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Abstract. To effectively guide agricultural management planning strategies and policy, it is important to simu-
late water quantity and quality patterns and to quantify the impact of land use and climate change on soil func-
tions, soil health, and hydrological and other underlying processes. Environmental models that depict alterations
in surface and groundwater quality and quantity at the catchment scale require substantial input, particularly con-
cerning movement and retention in the unsaturated zone. Over the past few decades, numerous soil information
sources, containing structured data on diverse basic and advanced soil parameters, alongside innovative solutions
to estimate missing soil data, have become increasingly available. This study aims to (i) catalogue open-source
soil datasets and pedotransfer functions (PTFs) applicable in simulation studies across European catchments;
(ii) evaluate the performance of selected PTFs; and (iii) present compiled R scripts proposing estimation so-
lutions to address soil physical, hydraulic, and chemical data needs and gaps in catchment-scale environmental
modelling in Europe. Our focus encompassed basic soil properties, bulk density, porosity, albedo, soil erodibility
factor, field capacity, wilting point, available water capacity, saturated hydraulic conductivity, and phosphorus
content. We aim to recommend widely supported data sources and pioneering prediction methods that maintain
physical consistency and present them through streamlined workflows.
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1 Introduction

The availability of raw and derived soil datasets, specifically
regarding soil hydraulic data, has increased significantly in
Europe over the last 10 years as a result of the European
Green Deal, specifically through initiatives and strategies
aimed at promoting sustainable land use, soil health, and en-
vironmental protection (Montanarella and Panagos, 2021).
Both the collection and harmonization of soil datasets and
the preparation of soil maps have intensified. Further to these
improvements, the derivation of prediction algorithms, which
can compute specific soil properties from easily available soil
or other environmental variables (the pedotransfer functions
(PTFs)), has continued to be refined since the 1980s. The
growing amount of spatiotemporal environmental data opens
up possibilities for different prediction approaches, which is
reflected in the terminology of the transfer functions – e.g.
(i) the classical PTFs mostly use only soil properties as input
(Bouma, 1989); (ii) those PTFs that consider not only soil
properties but also other environmental variables are called
covariate-based geo-transfer functions (Gupta et al., 2021a);
and (iii) spectral transfer functions predict soil properties that
are not easily available from spectral data (Babaeian et al.,
2015), while machine-learning-based (ML-based) soil map-
ping fuses prediction algorithms with geostatistical methods
(Romano et al., 2023). All these improvements resulted in
the emergent availability of soil maps at global, regional, and
local scales.

In most cases, the basic soil properties, i.e. soil organic
carbon content and particle size distribution, are locally
available at a high resolution (< 100 m), but information on
bulk density, albedo, soil erodibility factor, soil hydraulic
properties, and soil nutrient content is often lacking. There
are many PTFs available in the literature that can be used to
calculate soil physical (Abbaspour et al., 2019) and hydro-
logical (Bouma and van Lanen, 1987; Van Looy et al., 2017)
parameters from basic soil properties, but determining the
most suitable one might not be obvious. Parameter estima-
tions derive the parameters of a model that describes either
water retention, hydraulic conductivity, or both across the en-
tire matric-potential range. These estimations aim to ensure
a cohesive physical relationship between the computed soil
hydraulic properties.

Information on soil nutrient properties that is often essen-
tial for environmental modelling, such as plant-available soil
phosphorus or soil nitrate content, is seldom accessible at a
catchment or regional scale. In the absence of measured data
on nutrient content, estimating highly mobile nutrients like
nitrate poses a challenge due to seasonal fluctuations influ-
enced by factors such as fertilizer application, rainfall, har-
vest cycle, plant nutrient uptake, and microbial activity. Re-
garding plant-available phosphorus, its levels typically ex-
hibit minimal variation throughout a year. Therefore, approx-
imating its quantity could be reliant on land use type and
area-specific phosphorus fertilization loads (Ballabio et al.,

2019). Nevertheless, multiple methods are employed across
Europe to measure plant-available soil phosphorus content,
potentially requiring conversions between these methods for
broader-scale applications. A comprehensive review on con-
version equations is available specifically for European stud-
ies in Steinfurth et al. (2021).

Often, those soil properties are required as model input
data as well, which are rarely available. One example is
the data on soil cracking, which are rarely readily available.
Cracking intensity and the number of cracks are determined
by (i) soil mineralogy, specifically the number and type of
clay minerals; (ii) the type of strength that forms the soil
structure (Lal and Shukla, 2004); and (iii) human activity,
e.g. tillage and plant spacing. The aperture and closure of
cracks can be dynamically related to soil water content (Xing
et al., 2023). The data that could describe the variability of
cracking are also not easily available; therefore, prediction of
this parameter is limited at the catchment scale.

Dai et al. (2019b) provide an extensive review on global
soil property maps applicable for Earth system models. Ab-
baspour et al. (2019) collected both soil datasets and pedo-
transfer functions for global Soil and Water Assessment Tool
(SWAT) applications. From these comprehensive global re-
view studies and a variety of soil datasets available from,
among others, the European Soil Data Centre (Panagos et al.,
2022) (https://esdac.jrc.ec.europa.eu/, last access: 2 Septem-
ber 2024) or ISRIC – World Soil Information (https://www.
isric.org/, last access: 2 September 2024), it is not straight-
forward which data and/or pedotransfer functions could be
used for environmental modelling in European case studies.
Therefore, in this study, we support soil data retrieval for en-
vironmental modelling across Europe by (i) systemizing the
information on open-access datasets and PTFs applicable for
Europe, (ii) demonstrating and quantifying the difference be-
tween some PTFs and prediction approaches to cover miss-
ing soil properties based on the point data of EU-HYDI, and
(iii) providing a comprehensive workflow and accompanying
open-source R script and library for the derivation of miss-
ing soil data. For the selection of the prediction approaches,
three requirements had to be fulfilled: (1) the prediction algo-
rithm had to be trained on temperate soils and should not be
specific to a particular soil reference group, (2) the required
predictors had to be available in most of the open-access soil
datasets, and (3) it should have notable ease of application.
Hence, despite certain published prediction methods speci-
fying soil depth, texture, and organic matter as requirements,
those reliant on, for instance, artificial neural networks, lack-
ing a user-friendly interface, or integration into accessible
tools like R packages or Python modules, were excluded
from testing due to their challenging application. For ease
of reference, all the equations needed to calculate the most-
often-required soil input parameters are given below.
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Table 2. Descriptive statistics of the locally measured phosphorus
content, converted to Olsen P, from 34 agricultural parcels.

Min Max Range Mean Median Standard
deviation

8.39 65.02 56.63 27.54 25.73 13.47

2 Materials and methods

We distinguish and list soil physical and chemical parameters
similarly to the terminology used by the Soil and Water As-
sessment Tool model documentation (Neitsch et al., 2009).
We include the prediction of soil porosity since this param-
eter is frequently used in environmental models, e.g. MIKE
SHE (DHI, 2023), HEC RAS (US Army Crops of Engineers,
2024), and PIHM (Li and Duffy, 2011). It is noteworthy that
some models and accompanying model setup tools have an
internal built-in PTF to compute porosity, e.g. SWAT+. The
codes to compute the soil parameters were built based on
the structure and terminology used by the SWAT+ usersoil
table (Arnold et al., 2012). Soil properties most frequently
required by the environmental models (based on, e.g. Ab-
baspour et al., 2019; Dam et al., 2008; Dang et al., 2022;
DHI, 2023; Hansen et al., 2012; Šimùnek et al., 2012; Yu et
al., 2020) are

– soil layering

– maximum rooting depth;

– effective bulk density;

– field capacity;

– wilting point;

– available water capacity;

– porosity;

– saturated hydraulic conductivity;

– organic carbon content;

– sand, silt, and clay content;

– rock fragment content;

– moist soil albedo;

– Universal Soil Loss Equation (USLE) soil erodibility
factor;

– hydrologic soil group; and

– nutrient content of the surface soil layer.

We summarized the information about potential open-
access sources for soil information applicable in Europe in
Table 1, covering most of the above-listed soil properties.
The availability of datasets is continuously improving. The
following data sites include most of the updates:

– European Soil Data Centre, which includes soil datasets
from Europe and information on the EU Soil Ob-
servatory (https://esdac.jrc.ec.europa.eu/, last access:
2 September 2024);

– ISRIC Soil Data Hub, which hosts soil data from
around the world (https://data.isric.org/geonetwork/
srv/eng/catalog.search#/home, last access: 2 Septem-
ber 2024);

– soil-related layers of the GAEZ Data Portal developed
by the Food and Agriculture Organization of the United
Nations (FAO) and the International Institute for Ap-
plied Systems Analysis (IIASA) (https://data.apps.fao.
org, last access: 2 September 2024);

– soil-related layers of the OpenLandMap, which shares
open geographical and geoscientific data (https://
openlandmap.org, last access: 2 September 2024).

Nevertheless, these sources do not include products from
specific institutes, such as http://globalchange.bnu.edu.cn/
research, last access: 2 September 2024. The datasets in-
cluded in Table 1 might be appropriate for regional and con-
tinental modelling. However, for catchment-scale and na-
tional studies, local and national spatially explicit modelled
datasets provide more accurate input information. When a
certain local dataset is selected to be used as basic soil in-
formation, it is more consistent to compute the missing soil
properties from this local data source rather than using other
data sources. This allows us to maintain consistency between
the different soil properties. For example, it is not recom-
mended to combine local soil property maps at 100 m res-
olution with soil hydraulic properties retrieved from EU-
SoilHydroGrids at 250 m resolution. Where local soil maps
with soil layering, organic carbon content, clay, silt, and sand
content are available, it is suggested that missing soil prop-
erties, such as bulk density, soil hydraulic properties, and
albedo, be estimated from the locally available basic soil
properties to ensure consistency. The predictions are subject
to uncertainty, which depends on the similarity between the
training data used for the selected prediction method and the
target area in terms of soil physical and chemical character-
istics (Román Dobarco et al., 2019; Tranter et al., 2009).

2.1 Evaluation of methods

For soil physical and hydrological properties, the perfor-
mance of the prediction algorithms was assessed using the
European Hydropedological Data Inventory (EU-HYDI),
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Table 3. List of pedotransfer functions tested on point data in EU-HYDI for the prediction of bulk density.

Name of the PTF Equation Reference Eq.

BD_Rawls BD= 100((
OM

0.224

)
+

100−OM
1.27

) Rawls (1983) (1)

BD_Alexander_A BD= 1.72− 0.294 ·OC0.5 Alexander (1980) (2)

BD_Alexander_B BD= 1.66− 0.308 ·OC0.5 Alexander (1980) (3)

BD_MAn_J_A BD= 1.510− 0.113 ·OC Manrique and Jones (1991) (4)

BD_MAn_J_B BD= 1.66− 0.318 ·OC0.5 Manrique and Jones (1991) (5)

BD_Hollis – for cultivated topsoils:
BD= 0.80806+
(0.823844 · (exp(−0.27993 ·OC)))+
0.0014065 · sand− 0.0010299 · clay
– for mineral subsoils:
BD= 0.69794+
(0.750636 · (exp(−0.230355 ·OC)))+
0.0008687 · sand− 0.0005164 · clay
– for organic horizonsa:
BD= 1.4903+ 0.33293 · log(OC)

Hollis et al. (2012) (6)

BD_Bernoux BD= 1.398−0.042 ·OC−0.0047 ·clay Bernoux et al. (1998) (7)

BD_Hossainb BD= 0.074+2.632 ·exp(−0.076 ·OC) Hossain et al. (2015) (8)

a For histic and folic horizons which have an organic carbon content equal to or greater than 20 % (IUSS Working Group WRB,
2022). b Applied only to organic soils with an organic carbon content equal to or greater than 12 %. OM refers to organic matter
content (mass %); OC refers to organic carbon content (mass %); sand refers to sand content (0.05–2 mm fraction) (mass %); band
clay refers to clay content (< 0.002 mm fraction) (mass %).

specifically focusing on soil parameters with measured val-
ues that are available in the dataset. The EU-HYDI is one
of the most comprehensive European soil hydraulic datasets,
with soil data of 18 682 samples from 6014 profiles (Wey-
nants et al., 2013). The number of measured values varies
according to the soil properties. The EU-HYDI dataset was
used to derive hydraulic PTFs, called euptfs. When compar-
ing the performance of a euptf with other methods found in
the literature, only the test sets from the EU-HYDI dataset,
which were not utilized in the euptf’s training, were included.
This approach aimed to facilitate a more accurate and fair
comparison among different PTFs but decreased the number
of samples used for the analysis. The analysis of bulk density
prediction was performed on both the EU-HYDI and the LU-
CAS topsoil dataset (Orgiazzi et al., 2018; Tóth et al., 2013)
of 2018. The LUCAS topsoil dataset of 2009 was used for the
computation of the nutrient content of the surface soil layer.
For the assessment of the topsoil phosphorus maps, we used
locally measured data obtained from an agricultural com-
pany. This dataset includes soil phosphorus content measured
at a depth of 30 cm using the acid ammonium acetate lactate
extraction (AL-P) method (Egnér et al., 1960) for 34 agricul-
tural parcels in the year 2009. As the phosphorus content was
required according to the Olsen method (Olsen phosphorous
or P) (Olsen et al., 1954), we applied the equation of Sárdi et

al. (2009) for converting AL-P into Olsen P. Table 2 shows
the descriptive statistics of this database.

We compared the algorithms using the mean error (ME),
mean absolute error (MAE), root mean squared error
(RMSE), Nash–Sutcliffe efficiency (NSE), and coefficient of
determination (R2). The non-parametric Kruskal–Wallis test
of the R package agricolae (De Mendiburu, 2017) at the 5 %
significance level was applied to the squared error values to
assess whether there would be significant difference in per-
formance. For soil parameters without measured data in the
EU-HYDI dataset, descriptive statistics and histograms of
the computed parameters were compared with studies from
peer-reviewed literature focused on European applications.
The statistical analysis was performed using the R statistics
library (R Core Team, 2022).

2.2 Analysed soil properties

We analysed soil physical, hydraulic, and chemical param-
eters. With regard to the soil physical parameters, we ad-
dressed bulk density, porosity, albedo, and soil erodibility
factor. For soil hydraulic parameters, we examined water re-
tention, saturated hydraulic conductivity, and hydrological
soil groups. Regarding soil nutrient content, we focused on
topsoil phosphorus content and described the challenges of
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Table 4. List of pedotransfer functions tested based on point data in EU-HYDI for the prediction of porosity.

Name of the PTF Equation Reference Eq.

POR_Schjonning_etal PDOM = 1.241+
0.173 ·

(
OM
100

)
PDSMS = 2.663+
0.107 ·

(
clay
100

)
PD=((

1−OM
100

)
PDSMS

+

OM
100

PDOM

)−1

POR=
(

1−
(

BD
PD

))
·

100

Schjønning et al. (2017) (10)

POR_Schjonning_etal_recal PD= 2.654+ 0.216 ·
clay
100 − 2.237 · OM

100
POR=

(
1−

(
BD
PD

))
·

100

Ruehlmann (2020) (11)

POR_2_65 POR=
(

1−
(

BD
2.65

))
·

100
Lal and Shukla (2004) (12)

retrieving soil nitrate content. Hereinafter, information about
the analysis of soil properties is provided.

2.2.1 Soil physical parameters

Bulk density

Table 3 lists the PTFs that were tested based on point data
in the EU-HYDI and 2018 LUCAS topsoil datasets. We se-
lected the bulk density PTFs – derived from soils of the tem-
perate region – based on previous works (Casanova et al.,
2016; Hossain et al., 2015; Palladino et al., 2022; Xiang-
sheng et al., 2016) that tested the prediction performance of
several methods.

Porosity

Porosity can be computed based on the bulk density and par-
ticle density with the following equation:

POR=
(

1−
(

BD
PD

))
· 100, (9)

where POR is porosity (volume %), BD is dry bulk density
(g cm−3), and PD is particle density (g cm−3).

As seen in the literature and in SWAT+ model default as-
sumptions (Neitsch et al., 2009), the particle density is usu-
ally set to be equal to 2.65 g cm−3 (Lal and Shukla, 2004).
However, there are PTFs that calculate the porosity based on
the particle size distribution (sand, silt, clay content) and or-
ganic matter content. We selected the PTFs (Table 4) based
on the findings of Ruehlmann (2020) and analysed their pre-
diction performance based on the EU-HYDI dataset.

Note that PDOM refers to the particle density of the
soil mineral substance, PDMS refers to particle density of
the soil organic matter, OM refers to the organic matter
content (mass %), sand refers to the sand content (0.05–
2 mm fraction) (mass %), and clay refers to the clay content
(< 0.002 mm fraction) (mass %).

Albedo

Bare-soil albedo mostly depends on soil moisture variations,
surface roughness, soil texture, and organic matter content
(Carrer et al., 2014). Time series of soil surface albedo could
be retrieved from, for example, the MCD43A3 database or
the Copernicus Climate Change Service (2018) (Table 1). If
a single characteristic value of soil surface albedo is required
for the entire modelling period, such as in the case of the
SWAT+ model, the study of Abbaspour et al. (2019) pro-
vides several formulas for its computation and suggests sub-
stituting the actual volumetric water content with field ca-
pacity. For European applications, the equation of Gascoin et
al. (2009) could be used:

ALB= 0.31 · exp(−12.7 · θ )+ 0.15, (13)

where ALB is soil albedo, and θ is volumetric water con-
tent (cm3 cm−3), which could be set to the value of the field
capacity.

We computed the soil albedo with Eq. (13) for the EU-
HYDI topsoil samples, setting the water content to satura-
tion, field capacity, and wilting point. The EU-HYDI dataset
does not include the measured soil albedo values at a cer-
tain moisture content; therefore, we extracted the median sur-
face albedo for the year 2022 from the MCD43A3 database
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(https://doi.org/10.5067/MODIS/MCD43A3.061) for two
cases: (i) any surfaces throughout the entire year and (ii) only
dry, bare soils. We compared the descriptive statistics of
computed and mapped values. We considered the visible
broadband black-sky albedo for the analysis. Dry bare-soil
pixels were selected using the MOD09GA.061 dataset based
on the normalized difference vegetation index (NDVI) and
the normalized burn ratio 2 (NBR2) indices (Safanelli et al.,
2020) in the Google Earth Engine platform (Gorelick et al.,
2017) when NDVI values fell in the range of −0.05 and 0.30
and when NBR2 values fell between −0.15 and 0.15. Pixels
for dry, bare soils were selected to mask and compare the re-
motely sensed soil albedo values to the albedo computed at
different moisture states.

Soil erodibility factor

The soil erodibility factor (K factor) required for modelling
soil erosion can be computed with several methods described
in, for example, Kinnell (2010) or Panagos et al. (2014). The
most widely used equation that can be readily applied to
the most frequently available soil properties was published
by Sharpley and Williams (1990) (Eq. 14) and Renard et
al. (1997) (Eq. 15). The advantage of these methods is that
they require only the sand, silt, clay, and organic carbon con-
tent of the soil.

KUSLE=

(
0.2 + 0.3 · exp

(
0.0256 · sand ·

(
1 −

silt
100

)))

·

((
silt

clay + silt

)0.3
)

·

(
1−

(
0.25 ·OC

(OC + exp(3.72 − 2.95 ·OC))

))
·

1−

 0.7 ·
(

1− sand
100

)
((

1− sand
100

)
+ exp

(
−5.51 + 22.9 ·

(
1− sand

100

)))
 (14)

KRUSLE = 7.594(0.0034+ 0.0405 · exp(−0.5 ·
( log(Dg)+1659

0.7101 )2)) with

Dg = exp(0.01 ·
∑

fi · ln mi) (15)

In the above, KUSLE is the Universal Soil Loss
Equation (USLE), KRUSLE is the Revised Universal
Soil Loss Equation (RUSLE) soil erodibility factor(

t · arce · h
hundreds of acre · foot-tonf · in.

)
, silt is the silt content (mass %,

0.002–0.05 mm), sand is the sand content (mass %, 0.05–
2 mm), OC is the organic carbon content (mass %), Dg is the
geometric mean particle diameter (mm), fi is the particle
size fraction (mass %), and mi is the arithmetic mean of
the particle size limits of the fi particle size fraction (mm).
If the unit is required in

(
t·ha·h

ha·MJ·mm

)
, the value of the soil

erodibility factor computed with Eq. (14) or Eq. (15) has to
be multiplied with 0.1317 (Foster et al., 1981).

We computed the soil erodibility factor for the EU-HYDI
dataset. Similarly to the above-mentioned albedo, there is
no measured soil erodibility value in the EU-HYDI dataset;
thus, we compared the values computed for the topsoils of
EU-HYDI with the values extracted from the European map
of Panagos et al. (2014).

2.2.2 Soil hydraulic parameters

Water retention and saturated hydraulic conductivity

Soil water retention and hydraulic conductivity can be com-
puted from the parameters of the widely used van Genuchten
model (VG) (van Genuchten, 1980):

θ (ψ)= θr+
θs− θr

[1+ (αψn)]m
withm= 1− 1/n, (16)

where θr (cm3 cm−3) and θs (cm3 cm−3) are the residual and
saturated soil water contents, respectively; α (cm−1) is a
scale parameter; and m (–) and n (–) are shape parameters.

Alternative models, like the Kosugi model (Kosugi, 1996),
exist for characterizing the water retention curve. However,
the availability of predictive tools with which their parame-
ters and equations can derive specific soil hydraulic proper-
ties (such as saturated hydraulic conductivity and field capac-
ity based on internal-drainage dynamics) from these parame-
ters is either limited or non-existent (Zhang et al., 2018). Uti-
lizing the VG model to compute all necessary soil hydraulic
properties ensures self-consistency of parameters and relies
on a dynamic criterion based on soil internal-drainage dy-
namics (Assouline and Or, 2014; Nasta et al., 2021).

Usually, the FC is considered to be water content at a static
soil matric potential. The−330 cm matric potential is widely
used for this approximation (Kutiìlek and Nielsen, 1994). As-
souline and Or (2014) derived a physically based analytical
equation with self-consistent static and dynamic criteria for
the prediction of FC. It requires the parameters of the van
Genuchten model:

FC= θr+ (θs− θr)

{
1+

[
n− 1
n

](1−2n)
}( 1−n

n

)
, (17)

where FC (cm3 cm−3) is water content at field capacity; θr
(cm3 cm−3) and θs (cm3 cm−3) are the residual and saturated
soil water contents, respectively; α (cm−1) is a scale param-
eter; and n (–) is the shape parameter of the van Genuchten
model (van Genuchten, 1980).

Computation of WP could be performed based on the VG
parameters using Eq. (18):

WP= θr+
θs− θr[

1+
(
α · 15000n

)]1−1/n . (18)

AWC is defined by FC and WP with the following equation:

AWC= FC−WP. (19)
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Physically, it is impossible to have AWC< 0; therefore, its
minimum value has to be set to 0.001 cm3 cm−3.

Computation of KS from parameters of the van Genuchten
model can be performed by, for example, the equation of
Guarracino (2007):

KS= 4.65 · 104θsα
2, (20)

where KS is expressed in units of centimetres per day
(cm d−1). If a unit in millimetres per hour (mm h−1) is re-
quired, the Eq. (20) has to be multiplied by 0.41667.

The most frequently used pedotransfer functions, which
can be used to predict soil water content and hydraulic con-
ductivity from easily available soil information, were tested
by Nasta et al. (2021) on European datasets: GRIZZLY,
HYPRES, and EU-HYDI. Based on their results, we selected
the approaches that performed well on the European datasets.
Using the selected approaches, we then computed the field
capacity (FC), wilting point (WP), plant-available water ca-
pacity (AWC), and saturated hydraulic conductivity (KS) for
the EU-HYDI dataset. The selected approaches are listed
in Table 5. We considered only those approaches which re-
quired the mean soil depth, sand, silt, clay content, organic
carbon content, and bulk density as input. When FC, WP,
AWC, and KS are computed from the measured or predicted
parameters of the VG model, the van Genuchten parameters
ensure that all required soil hydraulic properties are derived
from a physically based model, resulting in a physically plau-
sible soil hydraulic property combination.

2.2.3 Soil chemical parameters

For mapping soil phosphorus (P) content of the topsoil, we
present a simple approach based on mean statistics, which
is suitable for areas where data are scarce. Land use has the
strongest influence on soil P content, with most agricultural
areas exhibiting higher P levels compared to regions with
natural land cover (Ballabio et al., 2019). The available P
level in agricultural soils is influenced by the P inputs – fer-
tilizers, manure, atmospheric deposition, chemical weather-
ing – and outputs – plant uptake and erosion. The agricultural
management practices (Tóth et al., 2014) are determined by
factors such as the country’s economy, climate, tillage prac-
tices, and crop production characteristics. Based on the re-
lationships mentioned above, the geometric mean of soil P
is computed by land use categories and assigned to the local
land use map using the mean statistics-based method. This
approach comprises three main steps:

1. First is the selection of LUCAS topsoil samples (EU-
ROSTAT, 2015; Orgiazzi et al., 2018) from the cor-
responding year and an agro-climatic zone (Ceglar et
al., 2019) similar to the target area, preferably in the
same country (NUTS region). Additional criteria for the
data selection could be comparable soil types and fertil-
ization systems. If this information is not known, the

Figure 1. Local land use map of the Felső-Válicka case study in
Hungary.

NUTS2 phosphorus map of the European cropland ar-
eas might be useful in the data selection (Tóth et al.,
2014).

2. Next, we compute the geometric mean of soil P for each
land use category.

3. Finally, we assign the mean values to the local land use
map.

Further details about the mapping can be found in Szabó
and Kassai (2022).

We prepared a soil P content map by applying the pro-
posed method for a case study called Felső-Válicka, located
in Hungary (Fig. 1). The resulting map was then compared
to (i) the European topsoil phosphorus content map (Ballabio
et al., 2019) and (ii) a locally measured independent dataset
provided by an agricultural company. Limited availability of
soil nutrient data hampered the wider scale of comparison.

Organic nitrogen can be estimated from soil organic car-
bon content (Amorim et al., 2022; Liu et al., 2016; Pu et al.,
2012; Zhai et al., 2019) if measured data are not available.
The concentration of inorganic nitrogen in soil is highly vari-
able in space and time, and the dynamic of its amount is sig-
nificantly influenced by leaching, denitrification, volatiliza-
tion, and nitrogen fertilization (Zhu et al., 2021). There-
fore, no general method is available for its prediction so far.
However, when simulating nitrogen uptake and losses at the
catchment scale, information on the amount and timing of ni-
trogen fertilization is often more crucial than knowledge of
the initial nitrate content of the soil (x et al., 2023). The min-
eral and relatively dynamic N pools are often considered to
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be initialized during the warm-up period of the models (Yuan
and Chiang, 2015). It is especially important to have a proper
parameterization of the agricultural management (e.g. fertil-
ization, residue management) setup in the model application,
with a warm-up period of appropriate length, which we rec-
ommend should be no less than 4 years. Furthermore, it is
beneficial to initialize the SOM levels accurately to define
the large and rather slow pool of organic nitrogen (Liang et
al., 2023).

3 Results and discussion

3.1 Bulk density

Table 6 shows the prediction performance of the selected
PTFs. The performance varies depending on the texture
classes; e.g. it is lower for clayey soils, sandy clay loams, and
loams in the EU-HYDI dataset (Fig. S1a in the Supplement).
For the LUCAS topsoil samples, the performance of all PTFs
is lower compared to their performance based on EU-HYDI
in terms of RMSE. Additionally, all analysed methods tend to
overpredict bulk density. The BD_Alexander_A PTF (Eq. 3)
ranks highest based on the sample-number-weighted aver-
age results of the Kruskal–Wallis test, analysed based on
both the EU-HYDI and LUCAS datasets (Table 6, weighted
rank). The BD_Alexander_A_Hossain PTF shows the per-
formance of the combined use of the BD_Alexander_ A (for
soils with organic carbon content of less than 12 %) and
BD_Hossain (for soils with organic carbon content that is
equal to or higher than 12 %) PTFs. This combined PTF per-
forms similarly to the simple BD_Alexander_A method but
helps to properly derive bulk density for soils with high or-
ganic matter content. Figure 2 shows the scatterplot of the
measured versus predicted bulk density values of the best-
performing PTF, where the predefined bulk density is capped
at 1.72 g cm−3 as a product of the models constraints.

If only the soil’s organic carbon content is known,
the prediction accuracy is restricted. The RMSE value of
BD_Alexander_A_Hossain PTF based on the EU-HYDI is
comparable with the accuracy of an ML-based PTF built on
a French dataset (Chen et al., 2018) when computed based
on independent validation sets, which reported RMSE val-
ues between 0.17 and 0.22 g cm−3. This performance is bet-
ter than the results of a model transferability test of a PTF
derived from soils from Campania, Italy, analysed based on
the EU-HYDI (Palladino et al., 2022), which had an RMSE
of 0.210 g cm−3. Xiangsheng et al. (2016) and De Souza
et al. (2016) found RMSE values higher than 0.185 g cm−3

when they applied PTFs trained on temperate soils, avail-
able from the literature, to a Chinese permafrost region and
to a Brazilian catchment, respectively. This outcome under-
scores the significance of refraining from using a PTF that
was trained on soils formed under different conditions (i.e.
with different soil forming factors), making it inapplicable

to the specific target area (Chen et al., 2018; Tranter et al.,
2009).

Effective bulk density is always higher than dry bulk den-
sity. The effective bulk density value computed for the EU-
HYDI dataset with Eqs. (22) and (23) was between 0.32 and
2.17 g cm−3. Figure 3 shows the scatterplot of dry bulk den-
sity versus computed effective bulk density based on the EU-
HYDI dataset.

Based on the performance analysis on EU-HYDI (N =
11273), the prediction of dry bulk density could be per-
formed with (i) Eq. (2) (BD_Alexander_A) for soils with
OC< 12 % and (ii) Eq. (8) (BD_Hossain) for soils with
OC>= 12 %.

3.2 Porosity

The porosity values computed based on the particle
density predicted by Schjønning et al. (2017) (PTF
(POR_Schjonning_etal) implemented in Eq. (10)) were sig-
nificantly more accurate for those EU-HYDI samples, which
considered the measured particle density value for the com-
putation of porosity (Table 7). If solely samples with low or-
ganic matter content, specifically less than 1 %, were consid-
ered for analysis, no notable differences between the methods
were observed. In the case of soils with organic matter con-
tent higher than 1 %, the prediction of porosity significantly
improved if particle density was computed based on the dis-
tinction between organic matter and mineral substrates. Fig-
ure 4 displays the scatterplot of measured versus predicted
(Eq. (10) – POR_Schjonning_etal) porosity values.

When data on porosity are missing, some studies use the
saturated water content as its approximation, although, based
on the literature, the saturated water content is usually equal
to or less than the total porosity (Lal and Shukla, 2004). Fig-
ure 5 shows the relationship between porosity and saturated
water content for 391 EU-HYDI samples with measured val-
ues of both parameters. Among these samples, 56.5 % have
a total porosity larger than or equal to the saturated water
content. For the samples where the saturated water content
is higher than the total porosity, the reason may be the un-
certainties in the measurement of both parameters. It is pos-
sible that free water could have pounded on top of the sam-
ple when its saturated weight was measured, and errors in
the measurement of particle density used to compute poros-
ity may have also contributed (Kutiìlek and Nielsen, 1994;
Nimmo, 2004), resulting in a lower porosity.

Based on the study performed in EU_HYDI, prediction
of porosity could be performed with the Schjønning et al.
(2017) PTF of Eq. (10) instead of defining particle density as
2.65 g cm−3, as in Eq. (12).
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Table 6. Prediction performance of bulk density (g cm−3) computed using available pedotransfer functions based on the point data of EU-
HYDI (N = 11273) and LUCAS (N = 5821). ME refers to the mean error, MAE refers to the mean absolute error, RMSE refers to the root
mean squared error, NSE refers to the Nash–Sutcliffe efficiency, and R2 refers to the coefficient of determination.

EU-HYDI (N = 11273) LUCAS (N = 5821) Weighted rank∗∗∗

PTF M
E

M
A

E

R
M

SE

N
SE

R
2

Si
gn

.d
iff

.∗

R
an

k∗
∗

M
E

M
A

E

R
M

SE

N
SE

R
2

Si
gn

.d
iff

.∗

R
an

k

BD_Alexander_A 0.01 0.15 0.19 0.22 0.27 g 1 −0.22 0.26 0.32 −0.01 0.49 b 6 2.70
BD_Alexander_A_Hossain 0.01 0.15 0.19 0.22 0.27 g 1 −0.24 0.27 0.33 −0.06 0.49 b 6 2.70
BD_Alexander_B 0.08 0.16 0.21 0.05 0.27 e 4 −0.14 0.21 0.27 0.28 0.49 e 3 3.66
BD_MAn_J_A 0.07 0.16 0.21 −0.04 0.23 f 3 −0.10 0.27 0.44 −0.90 0.39 c 5 3.68
BD_MAn_J_B 0.09 0.17 0.21 −0.01 0.27 d 5 −0.12 0.20 0.26 0.32 0.49 f 2 3.98
BD_Rawls 0.27 0.29 0.33 −1.40 0.27 a 8 −0.03 0.18 0.23 0.47 0.51 g 1 5.62
BD_Bernoux 0.20 0.23 0.28 −0.72 0.22 b 7 −0.15 0.24 0.30 0.13 0.35 d 4 5.98
BD_Hollis 0.04 0.20 0.25 −0.45 0.10 c 6 −0.26 0.28 0.34 −0.17 0.47 a 8 6.68

∗ Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example, performance indicated with the letter c is significantly
better than the one noted with the letters b and a. ∗∗ Rank based on the Kruskal–Wallis test; 1 denotes the best-performing method. ∗∗∗ Sample-number-weighted average results of the Kruskal–Wallis
test.

Figure 2. Scatterplot of measured versus predicted bulk density values of the best-performing PTF (BD_Alexander_ A_Hossain) analysed
based on the point data of the EU-HYDI (a) and LUCAS (b) datasets.

3.3 Albedo

The range of soil albedos computed with Eq. (13) for the
topsoil layers of the EU-HYDI dataset with different mois-
ture states (Table 8) is within the range of the values avail-
able from the literature, which is 0.10–0.43 in the case of
the ECOCLIMAP-U dataset (Carrer et al., 2014). The me-
dian albedo of dry, bare soil and the surface albedo values
of the year 2022 extracted from the MCD43A3 database to
the EU-HYDI topsoil layers are significantly lower than the
computed values (Fig. 6). The histograms of the monthly val-
ues of surface albedo and dry, bare soil albedo extracted to
the EU-HYDI topsoil samples are show in Fig. S2a and b.
It is crucial to specify the moisture condition for which the
albedo value is needed in the modelling process.

3.4 Soil erodibility factor

The soil erodibility factor (K factor) computed based on the
topsoil samples of the EU-HYDI dataset with Eq. (14) are
comparable to the values of the European 500 m resolution
soil erodibility map published by Panagos et al. (2014) in
terms of the range, mean, and density of the values (Table 9
and Fig. 7), although the relationship between the computed
and mapped values was weak (Fig. 8). For the computation
of the European soil organic matter content map, soil tex-
ture, coarse-fragment content, soil structure, and stoniness
were considered. The Renard et al. (1997) (Eq. 15) equa-
tion resulted in a higher median value but a lower possible
maximum value because the computed soil erodibility factor
is capped at 0.044

(
t·ha·h

ha·MJ·mm

)
due to the constraints of the

model. The relationship between the soil erodibility factors
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Table 7. Prediction performances of porosity (vol %) computed using available pedotransfer functions based on the point data of EU-HYDI
results are structured by organic matter content. OM refers to organic matter content (mass %), N refers to the number of samples, ME refers
to the mean error, MAE refers to the mean absolute error, RMSE refers to the root mean squared error, NSE refers to the Nash–Sutcliffe
efficiency, and R2 refers to the coefficient of determination.

Name of PTF OM (mass %) N ME MAE RMSE NSE R2 Sign. diff.∗

POR_Schjonning_etal any 2290 0.19 1.38 2.53 0.882 0.889 c
POR_Schjonning_etal_recal 2290 1.05 1.81 2.84 0.852 0.878 a
POR_2_65 2290 0.23 1.67 2.71 0.866 0.883 b

POR_Schjonning_etal 0=<OM< 10 2246 0.20 1.38 2.55 0.860 0.869 c
POR_Schjonning_etal_recal 2246 1.06 1.81 2.86 0.824 0.855 a
POR_2_65 2246 0.29 1.64 2.70 0.843 0.861 b

POR_Schjonning_etal 0=<OM< 5 1943 0.23 1.34 2.48 0.841 0.849 c
POR_Schjonning_etal_recal 1943 1.01 1.76 2.78 0.801 0.834 a
POR_2_65 1943 0.52 1.57 2.61 0.824 0.840 b

POR_Schjonning_etal 0=<OM< 1 492 −0.22 1.32 1.84 0.879 0.881 a
POR_Schjonning_etal_recal 492 −0.01 1.25 1.69 0.898 0.898 a
POR_2_65 492 0.23 1.23 1.63 0.905 0.907 a

POR_Schjonning_etal 10=<OM 44 −0.24 1.41 1.94 0.968 0.969 b
POR_Schjonning_etal_recal 44 0.92 1.49 1.91 0.969 0.980 b
POR_2_65 44 −2.85 2.86 3.29 0.909 0.977 a

∗ Different letters indicate significant differences at the 0.05 level between the accuracy of the methods based on the squared error; for example,
performance indicated with the letter c is significantly better than the one noted with letters b and a.

Table 8. Descriptive statistics of soil albedo values computed with the simplified Gascoin et al. (2009) equation for the topsoil samples of
the EU-HYDI dataset (N = 7537) at different moisture states: based on saturation (ALB_comp_THS), field capacity (ALB_comp_FC), and
wilting point (ALB_comp_WP).

Albedo at different Minimum Maximum Range Mean Median Standard
moisture states deviation

ALB_comp_THS 0.15 0.17 0.02 0.15 0.15 0.00
ALB_comp_FC 0.15 0.31 0.16 0.17 0.16 0.02
ALB_comp_WP 0.15 0.46 0.31 0.22 0.19 0.08

Figure 3. Scatterplot of dry versus effective bulk density analysed
based on the point data of EU-HYDI.

derived by different methods is strongest between the values
computed using the Sharpley and Williams (1990) method
and the Renard et al. (1997) method. This is logical because
both methods consider the particle size distribution of the soil
as input information.

Both approaches, whether directly applying the equations
(Eqs. 14 or 15) or extracting values, generate predicted soil
erodibility values. While both can be used for environmen-
tal modelling, (i) the European soil erodibility map could
be linked with the LUCAS topsoil dataset and maps, and
(ii) employing Eqs. (14) or (15) might offer greater consis-
tency with the other local basic and physical soil data, align-
ing more seamlessly with the modelling process. Given the
scarcity of measured K-factor values, our suggestion is to
initially utilize these predicted values as preliminary approx-
imations. However, we recommend fine-tuning this factor
during the model calibration process.
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Table 9. Descriptive statistics of soil erodibility factor values computed with the Sharpley and Williams (1990) and Renard et al. (1997)
equations based on the topsoil samples of the EU-HYDI dataset (N = 11287) provided in US customary units

(
t·arce·h

hundreds of acre · foot-tonf · in.

)
and SI units

(
t·ha·h

ha·MJ·mm

)
.

USLE K factor in different units

Method Unit Min Max Range Mean Median Standard
deviation

Sharpley and Williams (1990)
(

t·arce·h
hundreds of acre · foot-tonf ·in.

)
0.00 0.48 0.48 0.27 0.27 0.09(

t·ha·h
ha·MJ·mm

)
0.000 0.063 0.063 0.036 0.035 0.012

Renard et al. (1997)
(

t·arce·h
hundreds of acre · foot-tonf ·in.

)
0.05 0.33 0.29 0.24 0.27 0.09(

t·ha·h
ha·MJ·mm

)
0.006 0.044 0.038 0.032 0.035 0.012

Figure 4. Scatterplot of measured versus predicted porosity values
of the best-performing PTF, POR_Schjonning_etal (Eq. 10), anal-
ysed based on the EU-HYDI subset with measured particle density
values. Count refers to the number of cases in each quadrangle.

3.5 Field capacity

The FC defined (see abbreviations in Table 5) based on
soil internal-drainage dynamics (FC_VG_AO) differed from
the field capacity measured at −100 cm, or −330 cm ma-
tric potential (FC_100 and FC_330, respectively) or com-
puted from VG parameters at −100 cm or −330 cm ma-
tric potential (FC_VG_100 and FC__VG_330, respectively)
(Fig. 9), as was expected. The scale of difference depends
on (i) the predefined soil matric-potential value, which we
consider using as the measured field capacity, and (ii) char-
acteristic soil properties that influence soil hydraulic be-
haviour, such as soil texture, organic matter content, bulk
density, clay mineralogy, and structure. Figures S3 and S4
show that, for soils with low sand content (< 25 %) and high

silt content (> 50 %) or low bulk density (< 0.7 g cm−3),
the FC_ VG_AO is lower than the water content measured
at −100 cm or −330 cm matric potential (FC_VG_AO vs.
FC_100 and FC_VG_AO vs. FC_330).

If FC at a single matric-potential value is computed from
the fitted VG parameters (FC_VG_100, FC_VG_330), their
Pearson correlation with the FC_VG_AO is higher than in
the case of FC measured at −100 or −330 cm matric po-
tential (Fig. S5). This is logical because, in the case of
FC_VG_100 and FC_VG_300, the same VG parameters
are used for the computation as for FC_VG_AO. In the
case of EU-HYDI, the FC_VG_330 is the closest to the
FC_VG_AO. The only exception are sands where FC mea-
sured at−330 cm matric potential has the highest correspon-
dence with FC_VG_AO (Fig. S6).

Table 10 illustrates the prediction performance of the
FC_VG_ AO for various approaches. If the FC_VG_AO was
computed based on VG parameters predicted by the PTF07
of euptfv2, the RMSE value was 0.058 cm3 cm−3, which is
comparable with the literature values (Román Dobarco et
al., 2019; Zhang and Schaap, 2017). Its correlation with the
FC computed based on predicted VG parameters at −100 or
−330 cm matric potential is weaker (with RMSE values of
0.090 and 0.091 cm3 cm−3), aligning with the results drawn
from the FC computed from fitted VG parameters (Fig. 9c
and d).

Figure 10 shows the scatterplot of FC_VG_AO computed
from fitted and predicted VG parameters, analysed based on
only those samples of the EU-HYDI which were not used for
training of the VG PTF07. The performance of VG PTF07
was published in Szabó et al. (2021), with 0.054 cm3 cm−3

RMSE for the test set.
Thus FC_VG_AO could be used as FC and can be com-

puted with Eq. (17) based on VG parameters predicted with
(i) euptfv2 (Szabó et al., 2021) for mineral soils and (ii) eu-
ptfv1 (Tóth et al., 2015) class PTF (PTF18) for organic soils.
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Figure 5. Scatterplot of measured porosity values versus measured saturated water content and boxplot of the difference between the two
values tested on point data in the EU-HYDI dataset.

Figure 6. Histograms of the soil albedo computed with the Gascoin et al. (2009) equation for the topsoil layers of the EU-HYDI dataset
in the case of three moisture states: at saturation (ALB_comp_THS) (a), internal-drainage-dynamics-based field capacity (ALB_comp_FC)
(b) and wilting point (ALB_comp_WP) (c) (N = 2408), and median surface albedo (d) and albedo of dry, bare soil (e) for the year 2022
(ALB_median_2022_dry_soil, ALB_median_2022_surface) extracted from the MCD43A3 global database for the EU-HYDI topsoil layers.
Vertical dashed lines indicate the median values.
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Figure 7. Histogram of the soil erodibility factor
(

t·ha·h
ha·MJ·mm

)
computed with the Sharpley and Williams (1990) (K_Sharpley_Williams,

N = 3276) (a) and Renard et al. (1997) (K_Renard, N = 3276) (b) equations based on the topsoil samples of the EU-HYDI dataset and
extracted from the soil erodibility map of Europe for the EU-HYDI topsoil layers without considering stoniness (K_ESDAC, N = 3100), (c)
and considering stoniness (K_st_ESDAC, N = 3190) (d). Vertical dashed lines indicate the median values.

Table 10. Prediction performance of internal-drainage-dynamics-based field capacity (cm3 cm−3) computed by pedotransfer functions based
on the FC and VG test sets of the EU-HYDI dataset.N refers to the number of samples, ME refers to the mean error, MAE refers to the mean
absolute error, RMSE refers to the root mean squared error, NSE refers to the Nash–Sutcliffe efficiency, and R2 refers to the coefficient of
determination.

Approach to predict FC∗ N ME MAE RMSE NSE R2

pred_FC_VG_AO 1591 0.005 0.043 0.058 0.514 0.519
pred_FC_100 1413 −0.071 0.083 0.106 −0.779 0.297
pred_FC_330 782 −0.010 0.047 0.061 0.210 0.395
pred_FC_VG_100 1591 −0.015 0.070 0.090 −0.184 0.320
pred_FC_VG_330 1591 0.045 0.073 0.091 −0.198 0.339

∗ pred_FC_VG_AO is the predicted internal-drainage-dynamics-based field capacity based on VG parameters
predicted from basic soil properties, pred_FC_100, pred_ FC_ 330 is the field capacity at −100 and −330 cm
matric potential directly predicted from basic soil properties, and pred_FC_VG_100 and pred_FC_VG_330 are
field capacity at −100 and −330 cm matric potential based on VG parameters predicted from basic soil
properties.

3.6 Wilting point

Calculating WP (see abbreviations in Table 5) from predicted
VG parameters yields greater accuracy compared to using
the equation provided by the SWAT+ model (Fig. 11, Ta-
ble 11). Predicting WP directly from soil properties instead
of deriving it from predicted VG parameters tends to yield
greater accuracy (Børgesen and Schaap, 2005; Szabó et al.,
2021; Tomasella et al., 2003) (Table 12). When multiple soil
hydraulic parameters are needed, deriving all of them from
a model encompassing the entire matric-potential range se-

cures the physical relationship between them (Weber et al.,
2024).

WP could be computed with Eq. (18) based on VG pa-
rameters predicted with (i) euptfv2 (Szabó et al., 2021) for
mineral soils and (ii) euptfv1 (Tóth et al., 2015) class PTF
(PTF18) for organic soils.

3.7 Available water capacity

If only AWC (see abbreviations in Table 5) is required as
input for a model, i.e. without FC and WP, a feasible op-
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Figure 8. Scatterplot of computed soil erodibility factors versus those extracted from the European soil erodibility factor map without (a,
c) and with stoniness (b, d) based on the topsoil samples of the EU-HYDI dataset

(
t·ha·h

ha·MJ·mm

)
. Plot (e) shows the relationship between the

values computed by the Sharpley and Williams (1990) and Renard et al. (1997) methods.

Table 11. Prediction performance of wilting point (cm3 cm−3) derived with the VG model, computed using pedotransfer functions based on
the VG test set of the EU-HYDI dataset. Observed variable is the WP value computed based on the fitted parameters of the VG model. N
refers to the number of samples, ME refers to the mean error, MAE refers to the mean absolute error, RMSE refers to the root mean squared
error, NSE refers to the Nash–Sutcliffe efficiency, and R2 refers to the coefficient of determination.

Approach to predict WP∗ N ME MAE RMSE NSE R2

pred_WP_VG 1591 0.016 0.045 0.065 0.382 0.420
pred_WP_SWAT 1591 −0.001 0.062 0.093 −0.239 0.197

∗ pred_WP_VG is the wilting point computed based on VG parameters predicted from basic soil properties, and
pred_WP_ SWAT is the wilting point predicted with the equation built into the SWAT model.
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Figure 9. Scatterplot of internal-drainage-dynamics-based field capacity (FC_VG_AO) versus field capacity at−100 cm matric potential (a)
and at−330 cm matric potential (b), computed based on VG model with parameter h (head) set at−100 cm matric potential (c) and−330 cm
matric potential (d).

Table 12. Prediction performance of wilting point (cm3 cm−3) computed by pedotransfer functions based on the WP test set of the EU-
HYDI dataset. Observed variable is the measured WP value. N refers to the number of samples, ME refers to the mean error, MAE refers
to the mean absolute error, RMSE refers to the root mean squared error, NSE refers to the Nash–Sutcliffe efficiency, and R2 refers to the
coefficient of determination.

Approach to predict WP∗ N ME MAE RMSE NSE R2

pred_WP_VG 2088 0.052 0.060 0.087 0.105 0.431
pred_WP_SWAT 2088 0.028 0.046 0.066 0.490 0.630
pred_WP 2088 0.000 0.033 0.046 0.755 0.755

∗ pred_WP_VG is the wilting point computed based on VG parameters predicted from basic soil
properties, pred_WP_ SWAT is the wilting point predicted with the equation built into the SWAT model,
and pred_WP is the wilting point directly predicted from basic soil properties.

tion could involve direct prediction using a PTF like euptfv2.
However, its estimation is more accurate if the internal-
drainage-dynamics-based FC is considered for its compu-
tation (Gupta et al., 2023). Figures 12 and S9 show that
the coefficient of determination is low between the internal-
drainage-dynamics-based AWC (AWC_VG_AO) and AWC
based on FC at a fixed matric potential (AWC_100,
AWC_300, AWC_VG_100, AWC_VG_330). Which ap-
proach is the closest to the AWC_VG_AO varies based on
texture classes (Fig. S10).

The available water capacity based on field capacity mea-
sured at a −100 cm head (AWC_100) is higher than the
AWC_VG_AO, especially in the case of low sand con-
tent (< 25 %) and high silt content (> 50 %) (Figs. 12c and
S7). The available water capacity based on field capacity
measured at a −330 cm head (AWC_330) is higher than
AWC_AO_VG when sand content is low (< 25 %) and when
silt content is high (> 50 %) and is lower than AWC_AO_VG
when sand content is higher than 25 % and when silt content
is less than 50 % (Figs. 12d and S8).
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Table 13. Prediction performance of available water capacity (cm3 cm−3) computed by pedotransfer functions based on the VG test set of
the EU-HYDI dataset. N refers to the number of samples, ME refers to the mean error, MAE refers to the mean absolute error, RMSE refers
to the root mean squared error, NSE refers to the Nash–Sutcliffe efficiency, and R2 refers to the coefficient of determination.

Approach to predict AWC∗ N ME MAE RMSE NSE R2

pred_AWC_VG_AO 1591 −0.011 0.034 0.048 0.339 0.372
pred_AWC_VG_100 1591 −0.031 0.071 0.090 −1.325 0.072
pred_AWC_VG_330 1591 0.029 0.061 0.078 −0.725 0.044

∗ pred_AWC_VG_AO is the available water capacity computed from internal-drainage-dynamics-based field
capacity and wilting point derived based on VG parameters predicted from basic soil properties, and
pred_AWC_VG_100 and pred_AWC_VG_330 are the available water capacity computed from field capacity at
−100 and −330 cm matric potential and wilting point based on VG parameters predicted from basic soil
properties.

Figure 10. Scatterplot of internal-drainage-dynamics-based FC
(FC_VG_AO) computed from fitted and predicted VG parameters
analysed based on the VG test set of the EU-HYDI dataset. Count
refers to the number of cases in each quadrangle.

Table 13 shows the prediction performance of internal-
drainage-dynamics-based AWC (AWC_VG_AO). As
expected, the predicted internal-drainage-dynamics-based
AWC had the lowest RMSE and the highest R2 value. The
AWC computed based on the FC at 100 cm matric head
derived with the predicted VG parameters (pred_AWC_
VG_ 100) had the lowest performance. This approach
yielded over-prediction of the AWC_VG_AO values when
AWC_VG_AO was lower than 0.10 cm3 cm−3 and yielded
under-prediction when AWC_VG_AO was higher than
0.25 cm3 cm−3 (Fig. 13).

Based on the findings, we recommend computing the
AWC based on the internal-drainage-dynamics-based FC
(FC_VG_AO) and VG-parameter-based WP (WP_VG) in
Eq. (19).

3.8 Saturated hydraulic conductivity

Figure 14 shows the relationship between measured KS and
that computed with Eq. (20) based on the fitted VG parame-
ters (KS_VG) (see abbreviation in Table 5). The coefficient
of determination between the measured and computed val-
ues is low; however, fitted (not predicted) VG parameters
were used for the computation. The prediction performance
of KS_VG is comparable with the widely used published
PTFs (Nasta et al., 2021) (Fig. 15, Table 14).

Prediction of saturated hydraulic conductivity (KS) has the
highest uncertainty among the soil hydraulic properties. This
uncertainty originates from the differences in the measure-
ment methods applied to measuring KS in terms of sam-
pling volume, sample dimensions, and differences between
in situ and laboratory methods (Ghanbarian et al., 2017). Due
to the uncertainty of the measurements, the uncertainty of
the prediction is, at minimum, 1 order of magnitude during
the application of a PTF (Nasta et al., 2021). The estima-
tion of KS by traditional PTFs that use basic soil proper-
ties as input is rather limited because the KS of a sample is
largely determined by its structural properties and pore net-
work characteristics, of which we lack quantitative descrip-
tors and data (Lilly et al., 2008). There is also at least 1-
order-of-magnitude difference between replicated measure-
ments of samples coming from the same soil horizon due
to the extreme spatial variability of this particular soil prop-
erty. Hence, it is important to note that, while we might im-
prove individual sample predictions for KS, the representa-
tiveness of these samples within their specific fields remains
constrained. We suggest initializing this soil property using
the VG parameters with Eq. (20) but keeping in mind that it
should be adjusted during model calibration as a variable.

3.9 Phosphorus content of the topsoil

Figure 16 shows the European P map (Ballabio et al., 2019)
clipped for the area of the Felső-Válicka study site (A) and
the P map created with the mean statistics-based method us-
ing the local land use map (B) and the map of the hydrologi-
cal response units (HRUs) defined in the SWAT+model (C).
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Figure 11. Scatterplot of wilting point computed from fitted VG parameters (Fitted WP_VG) versus (a) wilting point computed from VG
parameters predicted with euptfv2 (Predicted WP_VG) and (b) wilting point predicted with the SWAT+ approach (Predicted WP_SWAT),
analysed based on the VG test set of the EU-HYDI dataset. Count refers to the number of cases in each quadrangle.

Figure 12. Scatterplot of available water capacity computed from internal-drainage-dynamics-based field capacity and wilting point derived
based on VG parameters predicted from basic soil properties (AWC_VG_AO) versus (a, b) available water capacity computed from measured
field capacity at −100 and−330 cm matric potential and wilting point and (c, d) available water capacity computed from field capacity at
−100 and −330 cm matric potential and wilting point based on VG parameters predicted from basic soil properties.

SOIL, 10, 587–617, 2024 https://doi.org/10.5194/soil-10-587-2024



B. Szabó et al.: Addressing soil data needs and data gaps 607

Table 14. Prediction performance of saturated hydraulic conductivity (cm d−1) computed by pedotransfer functions based on the VG test
set of the EU-HYDI dataset. N refers to the number of samples, ME refers to the mean error, MAE refers to the mean absolute error, RMSE
refers to the root mean squared error, NSE refers to the Nash–Sutcliffe efficiency, and R2 refers to the coefficient of determination.

Approach to predict KS∗ N ME MAE RMSE NSE R2

log10pred_KS_VG 1591 −0.06 1.07 1.48 0.303 0.307

∗ log10pred_KS_VG is the logarithmic-10-based saturated hydraulic conductivity computed based on VG
parameters predicted from basic soil properties.

Figure 13. Scatterplot of internal-drainage-dynamics-based AWC
(AWC_VG_AO) computed from fitted and predicted VG parame-
ters analysed based on the VG test set of the EU-HYDI dataset.
Count refers to the number of cases in each quadrangle.

The spatial pattern of the two phosphorus maps is similar,
but the map created with our proposed method has a higher
resolution and follows the polygons of the HRU map.

Figure 17 shows the geometric mean P values of the HRUs
by land use categories of the European soil P map and the
region-specific mean statistics-based P map in the area of
Felső-Válicka. Comparing the results of the geometric mean
P values, we can see that the European topsoil P map, on
average, has a higher P concentration, with no significant
differences observed between the land use categories. Based
on the region-specific LUCAS topsoil dataset, artificial land
use areas (urban fabric and industrial, commercial and trans-
port units), forests, and pastures are expected to have lower
P concentration values. The mean statistics-based P map is
more suitable in identifying differences resulting from local
land use variations in the analysed case study. The P moni-
toring data measured on the 34 agricultural parcels, classified
as arable land, show that the geometric mean of Olsen P in
the area is 24 mg kg−1, which is slightly higher than that pre-
dicted by the mean statistics-based method (19.78 mg kg−1).

Figure 14. Scatterplot of measured saturated hydraulic conductiv-
ity (KS) versus saturated hydraulic conductivity computed from fit-
ted VG parameters (KS_VG).

Ballabio et al. (2019) found that land use was the most im-
portant predictor for computing the topsoil phosphorus con-
tent map for Europe. This underscores that a soil P con-
tent map derived based on a local, fine-resolution, field-
boundary-based land use map can provide more accurate re-
sults than one based on continental land use maps.

For regional or local studies, it is more plausible to use a
local land use map and to compute the geometric mean soil
P values by land use categories based on the LUCAS topsoil
dataset, which is relevant for the target area from a fertiliza-
tion point of view. Where available, it is recommended that
measured data be used to overwrite the geometric mean val-
ues, creating a multi-data source solution that reflects the spa-
tial pattern of nutrient content within arable land areas. For
continental-scale studies, the European topsoil P map (Bal-
labio et al., 2019) could be used.

3.10 Suggested workflow to derive soil input parameters

Based on the above results, we describe the most efficient
workflow to retrieve the soil input parameters for European
environmental modelling.
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Figure 15. Scatterplot of saturated hydraulic conductivity com-
puted from fitted and predicted VG parameters (KS_VG) analysed
based on the VG test set of the EU-HYDI dataset. Count refers to
the number of cases in each quadrangle.

Figure 16. European topsoil P content map (Ballabio et al., 2019)
(a), region-specific mean statistics-based P content map (b), and
hydrological response units with indication of agricultural parcels
with measured P values (c) in the Felső-Válicka case study.

Initially, the data source of the most relevant soil basic
properties, such as soil layering, rooting depth, organic car-
bon content, clay, silt, and sand content, must be selected.
Local data can describe the spatial variability of soil proper-
ties the best. Even if only basic soil properties are available
locally, this data source could be prioritized over the more
inclusive continental or global datasets, i.e. those containing

information on soil physical, chemical, and hydraulic prop-
erties because local datasets aim to capture the area-specific
variability of soil properties as accurately as possible. If no
local or national basic soil data are available with the resolu-
tion required to study a target environmental process, possi-
ble input sources for soil profile data or 3D soil datasets can
be found in Table 1.

Different countries and institutions measure sand, silt, and
clay content using different ISO protocols and methods by
recognizing different cutoff limits and classification stan-
dards. It is important to check which particle size limits are
required by the environmental model. As an example, in the
widely used SWAT/SWAT+ model, the sand, silt, and clay
content are assumed to be classified according to the USDA
system, which defines the particle size limits of < 0.002 mm
for clay, 0.002–0.05 mm for silt, and 0.05–2 mm for sand
fraction. When conversions between different classifications
are required to bring the local dataset to the appropriate for-
mat, it is advised that one apply the k-nearest-neighbour in-
terpolation (formerly called: “similarity technique”), which
results in less uncertainty, smaller bias, and shrinkage of the
resulting texture range compared to the simpler log-linear in-
terpolation (Nemes et al., 1999).

In other cases, such as for soil organic material, it is impor-
tant to distinguish if soil organic carbon or soil organic mat-
ter is required by the model and which of the two is available
from the data source. The following most frequently used
equation describes the relationship between them:

OM= OC · 1.724, (21)

where OM is the organic matter content (mass %), and OC is
the organic carbon content (mass %). The 1.724 conversion
factor was defined by van Bemmelen (1890) but can vary be-
tween 1.4 and 2.5 depending on the method used to measure
the organic carbon content, the composition of organic mat-
ter, the degree of decomposition, and the clay content (Mi-
nasny et al., 2020; Pribyl, 2010). Pribyl (2010) recommends
using the value 2 as a general conversion factor if no specific
value is available.

When specifying bulk density, it is important to clarify
whether the dry or effective value is required. If no mea-
sured value of either one is available, the dry bulk density
can be computed from the organic carbon content and parti-
cle size distribution. Further predictors, such as taxonomical
information, soil structure, soil management parameters, and
environmental covariates, are important as well (Hollis et al.,
2012; Ramcharan et al., 2017) and can significantly improve
the prediction performance. However, it is not always possi-
ble to apply PTFs including these variables to a data-scarce
region.

If effective bulk density is required, it can be derived
from the dry bulk density with the method of Wessolek et
al. (2009):
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Figure 17. Geometric mean values of Olsen P across CORINE level-2 land cover categories in the Felső-Válicka case study for both the
European topsoil P content map and the region-specific mean statistics-based P content map, with number of samples by category indicated.

– for soils with an organic carbon content higher than 0.58
mass %, the following is used:

BDeff = BDdry+ 0.009 · clay, (22)

– for soils with an organic carbon content less than or
equal to 0.58 mass %, the following is used:

BDeff = BDdry+ 0.005 · clay+ 0.001 · silt, (23)

where BDeff (g cm−3) is effective bulk density, BDdry
(g cm−3) is the dry bulk density, clay is clay content
(< 0.002 mm, mass %), and silt is silt content (0.002–
0.063 mm, mass %). It is important to note that Eq. (23)
requires the silt content with a limit of 0.002–0.063 mm.
It can be predicted from the clay (< 0.002 mm), silt
(0.002–0.05 mm), and sand (0.05–2 mm) content with the
TT.text.trans function of the soiltexture R package (Moeys,
2018). This method meets the accuracy required for comput-
ing BDeff; however, for other applications, the transformation
methods discussed by Nemes et al. (1999) should be consid-
ered.

The hydrologic soil groups (HSGs) are based on the infil-
tration characteristic of the soil and include four groups that
have similar runoff potential. The groups are defined based
on the saturated hydraulic conductivity, depth to the high
water table, and depth to the water impermeable layer (Ta-
ble 15). More details can be found in the documentation of
the US Department of Agriculture Natural Resources Con-
servation Service (2009).

For modelling purposes, it is important to know whether
tile drainage is present in the modelled area because tile
drainage systems influence the soil infiltration rate and runoff
potential. Derivation of HSGs requires local input data. If lo-
cal datasets are not available and if SoilGrids 2017 (Hengl
et al., 2017) was chosen as the source for the basic soil data,
HSG can be retrieved from the global HYSOGs250m (Ross
et al., 2018) database.

Figures 18–22 summarize the workflows to derive the soil
physical, hydraulic, and chemical parameters covered in this
study. The workflows highlight the target soil property, nec-
essary input, and computation approach with a suggested or-
der of computations. Indirect initialization of soil mineral N
is recommended via proper management data and a model
warm-up period. It is important to highlight that prediction
approaches trained on local data are expected to be more ac-
curate; therefore, those could replace the indicated methods
where possible.

4 Conclusions

This study presents particular techniques and resources for
extracting region-specific soil characteristics from national
and global databases. While these databases might contain
segments of soil information, they often lack the comprehen-
sive data required by various environmental models, such as
the SWAT+ model. Through evaluation and recommenda-
tion of selected PTFs, as well as the provision of compiled
R scripts for estimation solutions addressing soil data gaps,
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Figure 18. Prediction of soil physical properties. BDdry refers to dry bulk density, clay refers to clay content (0–0.002 mm), silt refers to
silt content (0.002–0.05 mm), sand refers to sand content (0.05–2 mm), silt_63 refers to silt content (0.002–0.063 mm), OC refers to organic
carbon content, BDeff refers to effective bulk density, PD refers to particle density, and POR refers to porosity.

Figure 19. Prediction of soil hydraulic properties and moist soil albedo. Soil depth refers to the mean soil depth of the soil sample, clay
refers to clay content (0–0.002 mm), silt refers to silt content (0.002–0.05 mm), sand refers to sand content (0.05–2 mm), BDdry refers to dry
bulk density, OC refers to organic carbon content, θr refers to residual water content, θs refers to saturated soil water content, α refers to the
scale parameter, n refers to the shape parameter, FC refers to the water content at field capacity, WP refers to the water content at wilting
point, KS refers to the saturated hydraulic conductivity, AWC refers to the available water capacity, and ALB refers to soil albedo.

this study aims to streamline input data preparation proce-
dures for soil physical, hydraulic, and chemical properties in
environmental modelling.

Local data tend to retain finer soil details; hence, it is rec-
ommended that users prioritize the utilization of local (na-
tional) soil databases when they are deemed to be representa-
tive and reliable. Even if these databases only offer basic soil
properties, they should take precedence over broader conti-
nental or global datasets. The study demonstrated that miss-
ing soil properties could be estimated effectively from a basic

set of soil parameters using appropriate PTFs developed for
specific pedo-climatic regions, ensuring consistency in com-
puted properties.

We prepared a set of workflows to derive soil input param-
eters for usage in various modelling studies. In cases where
this approach is not viable, we offer comprehensive guidance
on alternative soil databases, outlining strategies to derive the
absent soil properties effectively.

When using any available soil dataset, it is important to
check the detailed description (metadata) of the dataset to
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Table 15. Definition of soil hydrologic groups based on the US Department of Agriculture Natural Resources Conservation Service (2009).
KS refers to saturated hydraulic conductivity (µm s−1).

Depth to water Depth to high KS of least transmissive layer KS depth range HSG3

impermeable layer1 water table2 in depth range (µm s−1)

< 50 cm – – – D

50 to 100 cm < 60 cm > 40.0 0 to 60 cm A/D
> 10.0 to ≤40.0 0 to 60 cm B/D
> 1.0 to ≤10.0 0 to 60 cm C/D
≤ 1.0 0 to 60 cm D

≥ 60 cm > 40.0 0 to 50 cm A
> 10.0 to ≤ 40.0 0 to 50 cm B
> 1.0 to ≤ 10.0 0 to 50 cm C
≤ 1.0 0 to 50 cm D

> 100 cm < 60 cm > 10.0 0 to 100 cm A/D
> 4.0 to ≤ 10.0 0 to 100 cm B/D
> 0.40 to ≤ 4.0 0 to 100 cm C/D
≤ 0.40 0 to 100 cm D

60 to 100 cm > 40.0 0 to 50 cm A
> 10.0 to ≤ 40.0 0 to 50 cm B
> 1.0 to ≤ 10.0 0 to 50 cm C
≤ 1.0 0 to 50 cm D

> 100 cm > 10.0 0 to 100 cm A

> 4.0 to ≤ 10.0 0 to 100 cm B
> 0.40 to ≤ 4.0 0 to 100 cm C
≤ 0.40 0 to 100 cm D

1 An impermeable layer has a KS of less than 0.01 µm s−1 (0.0014 in h−1) or a component restriction of fragipan, duripan,
petrocalcic, orstein, petrogypsic, cemented horizon, densic material, placic, paralithic bedrock, lithic bedrock, densic bedrock, or
permafrost. 2 High water table during any month during the year. 3 Dual HSG classes are applied only for wet soils (water table
less than 60 cm or 24 in.). If these soils can be drained, a less restrictive HSG can be assigned, depending on the KS.

Figure 20. Prediction of soil erodibility factor (K factor). Clay
refers to clay content (0–0.002 mm), silt refers to silt content
(0.002–0.05 mm), sand refers to sand content (0.05–2 mm), and OC
refers to organic carbon content. Figure 21. Prediction of hydraulic soil groups (HSGs). KS refers

to saturated hydraulic conductivity.
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Figure 22. Prediction of Olsen phosphorus (P) content of the top-
soil.

avoid misinterpretation and errors in the models. Consider-
ations such as consistent size limits for clay, silt, and sand
content classification as per the model’s requirements; the
distinction between organic carbon and organic matter; the
need for dry or moist bulk density; and similar details are vi-
tal. Understanding whether the model derives soil properties
that already exist in the dataset is essential, aiding in select-
ing the most precise parameters for the model’s application.

When retrieving or deriving missing soil input data, it
is crucial to consider the following: (i) which dataset and
prediction approaches can offer physically plausible soil in-
put data and (ii) the uncertainty associated with the derived
soil input data for their appropriate use in the environmen-
tal model. For computing physically consistent soil hydraulic
property values, namely FC, WP, AWC, and KS, it is plau-
sible to use parameters of a model that describe soil water
retention across the entire matric-potential range. The pa-
rameters of the VG model have been widely employed to
derive water retention at specific matric-potential values or
KS; hence, they can be used to derive physically plausible
soil hydraulic properties. The static definition of FC could
be replaced with a dynamic one that considers a soil-specific
matric potential at which the continuity of soil water is re-
duced or disrupted. For the computation of the drainage-
dynamics-based AWC, the use of the VG model parameters
is required for deriving both FC and WP. When computing
FC, WP, AWC, and KS using the predicted VG parameters,
we maintain the physical relationships among them, which
is highly relevant in process-based modelling applications.
Misuse of these parameters could lead to flawed model out-
comes, impacting policy-making and agricultural manage-
ment decisions.

It is important to note that soil parameter uncertainty en-
compasses not only the uncertainty of the PTF but also that

stemming from the fitting of the VG model. The prediction
uncertainty of soil properties varies significantly. It is essen-
tial to tailor its treatment based on the specificities of the tar-
get environmental model, particularly when it is utilized as
an initial static value, in model calibration, or as a fixed input
parameter.

The research emphasized the challenge of selecting suit-
able datasets and PTFs due to their abundance, providing
quantitative performance metrics to aid potential environ-
mental modellers. The workflows and findings presented in
this study offer practical guidance for model setup and data
pre-processing in various modelling endeavours across Eu-
rope, such as in hydrological simulations, assessments of
soil health, land evaluation, crop modelling, and analysis
of soil erosion risk, among others. The study’s methodol-
ogy can be applied for soil databases not only in Europe but
also in other regions or global datasets, highlighting its po-
tential for broader applicability in multiple modelling con-
texts worldwide. We encourage the wider scientific and mod-
elling community to use and adopt our recommended work-
flows to derive soil input parameters, bridging gaps in the
data for broader utilization in diverse modelling studies. The
presented workflows could be further improved by using a
multi-model approach and applying geostatistical methods.
The open-source library is available (see “Code availability”
section) for use and adoption to meet user-specific needs.

Code availability. The get_usersoil_table function in the R pack-
age SWATprepR (Plunge, 2023; Plunge et al., 2024) was developed
for this study. It facilitates the calculation of multiple soil param-
eters using PTF methods presented in the article. The functional-
ity requires information on soil depth, sand, silt, clay, and organic
matter content. The functions use the input information and cal-
culate other soil parameters required for the SWAT+ model. The
derivation of HSG is optional based on the KS of the least trans-
missive layer, depth to the water impermeable layer, depth to the
high water table, and information on the existence of any tile drains.
The entire package, its source code, documentation, and installa-
tion instructions are openly accessible on the GitHub repository:
https://doi.org/10.5281/zenodo.10167076 (Plunge, 2023).

Data availability. A total of 6583 samples from 1999 soil profiles,
summing up to 35 % of the EU-HYDI dataset, are available upon
request from the European Soil Data Centre (ESDAC) at the Eu-
ropean Commission Joint Research Centre. The entire dataset can-
not be made publicly available due to its legal restrictions. LUCAS
topsoil data can be accessed through ESDAC (European Commis-
sion Joint Research Centre, 2024; Panagos et al., 2012, 2022). Local
measured topsoil phosphorus data are private; only the results of the
analysis and derived information can be published.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/soil-10-587-2024-supplement.
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