https://doi.org/10.5194/soil-5-63-2019, 2019
Short summary
Aluminium and base cation chemistry in dynamic acidification models – need for a reappraisal?
Jon Petter Gustafsson, Salim Belyazid, Eric McGivney, and Stefan Löfgren
SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018,https://doi.org/10.5194/soil-4-237-2018, 2018
Short summary
Relations between macropore network characteristics and the degree of preferential solute transport
M. Larsbo, J. Koestel, and N. Jarvis
Hydrol. Earth Syst. Sci., 18, 5255–5269, https://doi.org/10.5194/hess-18-5255-2014,https://doi.org/10.5194/hess-18-5255-2014, 2014
Short summary

Related subject area

Soil and methods
The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020,https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary
Game theory interpretation of digital soil mapping convolutional neural networks
José Padarian, Alex B. McBratney, and Budiman Minasny
SOIL, 6, 389–397, https://doi.org/10.5194/soil-6-389-2020,https://doi.org/10.5194/soil-6-389-2020, 2020
Short summary
Comparing three approaches of spatial disaggregation of legacy soil maps based on the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm
Yosra Ellili-Bargaoui, Brendan Philip Malone, Didier Michot, Budiman Minasny, Sébastien Vincent, Christian Walter, and Blandine Lemercier
SOIL, 6, 371–388, https://doi.org/10.5194/soil-6-371-2020,https://doi.org/10.5194/soil-6-371-2020, 2020
Oblique geographic coordinates as covariates for digital soil mapping
Anders Bjørn Møller, Amélie Marie Beucher, Nastaran Pouladi, and Mogens Humlekrog Greve
SOIL, 6, 269–289, https://doi.org/10.5194/soil-6-269-2020,https://doi.org/10.5194/soil-6-269-2020, 2020
Short summary
Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning
Anika Gebauer, Monja Ellinger, Victor M. Brito Gomez, and Mareike Ließ
SOIL, 6, 215–229, https://doi.org/10.5194/soil-6-215-2020,https://doi.org/10.5194/soil-6-215-2020, 2020
Short summary

Cited articles

Ahmed, S., Klassen, T. N., Keyes, S., Daly, M., Jones, D. L., Mavrogordato, M., Sinclair, I., and Roose, T.: Imaging the interaction of roots and phosphate fertiliser granules using 4D X-ray tomography, Plant Soil, 401, 125–134, https://doi.org/10.1007/s11104-015-2425-5, 2016.
Bhattacharyya, K. G. and Gupta, S. S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review, Adv. Colloid Interface Sci., 140, 114–131, https://doi.org/10.1016/j.cis.2007.12.008, 2008.
Bodek, I., Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H. (Eds.): Environmental inorganic chemistry: properties, processes, and estimation methods, Pergamon Press, New York, 1988.
Bradl, H. B.: Adsorption of heavy metal ions on soils and soils constituents, J. Colloid Interface Sci., 277, 1–18, https://doi.org/10.1016/j.jcis.2004.04.005, 2004.
Bundt, M., Jäggi, M., Blaser, P., Siegwolf, R., and Hagedorn, F.: Carbon and Nitrogen Dynamics in Preferential Flow Paths and Matrix of a Forest Soil, Soil Sci. Soc. Am. J., 65, 1529–1538, https://doi.org/10.2136/sssaj2001.6551529x, 2001a.
Download
Short summary
Several studies have shown that the cation adsorption sites in soils are heterogeneously distributed in space. In many soil system models this knowledge is not included yet. In our study we proposed a new method to map the 3-D distribution of cation adsorption sites in undisturbed soils. The method is based on three-dimensional X-ray scanning with a contrast agent and image analysis. We are convinced that this approach will strongly aid the development of more realistic soil system models.