Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-561-2023
https://doi.org/10.5194/soil-9-561-2023
Original research article
 | 
17 Nov 2023
Original research article |  | 17 Nov 2023

Increase in bacterial community induced tolerance to Cr in response to soil properties and Cr level in the soil

Claudia Campillo-Cora, Daniel Arenas-Lago, Manuel Arias-Estévez, and David Fernández-Calviño

Related authors

Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution
Vanesa Santás-Miguel, Avelino Núñez-Delgado, Esperanza Álvarez-Rodríguez, Montserrat Díaz-Raviña, Manuel Arias-Estévez, and David Fernández-Calviño
SOIL, 8, 437–449, https://doi.org/10.5194/soil-8-437-2022,https://doi.org/10.5194/soil-8-437-2022, 2022
Short summary

Cited articles

Abou Jaoude, L., Castaldi, P., Nassif, N., Pinna, M. V., and Garau, G.: Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils, Sci. Total Environ., 711, 134511, https://doi.org/10.1016/j.scitotenv.2019.134511, 2020. 
Adriano, D. C.: Trace Elements in Terrestrial Environments, 2 Edn., Springer, New York, https://doi.org/10.1007/978-0-387-21510-5, 2001. 
Ao, M., Chen, X., Deng, T., Sun, S., Tang, Y., Morel, J. L., Qiu, R., and Wang, S.: Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review, J. Hazard. Mater., 424, 127233, https://doi.org/10.1016/j.jhazmat.2021.127233, 2022. 
Bååth, E.: Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenization-centrifugation, Soil Biol. Biochem., 24, 1157–1165, https://doi.org/10.1016/0038-0717(92)90066-7, 1992. 
Bååth, E.: Thymidine and leucine incorporation in soil bacteria with different cell size, Microb. Ecol., 27, 267–278, https://doi.org/10.1007/BF00182410, 1994. 
Download
Short summary
Cr pollution is a global concern. The use of methodologies specifically related to Cr toxicity is appropriate, such as the pollution-induced community tolerance (PICT) methodology. The development of PICT was determined in 10 soils after Cr addition in the laboratory. The Cr-soluble fraction and dissolved organic carbon were the main variables determining the development of PICT (R2 = 95.6 %).
Share