Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-587-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-587-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Addressing soil data needs and data gaps in catchment-scale environmental modelling: the European perspective
Brigitta Szabó
CORRESPONDING AUTHOR
Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Budapest, 1022, Hungary
National Laboratory for Water Science and Water Security, Budapest, 1022, Hungary
Piroska Kassai
CORRESPONDING AUTHOR
Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Budapest, 1022, Hungary
National Laboratory for Water Science and Water Security, Budapest, 1022, Hungary
Svajunas Plunge
Department of Hydrology, Meteorology, and Water Management, Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, 0-653, Poland
Attila Nemes
Department of Hydrology and Water Environment, Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
Péter Braun
Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Budapest, 1022, Hungary
National Laboratory for Water Science and Water Security, Budapest, 1022, Hungary
Marine Research Institute, Klaipeda University, Klaipeda, 92294, Lithuania
Michael Strauch
Helmholtz Centre for Environmental Research GmbH – UFZ, Department of Computational Landscape Ecology, 04318 Leipzig, Germany
Felix Witing
Helmholtz Centre for Environmental Research GmbH – UFZ, Department of Computational Landscape Ecology, 04318 Leipzig, Germany
János Mészáros
Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Budapest, 1022, Hungary
National Laboratory for Water Science and Water Security, Budapest, 1022, Hungary
Natalja Čerkasova
Marine Research Institute, Klaipeda University, Klaipeda, 92294, Lithuania
Texas A&M AgriLife, Blackland Research and Extension Center, Temple, TX 76502, USA
Related authors
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Jiapan Wang, Rasoul Eskandari, ChengHan Lin, János Mészáros, Laura Obrecht, Evangeline Rowe, Jules Salzinger, Martin Rutzinger, and Andreas Mayr
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 937–944, https://doi.org/10.5194/isprs-annals-X-G-2025-937-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-937-2025, 2025
Natalja Čerkasova, Jovita Mėžinė, Rasa Idzelytė, Jūratė Lesutienė, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 20, 1123–1147, https://doi.org/10.5194/os-20-1123-2024, https://doi.org/10.5194/os-20-1123-2024, 2024
Short summary
Short summary
This study advances the understanding of climate projection variability in the Nemunas River, Curonian Lagoon, and southeastern Baltic Sea continuum by analyzing a subset of climate models with a focus on a coupled ocean and drainage basin model. This study investigates the variability and trends in environmental parameters, such as water fluxes, timing, nutrient load, water temperature, ice cover, and saltwater intrusions in Representative Concentration Pathway 4.5 and 8.5 scenarios.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao
Hydrol. Earth Syst. Sci., 28, 21–48, https://doi.org/10.5194/hess-28-21-2024, https://doi.org/10.5194/hess-28-21-2024, 2024
Short summary
Short summary
Research highlights.
1. Implemented groundwater module (gwflow) into SWAT+ for four watersheds with different unique hydrologic features across the United States.
2. Presented methods for sensitivity analysis, uncertainty analysis and parameter estimation for coupled models.
3. Sensitivity analysis for streamflow and groundwater head conducted using Morris method.
4. Uncertainty analysis and parameter estimation performed using an iterative ensemble smoother within the PEST framework.
Maria Eliza Turek, Attila Nemes, and Annelie Holzkämper
SOIL, 9, 545–560, https://doi.org/10.5194/soil-9-545-2023, https://doi.org/10.5194/soil-9-545-2023, 2023
Short summary
Short summary
In this study, we systematically evaluated prospective crop transpiration benefits of sequestering soil organic carbon (SOC) under current and future climatic conditions based on the model SWAP. We found that adding at least 2% SOC down to at least 65 cm depth could increase transpiration annually by almost 40 mm, which can play a role in mitigating drought impacts in rain-fed cropping. Beyond this threshold, additional crop transpiration benefits of sequestering SOC are only marginal.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Rasa Idzelytė, Natalja Čerkasova, Jovita Mėžinė, Toma Dabulevičienė, Artūras Razinkovas-Baziukas, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 19, 1047–1066, https://doi.org/10.5194/os-19-1047-2023, https://doi.org/10.5194/os-19-1047-2023, 2023
Short summary
Short summary
This work is focused on the impacts of climate change on a complex water flow system in the southeastern (SE) Baltic Sea, covering the Nemunas river basin and Curonian Lagoon. The results show that lagoon and sea will receive more water coming from the Nemunas. This will lead to a decreased frequency of saltwater inflow to the lagoon, and water will take less time to renew. Water temperatures in the entire lagoon and the SE Baltic Sea will increase steadily, and salinity values will decrease.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Cited articles
Abbaspour, K. C., AshrafVaghefi, S., Yang, H., and Srinivasan, R.: Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications, Sci. Data, 6, 263, https://doi.org/10.1038/s41597-019-0282-4, 2019.
Alexander, E. B.: Bulk Densities of California Soils in Relation to Other Soil Properties, Soil Sci. Soc. Am. J., 44, 689–692, https://doi.org/10.2136/sssaj1980.03615995004400040005x, 1980.
Amorim, H. C. S., Hurtarte, L. C. C., Souza, I. F., and Zinn, Y. L.: C:N ratios of bulk soils and particle-size fractions: Global trends and major drivers, Geoderma, 425, 116026, https://doi.org/10.1016/j.geoderma.2022.116026, 2022.
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L.: Soil and Water Assessment Tool: Input/Output Documentation. Version 2012. TR-439, Texas Water Resources Institute, College Station, 1–654, https://swatplus.gitbook.io/io-docs/ (last access: 2 September 2024), 2012.
Assouline, S. and Or, D.: The concept of field capacity revisited: Defining intrinsic static and dynamic criteria for soil internal drainage dynamics, Water Resour. Res., 50, 4787–4802, https://doi.org/10.1002/2014WR015475, 2014.
Babaeian, E., Homaee, M., Vereecken, H., Montzka, C., Norouzi, A. A., and van Genuchten, M. T.: A Comparative Study of Multiple Approaches for Predicting the Soil–Water Retention Curve: Hyperspectral Information vs. Basic Soil Properties, Soil Sci. Soc. Am. J., 79, 1043–1058, https://doi.org/10.2136/sssaj2014.09.0355, 2015.
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical properties at European scale using the LUCAS database, Geoderma, 261, 110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016.
Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., Montanarella, L., and Panagos, P.: Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression, Geoderma, 355, 113912, https://doi.org/10.1016/j.geoderma.2019.113912, 2019.
Batjes, N. H., Ribeiro, E., and Van Oostrum, A.: Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019), Earth Syst. Sci. Data, 12, 299–320, https://doi.org/10.5194/essd-12-299-2020, 2020.
Van Bemmelen, J. M.: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans usw im Ackerboden, Die Landwirthschaftlichen Versuchs-Stationen, 37, 279–290, 1980.
Bernoux, M., Arrouays, D., Cerri, C. C., Volkoff, B., and Jolivet, C.: Bulk Densities of Brazilian Amazon Soils Related to Other Soil Properties, Soil Sci. Soc. Am. J., 62, 743–749, 1998.
Børgesen, C. D. and Schaap, M. G.: Point and parameter pedotransfer functions for water retention predictions for Danish soils, Geoderma, 127, 154–167, https://doi.org/10.1016/j.geoderma.2004.11.025, 2005.
Bouma, J.: Using Soil Survey Data for Quantitative Land Evaluation, in: Advances in Soil Science, edited by: Stewart, B. A., Advances in Soil Science, Vol. 9, Springer, New York, NY, https://doi.org/10.1007/978-1-4612-3532-3_4, 1989.
Bouma, J. and van Lanen, H. A. J.: Transfer functions and threshold values: from soil characteristics to land qualities, in: Proceedings of the International Workshop on Quantified Land Evaluation Procedures, edited by: Beek, K. J., Burrough, P. A., and MacCormack, D. E., 106–110, International Institute for Aerospace Survey and Earth Sciences (ITC), Washington, DC, http://library.wur.nl/WebQuery/wurpubs/4195 (last access: 27 March 2017), 1987.
Carrer, D., Meurey, C., Ceamanos, X., Roujean, J. L., Calvet, J. C., and Liu, S.: Dynamic mapping of snow-free vegetation and bare soil albedos at global 1 km scale from 10-year analysis of MODIS satellite products, Remote Sens. Environ., 140, 420–432, https://doi.org/10.1016/j.rse.2013.08.041, 2014.
Casanova, M., Tapia, E., Seguel, O., and Salazar, O.: Direct measurement and prediction of bulk density on alluvial soils of central Chile, Chil. J. Agric. Res., 76, 105–113, https://doi.org/10.4067/S0718-58392016000100015, 2016.
Ceglar, A., Zampieri, M., Toreti, A., and Dentener, F.: Observed Northward Migration of Agro-Climate Zones in Europe Will Further Accelerate Under Climate Change, Earth's Future, 7, 1088–1101, https://doi.org/10.1029/2019EF001178, 2019.
Chen, S., Richer-de-Forges, A. C., Saby, N. P. A., Martin, M. P., Walter, C., and Arrouays, D.: Building a pedotransfer function for soil bulk density on regional dataset and testing its validity over a larger area, Geoderma, 312, 52–63, https://doi.org/10.1016/j.geoderma.2017.10.009, 2018.
Copernicus Climate Change Service, C. D. S.: Surface albedo 10-daily gridded data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.ea87ed30, 2018.
Dai, Y., Xin, Q., Wei, N., Zhang, Y., Shangguan, W., Yuan, H., Zhang, S., Liu, S., and Lu, X.: A Global High-Resolution Data Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling, J. Adv. Model. Earth Syst., 11, 2996–3023, https://doi.org/10.1029/2019ms001784, 2019a.
Dai, Y., Shangguan, W., Wei, N., Xin, Q., Yuan, H., Zhang, S., Liu, S., Lu, X., Wang, D., and Yan, F.: A review of the global soil property maps for Earth system models, SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, 2019b.
Dam, J. C. van, Groenendijk, P., Hendriks, R. F. A., and Kroes, J. G.: Advances of Modeling Water Flow in Variably Saturated Soils with SWAP, Vadose Zone J., 7, 640–653, https://doi.org/10.2136/VZJ2007.0060, 2008.
Dang, N. A., Jackson, B. M., Tomscha, S. A., Lilburne, L., Burkhard, K., Tran, D. D., Phi, L. H., and Benavidez, R.: Guidelines and a supporting toolbox for parameterising key soil hydraulic properties in hydrological studies and broader integrated modelling, One Ecosyst., 7, e76410, https://doi.org/10.3897/ONEECO.7.E76410, 2022.
De Mendiburu, F.: agricolae: Statistical Procedures for Agricultural Research, R package version 1.2-8, No. 1.2-8, http://tarwi.lamolina.edu.pe/~fmendiburu/ (last access: 2 September 2024), 2017.
De Souza, E., Batjes, N. H., and Pontes, L. M.: Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin, Sci. Agr., 73, 525–534, https://doi.org/10.1590/0103-9016-2015-0485, 2016.
DHI: MIKE SHE User Guide and Reference Manual, Agern Alle, 1–816, 2023.
Egnér, H., Riehm, H., and Domingo, W. R.: Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden, II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung, Lantbr. Ann., 26, 199–215, 1960.
European Commission Joint Research Centre: European Soil Data Centre (ESDAC), https://esdac.jrc.ec.europa.eu (last access: 17 April 2024), 2024.
EUROSTAT: LUCAS 2015 (Land Use/Cover Area Frame Survey) – Technical Reference Document: C3 Classification (Land Use and Land Cover), Technical Report, 2015.
FAO and IIASA: Harmonized World Soil Database version 2.0., edited by: Nachtergaele, F., van Velthuizen, H., Verelst, L., Wiberg, D., Henry, M., Chiozza, F., and Yigini, Y., Food and Agricultural Organization of the United Nations and International Institute for Applied Systems Analysis, Rome and Laxenburg, FAO and IIASA, https://doi.org/10.4060/cc3823en, 2023.
Fernandez-Ugalde, O., Scarpa, S., Orgiazzi, A., Panagos, P., Van Liedekerke, M., Marechal, A., and Jones, A.: LUCAS 2018 Soil Module, Presentation of dataset and results, Publications Office of the European Union, Luxembourg, ISBN: 978-92-76-54832-4, https://doi.org/10.2760/215013, 2022.
Foster, G. R., McCool, D. K., Renard, K. G., and Moldenhauer, W. C.: Conversion of the universal soil loss equation to SI metric units, J. Soil Water Conserv., 36, 355–359, 1981.
Gascoin, S., Duchame, A., Ribstein, P., Perroy, E., and Wagnon, P.: Sensitivity of bare soil albedo to surface soil moisture on the moraine of the Zongo glacier (Bolivia), Geophys. Res. Lett., 36, 2–6, https://doi.org/10.1029/2008GL036377, 2009.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Ghanbarian, B., Taslimitehrani, V., and Pachepsky, Y. A.: Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity, Catena, 149, 374–380, https://doi.org/10.1016/j.catena.2016.10.015, 2017.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Guarracino, L.: Estimation of saturated hydraulic conductivity Ks from the van Genuchten shape parameter á, Water Resour. Res., 43, 15–18, https://doi.org/10.1029/2006WR005766, 2007.
Gupta, S., Hengl, T., Lehmann, P., Bonetti, S., and Papritz, A.: Global prediction of soil saturated hydraulic conductivity using random forest in a Covariate-based Geo Transfer Functions (CoGTF) framework, J. Adv. Model. Earth Syst., e2020MS002242, https://doi.org/10.1029/2020MS002242, 2021a.
Gupta, S., Lehmann, P., Bonetti, S., Papritz, A., and Or, D.: Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework, J. Adv. Model. Earth Syst., 13, 1–15, https://doi.org/10.1029/2020MS002242, 2021b.
Gupta, S., Papritz, A., Lehmann, P., Hengl, T., Bonetti, S., and Or, D.: Global Mapping of Soil Water Characteristics Parameters – Fusing Curated Data with Machine Learning and Environmental Covariates, Remote Sens., 14, 1947, https://doi.org/10.3390/rs14081947, 2022.
Gupta, S., Lehmann, P., Bickel, S., Bonetti, S., and Or, D.: Global Mapping of Potential and Climatic Plant-Available Soil Water, J. Adv. Model. Earth Syst., 15, 1–16, https://doi.org/10.1029/2022MS003277, 2023.
Gupta, S., Borrelli, P., Panagos, P., and Alewell, C.: An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity, Sci. Total Environ., 908, 168249, https://doi.org/10.1016/j.scitotenv.2023.168249, 2024.
Hannam, J. A., Hollis, J. M., Jones, R. J. A., Bellamy, P. H., Hayes, S. E., Holden, A., Van Liedekerke, M. H., and Montanarella, L.: SPADE-2: the soil profile analytical database for Europe, version 2.0 Beta Version, Unpubl. Eur. Soil Bur. Res. Rep., (March), 1–27, http://eusoils.jrc.ec.europa.eu/Esdb_Archive/eusoils_docs/esb_rr/SPADE-2_Beta_Report.pdf (last access: 2 September 2024), 2009.
Hansen, S., Abrahamsen, P., Petersen, C. T., and Styczen, M.: Daisy: Model Use, Calibration, and Validation, Trans. ASABE, 55, 1317–1333, https://doi.org/10.13031/2013.42244, 2012.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotiæ, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, edited by B. Bond-Lamberty, PLoS One, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hollis, J. M., Hannam, J., and Bellamy, P. H.: Empirically derived pedotransfer functions for predicting bulk density in European soils, Eur. J. Soil Sci., 63, 96–109, 2012.
Hossain, M. F., Chen, W., and Zhang, Y.: Bulk density of mineral and organic soils in the Canada's arctic and sub-arctic, Inf. Process. Agric., 2, 183–190, https://doi.org/10.1016/j.inpa.2015.09.001, 2015.
IUSS Working Group WRB: World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, 4th EDn., International Union of Soil Sciences (IUSS), Vienna, Austria, ISBN: 979-8-9862451-1-9, 2022.
Kinnell, P. I. A.: Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review, J. Hydrol., 385, 384–397, https://doi.org/10.1016/j.jhydrol.2010.01.024, 2010.
Kosugi, K.: Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties, Water Resour. Res., 32, 2697–2703, https://doi.org/10.1029/96WR01776, 1996.
Krevh, V., Filipoviæ, L., Petošiæ, D., Mustaæ, I., Bogunoviæ, I., Butorac, J., Kisiæ, I., Defterdaroviæ, J., Nakiæ, Z., Kovaè, Z., Pereira, P., He, H., Chen, R., Toor, G. S., Versini, A., Baumgartl, T., and Filipoviæ, V.: Long-term analysis of soil water regime and nitrate dynamics at agricultural experimental site: Field-scale monitoring and numerical modeling using HYDRUS-1D, Agr. Water Manag., 275, 108039, https://doi.org/10.1016/j.agwat.2022.108039, 2023.
Kutiìlek, M. and Nielsen, D. R.: Soil hydrology, Catena-Verlag, ISBN: 3-923381-26-3, 1994.
Lal, R. and Shukla, M. K.: Principles of soil physics, Marcel Dekker, Inc., New York, ISBN: 0-8247-5324-0, 2004.
Li, S. and Duffy, C. J.: Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers, Water Resour. Res., 47, 1–20, https://doi.org/10.1029/2010WR009751, 2011.
Liang, K., Zhang, X., Liang, X.-Z., Jin, V. L., Birru, G., Schmer, M. R., Robertson, G. P., McCarty, G. W., and Moglen, G. E.: Simulating agroecosystem soil inorganic nitrogen dynamics under long-term management with an improved SWAT-C model, Sci. Total Environ., 879, 162906, https://doi.org/10.1016/j.scitotenv.2023.162906, 2023.
Lilly, A., Nemes, A., Rawls, W. J., and Pachepsky, Y. A.: Probabilistic approach to the identification of input variables to estimate hydraulic conductivity, Soil Sci. Soc. Am. J., 72, 16–24, https://doi.org/10.2136/sssaj2006.0391, 2008.
Liu, M., Ussiri, D. A. N., and Lal, R.: Soil Organic Carbon and Nitrogen Fractions under Different Land Uses and Tillage Practices, Commun. Soil Sci. Plant Anal., 47, 1528–1541, https://doi.org/10.1080/00103624.2016.1194993, 2016.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H.: Pedotransfer Functions in Earth System Science: Challenges and Perspectives, Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
López-Ballesteros, A., Nielsen, A., Castellanos-Osorio, G., Trolle, D., and Senent-Aparicio, J.: DSOLMap, a novel high-resolution global digital soil property map for the SWAT + model: Development and hydrological evaluation, Catena, 231, 107339, https://doi.org/10.1016/j.catena.2023.107339, 2023.
Manrique, L. A. and Jones, C. A.: Bulk Density of Soils in Relation to Soil Physical and Chemical Properties, Soil Sci. Soc. Am. J., 55, 476–481, https://doi.org/10.2136/sssaj1991.03615995005500020030x, 1991.
Minasny, B., McBratney, A. B., Wadoux, A. M. J. C., Akoeb, E. N., and Sabrina, T.: Precocious 19th century soil carbon science, Geoderma Reg., 22, e00306, https://doi.org/10.1016/j.geodrs.2020.e00306, 2020.
Moeys, J.: soiltexture: Functions for Soil Texture Plot, Classification and Transformation, https://cran.r-project.org/package=soiltexture (last access: 2 September 2024), 2018.
Montanarella, L. and Panagos, P.: The relevance of sustainable soil management within the European Green Deal, Land Use Pol., 100, 104950, https://doi.org/10.1016/j.landusepol.2020.104950, 2021.
Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., and Vereecken, H.: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves, Earth Syst. Sci. Data, 9, 529–543, https://doi.org/10.5194/essd-9-529-2017, 2017.
Nasta, P., Szabó, B., and Romano, N.: Evaluation of pedotransfer functions for predicting soil hydraulic properties: A voyage from regional to field scales across Europe, J. Hydrol. Reg. Stud., 37, 100903, https://doi.org/10.1016/j.ejrh.2021.100903, 2021.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool Theoretical Documentation – Version 2009, Texas Water Resources Institute, https://hdl.handle.net/1969.1/128050 (las access: 2 September 2024), 2009.
Nemes, A., Wösten, J., Lilly, A., and Voshaar, J. O.: Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases, Geoderma, 90, 187–202, 1999.
Nimmo, J. R.: Porosity and Pore-Size Distribution, in Encyclopedia of Soils in the Environment, Vol. 3, edited by: Hillel, D., 295–303, Elsevier, London, ISBN: 978-0-12-348530-4, 2004.
Olsen, R., Cole, C. V., Watanabe, F. S., and Dean, L. A.: Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Washington DC, United States Department of Agriculture, 1954.
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., and Fernández-Ugalde, O.: LUCAS Soil, the largest expandable soil dataset for Europe: a review, Eur. J. Soil Sci., 69, 140–153, https://doi.org/10.1111/ejss.12499, 2018.
Palladino, M., Romano, N., Pasolli, E., and Nasta, P.: Developing pedotransfer functions for predicting soil bulk density in Campania, Geoderma, 412, 115726, https://doi.org/10.1016/j.geoderma.2022.115726, 2022.
Panagos, P., Van Liedekerke, M., Jones, A., and Montanarella, L.: European Soil Data Centre: Response to European policy support and public data requirements, Land Use Pol., 29, 329–338, https://doi.org/10.1016/j.landusepol.2011.07.003, 2012.
Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., and Alewell, C.: Soil erodibility in Europe: A high-resolution dataset based on LUCAS, Sci. Total Environ., 479/480, 189–200, https://doi.org/10.1016/j.scitotenv.2014.02.010, 2014.
Panagos, P., Van Liedekerke, M., Borrelli, P., Köninger, J., Ballabio, C., Orgiazzi, A., Lugato, E., Liakos, L., Hervas, J., Jones, A., and Montanarella, L.: European Soil Data Centre 2.0: Soil data and knowledge in support of the EU policies, Eur. J. Soil Sci., 73, 1–18, https://doi.org/10.1111/ejss.13315, 2022.
Panagos, P., De Rosa, D., Liakos, L., Labouyrie, M., Borrelli, P., and Ballabio, C.: Soil bulk density assessment in Europe, Agr. Ecosyst. Environ., 364, 108907, https://doi.org/10.1016/j.agee.2024.108907, 2024.
Plunge, S.: SWATprepR: SWAT+ Input Data Preparation Package, Zenodo [code], https://doi.org/10.5281/zenodo.10167076, 2023.
Plunge, S., Szabó, B., Strauch, M., Čerkasova, N., Schürz, C., and Piniewski, M.: SWAT+ input data preparation in a scripted workflow – SWATprepR, Environ. Sci. Eur., 36, 53, https://doi.org/10.1186/s12302-024-00873-1, 2024.
Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/SOIL-7-217-2021, 2021.
Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion factor, Geoderma, 156, 75–83, https://doi.org/10.1016/j.geoderma.2010.02.003, 2010.
Pu, X., Cheng, H., Shan, Y., Chen, S., Ding, Z., and Hao, F.: Factor controlling soil organic carbon and total nitrogen dynamics under long-term conventional cultivation in seasonally frozen soils, Acta Agr. Scand. Sect. B, 62, 749–764, https://doi.org/10.1080/09064710.2012.700318, 2012.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/ (2 September 2024), 2022.
Ramcharan, A., Hengl, T., Beaudette, D., and Wills, S.: A Soil Bulk Density Pedotransfer Function Based on Machine Learning: A Case Study with the NCSS Soil Characterization Database, Soil Sci. Soc. Am. J., 81, 1279–1287, https://doi.org/10.2136/sssaj2016.12.0421, 2017.
Rawls, W. J.: Estimating soil bulk density from particle size analysis and organic matter content, Soil Sci., 135, 123–125, 1983.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C.: Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), U.S. Department of Agriculture, https://www.tucson.ars.ag.gov/unit/publications/PDFfiles/717.pdf (last access: 2 September 2024), 1997.
Román Dobarco, M., Cousin, I., Le Bas, C., and Martin, M. P.: Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty, Geoderma, 336, 81–95, https://doi.org/10.1016/J.GEODERMA.2018.08.022, 2019.
Romano, N., Szabó, B., Belmonte, A., Castrignano, A., Ben Dor, E., Francos, N., and Nasta, P.: Mapping soil properties for unmanned aerial system-based environmental monitoring, in: Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, edited by: Manfreda, S. and Ben, E., Dor, 155–178, Elsevier, https://doi.org/10.1016/B978-0-323-85283-8.00010-2, 2023.
Ross, C. W., Prihodko, L., Anchang, J., Kumar, S., Ji, W., and Hanan, N. P.: HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling, Sci. Data, 5, 180091, https://doi.org/10.1038/sdata.2018.91, 2018.
Ruehlmann, J.: Soil particle density as affected by soil texture and soil organic matter: 1. Partitioning of SOM in conceptional fractions and derivation of a variable SOC to SOM conversion factor, Geoderma, 375, 114542, https://doi.org/10.1016/j.geoderma.2020.114542, 2020.
Safanelli, J. L., Chabrillat, S., Ben-Dor, E., and Demattê, J. A. M.: Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe, Remote Sens., 12, 1369, https://doi.org/10.3390/rs12091369, 2020.
Sárdi, K., Csathó, P., and Osztoics, E.: Evaluation of soil phosphorus contents in long-term experiments from environmental aspects, in: Proceedings of the 51st Georgikon Scientific Conference, 1–2 October 2009, 807–815, Keszthely, Hungary, Pannon Egyetem Georgikon Kar, ISBN: 9789639639355, 2009.
Schjønning, P., McBride, R. A., Keller, T., and Obour, P. B.: Predicting soil particle density from clay and soil organic matter contents, Geoderma, 286, 83–87, https://doi.org/10.1016/j.geoderma.2016.10.020, 2017.
Shangguan, W., Dai, Y., Duan, Q., Liu, B., and Yuan, H.: A global soil data set for earth system modeling, J. Adv. Model. Earth Syst., 6, 249–263, https://doi.org/10.1002/2013MS000293, 2014.
Sharpley, A. N. and Williams, J. R.: EPIC – Erosion/Productivity Impact Calculator: 1. Model Documentation, U.S. Depratment of Agriculture, 1–235, Technical Bulletin No. 1768, 1990.
Šimùnek, J., Van Genuchten, M. T., and Šejna, M.: Hydrus: Model use, calibration, and validation, Trans. ASABE, 55, 1261–1274, 2012.
Steinfurth, K., Hirte, J., Morel, C., and Buczko, U.: Conversion equations between Olsen-P and other methods used to assess plant available soil phosphorus in Europe – A review, Geoderma, 401, 115339, https://doi.org/10.1016/j.geoderma.2021.115339, 2021.
Szabó, B. and Kassai, P.: Map topsoil phosphorus content (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.6656537, 2022.
Szabó, B., Weynants, M., and Weber, T. K.: Updated European Hydraulic Pedotransfer Functions with Communicated Uncertainties in the Predicted Variables (euptfv2), Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, 2021.
Tomasella, J., Crestana, S., and Rawls, W. J.: Comparison of Two Techniques to Develop Pedotransfer Functions for Water Retention, Soil Sci. Soc. Am. J., 67, 1085–1092, 2003.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., and Tóth, G.: New generation of hydraulic pedotransfer functions for Europe, Eur. J. Soil Sci., 66, 226–238, https://doi.org/10.1111/ejss.12192, 2015.
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic database of Europe at 250 m resolution, Hydrol. Process., 31, 2662–2666, https://doi.org/10.1002/hyp.11203, 2017.
Tóth, G., Jones, A., and Montanarella, L.: LUCAS Topsoil Survey. Methodology, data and results, Publications Office of the European Union, Luxembourg, ISBN: 978-92-79-32542-7, 2013.
Tóth, G., Guicharnaud, R.-A., Tóth, B., and Hermann, T.: Phosphorus levels in croplands of the European Union with implications for P fertilizer use, Eur. J. Agron., 55, 42–52, https://doi.org/10.1016/j.eja.2013.12.008, 2014.
Tranter, G., McBratney, A. B., and Minasny, B.: Using distance metrics to determine the appropriate domain of pedotransfer function predictions, Geoderma, 149, 421–425, https://doi.org/10.1016/j.geoderma.2009.01.006, 2009.
U.S. Department of Agriculture Natural Resources Conservation Service: Part 630 Hydrology, Chapter 7 Hydrologic Soil Groups, in: National Engineering Handbook, https://directives.sc.egov.usda.gov/ (last access: 3 September 2024), 2009.
US Army Crops of Engineers: HEC-RAS Hydraulic Reference Manual, Version 6.5, 477, https://www.hec.usace.army.mil/software/ (last access: 2 September 2024), 2024.
Weber, T. K. D., Weihermüller, L., Nemes, A., Bechtold, M., Degré, A., Diamantopoulos, E., Fatichi, S., Filipović, V., Gupta, S., Hohenbrink, T. L., Hirmas, D. R., Jackisch, C., de Jong van Lier, Q., Koestel, J., Lehmann, P., Marthews, T. R., Minasny, B., Pagel, H., van der Ploeg, M., Shojaeezadeh, S. A., Svane, S. F., Szabó, B., Vereecken, H., Verhoef, A., Young, M., Zeng, Y., Zhang, Y., and Bonetti, S.: Hydro-pedotransfer functions: a roadmap for future development, Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, 2024.
Wessolek, G., Kaupenjohann, M., and Renger, M.: Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis, Bodenökologie und Bodengenese, Technische Universität Berlin, 40, 1–80, https://doi.org/10.13140/RG.2.2.27053.10729, 2009.
Weynants, M., Montanarella, L., Tóth, G., Arnoldussen, A., Anaya Romero, M., Bilas, G., Borresen, T., Cornelis, W., Daroussin, J., Gonçalves, M. D. C., Haugen, L.-E., Hennings, V., Houskova, B., Iovino, M., Javaux, M., Keay, C. A., Kätterer, T., Kvaerno, S., Laktinova, T., Lamorski, K., Lilly, A., Mako, A., Matula, S., Morari, F., Nemes, A., Patyka, N. V., Romano, N., Schindler, U., Shein, E., Slawinski, C., Strauss, P., Tóth, B., and Woesten, H.: European HYdropedological Data Inventory (EU-HYDI), EUR – Scientific and Technical Research series – ISSN 1831-9424, Luxembourg, Publications Office of the European Union, ISBN: 978-92-79-32355-3, https://doi.org/10.2788/5936, 2013.
Xiangsheng, Y., Guosheng, L., and Yanyu, Y.: Pedotransfer Functions for Estimating Soil Bulk Density: A Case Study in the Three-River Headwater Region of Qinghai Province, China, Pedosphere, 26, 362–373, https://doi.org/10.1016/S1002-0160(15)60049-2, 2016.
Xing, X., Nie, W., Chang, K., Zhao, L., Li, Y., and Ma, X.: A numerical approach for modeling crack closure and infiltrated flow in cracked soils, Soil Till. Res., 233, 105794, https://doi.org/10.1016/j.still.2023.105794, 2023.
Yu, L., Zeng, Y., and Su, Z.: Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities, Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, 2020.
Yuan, Y. and Chiang, L.-C.: Sensitivity analysis of SWAT nitrogen simulations with and without in-stream processes, Arch. Agron. Soil Sci., 61, 969–987, https://doi.org/10.1080/03650340.2014.965694, 2015.
Zhai, X., Liu, K., Finch, D. M., Huang, Di., Tang, S., Li, S., Liu, H., and Wang, K.: Stoichiometric characteristics of different agroecosystems under the same climatic conditions in the agropastoral ecotone of northern China, Soil Res., 57, 875–882, https://doi.org/10.1071/SR18355, 2019.
Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53, https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Zhang, Y., Schaap, M. G., and Zha, Y.: A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model, Water Resour. Res., 54, 9774–9790, https://doi.org/10.1029/2018WR023539, 2018.
Zhang, Y., Schaap, M. G., and Wei, Z.: Development of Hierarchical Ensemble Model and Estimates of Soil Water Retention With Global Coverage, Geophys. Res. Lett., 47, 1–12, https://doi.org/10.1029/2020GL088819, 2020.
Zhu, Y., Chen, Y., Ali, M. A., Dong, L., Wang, X., Archontoulis, S. V., Schnable, J. C., and Castellano, M. J.: Continuous in situ soil nitrate sensors: The importance of high-resolution measurements across time and a comparison with salt extraction-based methods, Soil Sci. Soc. Am. J., 85, 677–690, https://doi.org/10.1002/saj2.20226, 2021.
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
This research introduces methods and tools for obtaining soil input data in European case...