Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture
Guillaume Blanchy
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester van Gansberghelaan 92/1, 9820 Merelbeke, Belgium
Gilberto Bragato
Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology
(CREA-VE), via Trieste 23, 34170 Gorizia, Italy
Claudia Di Bene
Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), via della Navicella 2–4, 00184 Rome, Italy
Nicholas Jarvis
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala, Sweden
Mats Larsbo
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala, Sweden
Katharina Meurer
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala, Sweden
Sarah Garré
CORRESPONDING AUTHOR
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester van Gansberghelaan 92/1, 9820 Merelbeke, Belgium
Related authors
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023, https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary
Short summary
We collated the Open Tension-disk Infiltrometer Meta-database (OTIM). We analysed topsoil hydraulic conductivities at supply tensions between 0 and 100 mm of 466 data entries. We found indications of different flow mechanisms at saturation and at tensions >20 mm. Climate factors were better correlated with near-saturated hydraulic conductivities than soil properties. Land use, tillage system, soil compaction and experimenter bias significantly influenced K to a similar degree to soil properties.
Solomon Ehosioke, Sarah Garré, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frédéric Nguyen
Biogeosciences, 22, 2853–2869, https://doi.org/10.5194/bg-22-2853-2025, https://doi.org/10.5194/bg-22-2853-2025, 2025
Short summary
Short summary
Understanding the electromagnetic properties of plant roots is useful to quantify plant properties and monitor plant physiological responses to changing environmental factors. We investigated the electrical properties of the primary roots of Brachypodium and maize plants during the uptake of fresh and saline water using spectral induced polarization. Our results indicate that salinity tolerance varies with the species and that Maize is more tolerant to salinity than Brachypodium.
Jayson Gabriel Pinza, Ona-Abeni Devos Stoffels, Robrecht Debbaut, Jan Staes, Jan Vanderborght, Patrick Willems, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2025-1166, https://doi.org/10.5194/egusphere-2025-1166, 2025
Short summary
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, Roelof Versteeg, and Sarah Garré
SOIL, 11, 67–84, https://doi.org/10.5194/soil-11-67-2025, https://doi.org/10.5194/soil-11-67-2025, 2025
Short summary
Short summary
This work implemented automated electrical resistivity tomography (ERT) for belowground field phenotyping alongside conventional field breeding techniques, thereby closing the phenotyping gap. We show that ERT is not only capable of measuring differences between crops but also has sufficient precision to capture the differences between genotypes of the same crop. We automatically derive indicators, which can be translated to static and dynamic plant traits, directly useful for breeders.
Elsa Coucheney, Anke Marianne Herrmann, and Nicholas Jarvis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3883, https://doi.org/10.5194/egusphere-2024-3883, 2024
Short summary
Short summary
Simulation models can be used to evaluate changes in soil organic carbon (SOC) stocks in agricultural soils that are important to soil health and climate change mitigation. We describe a simple model that considers SOC turnover in a soil profile regulated by two processes: physical protection due to aggregation and microbial energy limitation. It accurately reproduces trends in SOC in plots receiving different OC inputs and matches survey data on SOC in the soil profile in one region of Sweden.
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023, https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary
Short summary
We collated the Open Tension-disk Infiltrometer Meta-database (OTIM). We analysed topsoil hydraulic conductivities at supply tensions between 0 and 100 mm of 466 data entries. We found indications of different flow mechanisms at saturation and at tensions >20 mm. Climate factors were better correlated with near-saturated hydraulic conductivities than soil properties. Land use, tillage system, soil compaction and experimenter bias significantly influenced K to a similar degree to soil properties.
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023, https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary
Short summary
Adapting agricultural practices to future climatic conditions requires us to synthesize the effects of management practices on soil properties with respect to local soil and climate. We showcase different automated text-processing methods to identify topics, extract metadata for building a database and summarize findings from publication abstracts. While human intervention remains essential, these methods show great potential to support evidence synthesis from large numbers of publications.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Cited articles
Adu, M., Yawson, D., Armah, F., Asare, P., and Frimpong, K.: Meta-analysis of
crop yields of full, deficit, and partial root-zone drying irrigation,
Agr. Water Manage., 197, 79–90,
https://doi.org/10.1016/j.agwat.2017.11.019, 2018. a
AgriAdapt: Sustainable adaptation of typical EU farming systems to climate change (LIFE AgriAdapt) – A1: Baseline
reports for the 4 main EU Climate Risk Regions, techreport LIFE15 CCA/DE/000072,
https://agriadapt.eu/wp-content/uploads/2017/04/A1_Baseline-report_Full-version_V3.pdf (last access: 12 December 2022),
2017. a
Aguilera, E., Lassaletta, L., Gattinger, A., and Gimeno, B.: Managing soil
carbon for climate change mitigation and adaptation in Mediterranean
cropping systems: a meta-analysis, Agr. Ecosyst. Environ.,
168, 25–36, https://doi.org/10.1016/j.agee.2013.02.003, 2013. a
Alletto, L., Coquet, Y., Benoit, P., Heddadj, D., and Barriuso, E.: Tillage
management effects on pesticide fate in soils. A review, Agron.
Sustain. Dev., 30, 367–400, https://doi.org/10.1007/978-94-007-0394-0_35,
2010. a, b
Angus, J., Kirkegaard, J., Hunt, J., Ryan, M., Ohlander, L., and Peoples, M.:
Break crops and rotations for wheat, Crop Pasture Sci., 66, 523–552,
https://doi.org/10.1071/CP14252, 2015. a
Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D.,
Yang, J., and Matocha, C.: Responses of soil carbon sequestration to
climatesmart agriculture practices: a metaanalysis, Glob. Change Biol.,
25, 2591–2606, https://doi.org/10.1111/gcb.14658, 2019. a, b
Bai, Z., Caspari, T., Gonzalez, M., Batjes, N., Mäder, P., Bünemann,
E., Goede, R., Brussaard, L., Xu, M., Ferreira, C., Reintam, E., Fan, H.,
Mihelič, R., Glavan, M., and Tóth, Z.: Effects of agricultural
management practices on soil quality: a review of long-term experiments for
Europe and China, Agr. Ecosyst. Environ., 265, 1–7, https://doi.org/10.1016/j.agee.2018.05.028,
2018. a, b, c, d
Basche, A., Miguez, F., Kaspar, T., and Castellano, M.: Do cover crops increase
or decrease nitrous oxide emissions? A meta-analysis, J. Soil
Water Conserv., 69, 471–482, https://doi.org/10.2489/jswc.69.6.471, 2014. a
Beillouin, D., Ben-Ari, T., and Makowski, D.: Evidence map of crop
diversification strategies at the global scale, Environ. Res.
Lett., 14, 123001, https://doi.org/10.1088/1748-9326/ab4449, 2019b. a, b, c, d
Bertrand, M., Barot, S., Blouin, M., Whalen, J., Oliveira, T., and
Roger-Estrade, J.: Earthworm services for cropping systems. A review,
Agronomy and Sustainable Development, 35, 553–567,
https://doi.org/10.1007/s13593-014-0269-7, 2015. a, b
Blanchy, G., Bragato, G., Di Bene, C., Jarvis, N., Larsbo, M., Meurer, K., and Garré, S.: climasoma/review-of-meta-analyses: v1.0.0 (v1.0.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7470450, 2022. a
Blanco-Canqui, H., Ruis, S., Holman, J., Creech, C., and Obour, A.: Can cover
crops improve soil ecosystem services in water-limited environments? A
review, Soil Sci. Soc. Am. J., 86, 1–18,
https://doi.org/10.1002/saj2.20335, 2022. a
Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismányoky, T., Lipiec,
J., Tits, M., Tóth, Z., and Kätterer, T.: The effect of crop
residues, cover crops, manures and nitrogen fertilization on soil organic
carbon changes in agroecosystems: a synthesis of reviews, Mitig.
Adapt. Strat. Gl., 25, 929–952,
https://doi.org/10.1007/s11027-020-09916-3, 2020. a, b, c
Brewer, C., Chuang, V., Masiello, C., Gonnermann, H., Gao, X., Dugan, B.,
Driver, L., Panzacchi, P., Zygourakis, K., and Davies, C.: New approaches to
measuring biochar density and porosity, Biomass Bioenerg., 66, 176–185,
https://doi.org/10.1016/j.biombioe.2014.03.059, 2014. a
Briones, M. and Schmidt, O.: Conventional tillage decreases the abundance and
biomass of earthworms and alters their community structure in a global
meta-analysis, Glob. Change Biol., 23, 4396–4419,
https://doi.org/10.1111/gcb.13744, 2017. a, b, c
Capowiez, Y., Lévèque, T., Pelosi, C., Capowiez, L., Mazzia, C., Schreck, E., and Dumat, C.: Using the ecosystem engineer concept to test the functional effects
of a decrease in earthworm abundance due to an historic metal pollution
gradient, Appl. Soil Ecol., 158, 103816, https://doi.org/10.1016/j.apsoil.2020.103816, 2021. a
Chan, K.: An overview of some tillage impacts on earthworm population abundance
and diversity – implications for functioning in soils, Soil Till.
Res., 57, 179–191, 2001. a
Chen, H., Dai, Z., Veach, A., Zheng, J., Xu, J., and Schadt, C.: Global
meta-analyses show that conservation tillage practices promote soil fungal
and bacterial biomass, Agr. Ecosyst. Environ., 293,
106841, https://doi.org/10.1016/j.agee.2020.106841, 2020. a
Cheng, C.-H., Lehmann, J., Thies, J. E., and Burton, S. D.: Stability of black
carbon in soils across a climatic gradient, J. Geophys. Res.-Biogeo., 113, 1–10, https://doi.org/10.1029/2007jg000642, 2008. a
Cheng, M., Wang, H., Fan, J., Wang, X., Sun, X., Yang, L., Zhang, S., Xiang,
Y., and Zhang, F.: Crop yield and water productivity under salty water
irrigation: A global meta-analysis, Agr. Water Manage., 256,
107105, https://doi.org/10.1016/j.agwat.2021.107105, 2021a. a, b
Cheng, M., Wang, H., Fan, J., Zhang, S., Liao, Z., Zhang, F., and Wang, Y.: A
global meta-analysis of yield and water use efficiency of crops, vegetables
and fruits under full, deficit and alternate partial root-zone irrigation,
Agr. Water Manage., 248, 106771, https://doi.org/10.1016/j.agwat.2021.106771, 2021b. a, b
Chenu, C., Le Bissonnais, Y., and Arrouays, D.: Organic matter influence on
clay wettability and soil aggregate stability, Soil Science Society America
Journal, 64, 1479–1486, 2000. a
Daryanto, S., Wang, L., and Jacinthe, P.-A.: Meta-analysis of phosphorus loss
from no-till soils, J. Environ. Qual., 46, 1028–1037,
https://doi.org/10.2134/jeq2017.03.0121, 2017a. a
Daryanto, S., Wang, L., and Jacinthe, P.-A.: Impacts of no-tillage management
on nitrate loss from corn, soybean and wheat cultivation: a meta-analysis,
Scientific Reports, 7, 12117, https://doi.org/10.1038/s41598-017-12383-7,
2017b. a, b
Downie, A., Crosky, A., and Munroe, P.: Physical properties of biochar, in:
Biochar for environmental management: science, technology and implementation, 2nd Edn., Routledge, edited by: Lehmann, J. and Joseph, S., Taylor and Francis Group, London , New York, 928 pp., London, UK, ISBN: 978-0-415-70415-1, 2009. a
Drewry, J. J., Carrick, S., Penny, V., Houlbrooke, D. J., Laurenson, S., and
Mesman, N. L.: Effects of irrigation on soil physical properties in
predominantly pastoral farming systems: a review, New Zeal. J.
Agr. Res., 64, 483–507, https://doi.org/10.1080/00288233.2020.1742745,
2020. a
Elias, D., Wang, L., and Jacinthe, P.-A.: A meta-analysis of pesticide loss in
runoff under conventional tillage and no-till management, Environ.
Monit. Assess., 190, 79, https://doi.org/10.1007/s10661-017-6441-1, 2018. a, b
Fraser, P., Haynes, R., and Williams, P.: Effects of pasture improvement and
intensive cultivation on microbial biomass, enzyme activities, and
composition and size of earthworm populations, Biol. Fert.
Soils, 17, 185–190, https://doi.org/10.1007/BF00336320, 1994. a
Gao, Y., Shao, G., Lu, J., Zhang, K., Wu, S., and Wang, Z.: Effects of biochar
application on crop water use efficiency depend on experimental conditions: a
meta-analysis, Field Crop. Res., 249, 107763,
https://doi.org/10.1016/j.fcr.2020.107763, 2020. a
Graaff, M.-A., Hornslein, N., Throop, H., Kardol, P., and Diepen, L.: Effects
of agricultural intensification on soil biodiversity and implications for
ecosystem functioning: a meta-analysis, Adv. Agron., 155, 1–44,
https://doi.org/10.1016/bs.agron.2019.01.001, 2019. a, b
Gravuer, K., Gennet, S., and Throop, H.: Organic amendment additions to
rangelands: a meta-analysis of multiple ecosystem outcomes, Glob. Change
Biol., 25, 1152–1170, 2019. a
Guenet, B., Benoit, G., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M.,
Bruni, E., Caliman, J.-P., Cardinael, R., Chen, S., Ciais, P., Desbois, D.,
Fouche, J., Frank, S., Henault, C., Lugato, E., Naipal, V., Nesme, T.,
Obersteiner, M., Pellerin, S., Powlson, D., Rasse, D., Rees, F., Soussana,
J.-F., Su, Y., Tian, H., Valin, H., and Zhou, F.: Can N2O emissions offset
the benefits from soil organic carbon storage?, Glob. Change Biol., 27,
237–256, https://doi.org/10.1111/gcb.15342, 2020. a
Hamza, M. and Anderson, W.: Soil compaction in cropping systems. A review of
the nature, causes and possible solutions, Soil Till. Res., 82,
121–145, https://doi.org/10.1016/j.still.2004.08.009, 2005. a
Hardy, B., Cornelis, J.-T., Houben, D., Leifeld, J., Lambert, R., and Dufey,
J. E.: Evaluation of the long-term effect of biochar on properties of
temperate agricultural soil at pre-industrial charcoal kiln sites in
Wallonia, Belgium, Eur. J. Soil Sci., 68, 80–89,
https://doi.org/10.1111/ejss.12395, 2016. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Tech. Rep.,
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf,
(last access: 21 December 2022), 2021. a
Islam, M. U., Jiang, F., Guo, Z., and Peng, X.: Does biochar application
improve soil aggregation? A meta-analysis, Soil Till. Res., 209,
104926, https://doi.org/10.1016/j.still.2020.104926, 2021. a, b, c
Jacobs, C., Berglund, M., Kurnik, B., Dworak, T., Marras, S., Mereu, V., and
Michetti, M.: Climate change adaptation in the agriculture sector in
Europe, techreport 4/2019, European Environment Agency (EEA), Luxembourg:
Publications Office of the European Union, 2019, ISBN
9789294800725, ISSN 1977-8449,
https://library.wur.nl/WebQuery/wurpubs/555523 (last access: 21 December 2022), 2019. a
Jarvis, N.: Review of non-equilibrium water flow and solute transport in soil
macropores: principles, controlling factors and consequences for water
quality, Eur. J. Soil Sci., 58, 523–546,
https://doi.org/10.1111/j.1365-2389.2007.00915.x, 2007. a, b
Jarvis, N., Forkman, J., Koestel, J., Kätterer, T., Larsbo, M., and
Taylor, A.: Long-term effects of grass-clover leys on the structure of a silt
loam soil in a cold climate, Agr. Ecosyst. Environ., 247,
319–328, https://doi.org/10.1016/j.agee.2017.06.042, 2017. a
Jian, J., Lester, B., Du, X., Reiter, M., and Stewart, R.: A calculator to
quantify cover crop effects on soil health and productivity, Soil Till.
Res., 199, 104575, https://doi.org/10.1016/j.still.2020.104575, 2020. a, b, c, d
Jones, C. G., Lawton, J. H., Shachak, M.: Ecosystem Management, https://doi.org/10.1007/978-1-4612-4018-1_14, 1993.
Joseph, S., Cowie, A., Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela,
M., Graber, E., Ippolito, J., Kuzyakov, Y., Luo, Y., Ok, Y., Palansooriya,
K., Shepherd, J., Stephens, S., Weng, Z., and Lehmann, J.: How biochar works,
and when it doesn't: a review of mechanisms controlling soil and plant
responses to biochar, Glob. Change Biol. Bioenergy, 13, 1731–1764,
https://doi.org/10.1111/gcbb.12885, 2021. a
Kan, Z.-R., Liu, Q.-Y., Virk, A., He, C., Qi, J.-Y., Dang, Y., Zhao, X., and
Zhang, H.-L.: Effects of experiment duration on carbon mineralization and
accumulation under no-till, Soil Till. Res., 209, 104939,
https://doi.org/10.1016/j.still.2021.104939, 2021. a
Kim, N., Zabaloy, M., Guan, K., and Villamil, M.: Do cover crops benefit soil
microbiome? A meta-analysis of current research, Soil Biol.
Biochem., 142, 107701, https://doi.org/10.1016/j.soilbio.2019.107701, 2020. a
King, A. and Blesh, J.: Crop rotations for increased soil carbon: perenniality
as a guiding principle, Ecol. Appl., 28, 249–261,
https://doi.org/10.1002/eap.1648, 2018. a
Koestel, J., Dathe, A., Skaggs, T., Klakegg, O., Ahmad, M., Babko, M., Gimenez,
D., Farkas, C., Nemes, A., and Jarvis, N.: Estimating the permeability of
naturally structured soil from percolation theory and pore space
characteristics imaged by X-Ray, Water Resour. Res., 54,
9255–9263, https://doi.org/10.1029/2018WR023609, 2018. a
Kroeger, J., Pourhashem, G., Medlock, K., and Masiello, C.: Water cost savings
from soil biochar amendment: a spatial analysis, GCB
Bioenergy, 13, 133–142, 2020. a
Lal, R.: Soil organic matter and water retention, Agron. J., 112,
3265–3277, https://doi.org/10.1002/agj2.20282, 2020. a
Larsbo, M., Stenström, J., Etana, A., Börjesson, E., and Jarvis,
N. J.: Herbicide sorption, degradation, and leaching in three Swedish soils
under long-term conventional and reduced tillage, Soil Till. Res.,
105, 200–208, https://doi.org/10.1016/j.still.2009.08.003, 2009. a
Lee, H., Lautenbach, S., Nieto, A. P. G., Bondeau, A., Cramer, W., and
Geijzendorffer, I. R.: The impact of conservation farming practices on
Mediterranean agro-ecosystem services provisioning – a meta-analysis,
Reg. Environ. Change, 19, 2187–2202,
https://doi.org/10.1007/s10113-018-1447-y, 2019. a, b, c, d, e
Lee, K. and Foster, R.: Soil fauna and soil structure, Soil Res., 29, 745,
https://doi.org/10.1071/SR9910745, 1991. a
Leuther, F., Schlüter, S., Wallach, R., and Vogel, H.-J.: Structure and
hydraulic properties in soils under long-term irrigation with treated
wastewater, Geoderma, 333, 90–98, https://doi.org/10.1016/j.geoderma.2018.07.015,
2019. a
Li, Y., Li, Z., Cui, S., and Zhang, Q.: Trade-off between soil pH, bulk
density and other soil physical properties under global no-tillage
agriculture, Geoderma, 361, 114099, https://doi.org/10.1016/j.geoderma.2019.114099,
2020a. a, b, c, d
Li, Y., Li, Z., Cui, S., and Zhang, Q.: Trade-off between soil pH, bulk
density and other soil physical properties under global no-tillage
agriculture, Geoderma, 361, 114099, https://doi.org/10.1016/j.geoderma.2019.114099, 2020b. a
Li, Y., Song, D., Liang, S., Dang, P., Qin, X., Liao, Y., and Siddique, K. H.:
Effect of no-tillage on soil bacterial and fungal community diversity: A
meta-analysis, Soil Till. Res., 204, 104721,
https://doi.org/10.1016/j.still.2020.104721,
2020c. a
Li, Y., Zhang, Q., Cai, Y., Yang, Q., and Chang, S. X.: Minimum tillage and
residue retention increase soil microbial population size and diversity:
Implications for conservation tillage, Sci. Total Environ., 716,
137164, https://doi.org/10.1016/j.scitotenv.2020.137164, 2020d. a, b, c
Libohova, Z., Seybold, C., Wysocki, D., Wills, S., Schoeneberger, P., Williams,
C., Lindbo, D., Stott, D., and Owens, P.: Reevaluating the effects of soil
organic matter and other properties on available water-holding capacity using
the National Cooperative Soil Survey Characterization Database,
J. Soil Water Conserv., 73, 411–421,
https://doi.org/10.2489/jswc.73.4.411, 2018. a
Liu, R., Thomas, B. W., Shi, X., Zhang, X., Wang, Z., and Zhang, Y.: Effects of
ground cover management on improving water and soil conservation in tree crop
systems: A meta-analysis, CATENA, 199, 105085,
https://doi.org/10.1016/j.catena.2020.105085, 2021. a, b, c, d
Liu, Z., Dugan, B., Masiello, C. A., and Gonnermann, H. M.: Biochar particle
size, shape, and porosity act together to influence soil water properties,
PLOS ONE, 12, e0179079, https://doi.org/10.1371/journal.pone.0179079, 2017. a
Lu, J., Shao, G., Cui, J., Wang, X., and Keabetswe, L.: Yield, fruit quality
and water use efficiency of tomato for processing under regulated deficit
irrigation: A meta-analysis, Agr. Water Manage., 222, 301–312,
https://doi.org/10.1016/j.agwat.2019.06.008, 2019. a
Mangalassery, S., Sjögersten, S., Sparkes, D. L., and Mooney, S. J.:
Examining the potential for climate change mitigation from zero tillage,
J. Agr. Sci., 153, 1151–1173,
https://doi.org/10.1017/S0021859614001002, 2015. a, b
Marcillo, G. and Miguez, F.: Corn yield response to winter cover crops: An
updated meta-analysis, J. Soil Water Conserv., 72, 226–239,
https://doi.org/10.2489/jswc.72.3.226, 2017. a
McClelland, S. C., Paustian, K., and Schipanski, M. E.: Management of cover
crops in temperate climates influences soil organic carbon stocks: a
metaanalysis, Ecol. Appl., 31, https://doi.org/10.1002/eap.2278, 2021. a
McDaniel, M. D., Tiemann, L. K., and Grandy, A. S.: Does agricultural crop
diversity enhance soil microbial biomass and organic matter dynamics? A
meta-analysis, Ecol. Appl., 24, 560–570,
https://doi.org/10.1890/13-0616.1, 2014. a
Mei, K., Wang, Z., Huang, H., Zhang, C., Shang, X., Dahlgren, R. A., Zhang, M.,
and Xia, F.: Stimulation of N2O emission by conservation tillage management
in agricultural lands: A meta-analysis, Soil Till. Res., 182,
86–93, https://doi.org/10.1016/j.still.2018.05.006,
2018. a
Meurer, K., Barron, J., Chenu, C., Coucheney, E., Fielding, M., Hallett, P.,
Herrmann, A. M., Keller, T., Koestel, J., Larsbo, M., Lewan, E., Or, D.,
Parsons, D., Parvin, N., Taylor, A., Vereecken, H., and Jarvis, N.: A
framework for modelling soil structure dynamics induced by biological
activity, Glob. Change Biol., 26, 5382–5403, https://doi.org/10.1111/gcb.15289,
2020a. a
Meurer, K. H. E., Chenu, C., Coucheney, E., Herrmann, A. M., Keller, T., Kätterer, T., Nimblad Svensson, D., and Jarvis, N.: Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter, Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, 2020b. a, b
Meyer, N., Bergez, J.-E., Constantin, J., and Justes, E.: Cover Crops Reduce Drainage but Not Always Soil Water Content Due to Interactions between Rainfall Distribution and Management, Agricultural Water Management, 231, 105998, https://doi.org/10.1016/j.agwat.2019.105998, 2020. a
Mhazo, N., Chivenge, P., and Chaplot, V.: Tillage impact on soil erosion by
water: Discrepancies due to climate and soil characteristics, Agr.
Ecosyst. Environ., 230, 231–241, https://doi.org/10.1016/j.agee.2016.04.033,
2016. a
Minasny, B. and McBratney, A. B.: Limited effect of organic matter on soil
available water capacity, Eur. J. Soil Sci., 69, 39–47,
https://doi.org/10.1111/ejss.12475,
2018a. a
Minasny, B. and McBratney, A. B.: Rejoinder to the comment on: B. Minasny &
A.B. McBratney. 2018. Limited effect of organic matter on soil
available water capacity, Eur. J. Soil Sci., 69, 155–157,
https://doi.org/10.1111/ejss.12526,
2018b. a
Mondal, S., Chakraborty, D., Bandyopadhyay, K., Aggarwal, P., and Rana, D. S.:
A global analysis of the impact of zerotillage on soil physical condition,
organic carbon content, and plant root response, Land Degrad.
Dev., 31, 557–567, https://doi.org/10.1002/ldr.3470, 2020. a, b, c
Muhammad, I., Sainju, U. M., Zhao, F., Khan, A., Ghimire, R., Fu, X., and Wang,
J.: Regulation of soil CO2 and N2O emissions by cover crops: A
meta-analysis, Soil Till. Res., 192, 103–112,
https://doi.org/10.1016/j.still.2019.04.020, 2019. a
Muhammad, I., Wang, J., Sainju, U. M., Zhang, S., Zhao, F., and Khan, A.: Cover
cropping enhances soil microbial biomass and affects microbial community
structure: A meta-analysis, Geoderma, 381, 114696,
https://doi.org/10.1016/j.geoderma.2020.114696, 2021. a
Office of Assistant Director-General (Natural Resources Management and Environment Department): en Energy and Tenure Division Climate. Climate Smart Agriculture: Policies, Practices and Financing for Food Security, Rome, Italy, FAO, https://www.fao.org/publications/card/en/c/2a70a451-e81c-5f19-b571-93da80d9e26c/ (last access: 2 January 2023), 2010.
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., and Grace, P.:
Conservation agriculture and ecosystem services: An overview, Agr.
Ecosyst. Environ., 187, 87–105, https://doi.org/10.1016/j.agee.2013.10.010,
2014. a, b, c
Peixoto, D. S., da Silva, L. de C. M., de Melo, L. B. B., Azevedo, R. P., Araújo, B. C. L., de Carvalho, T. S., Moreira, S. G., Curi, N., and Silva, B. M.: Occasional tillage in no-tillage systems: A global
meta-analysis, Sci. Total Environ., 745, 140887,
https://doi.org/10.1016/j.scitotenv.2020.140887, 2020. a, b, c
Philibert, A., Loyce, C., and Makowski, D.: Assessment of the quality of
meta-analysis in agronomy, Agr. Ecosyst. Environ., 148,
72–82, https://doi.org/10.1016/j.agee.2011.12.003,
2012. a
Pittelkow, C., Linquist, B., Lundy, M., Liang, X., Groenigen, K., Lee, J.,
Gestel, N., Six, J., Venterea, R., and Kessel, C.: When does no-till yield
more? A global meta-analysis, Field Crop. Res., 183, 156–168,
https://doi.org/10.1016/j.fcr.2015.07.020, 2015a. a, b
Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., Groenigen, K. J.,
Lee, J., Gestel, N., Six, J., Venterea, R. T., and Kessel, C.: When does
no-till yield more? A global meta-analysis, Field Crop. Res., 183,
156–168, https://doi.org/10.1016/j.fcr.2015.07.020,
2015b. a
Pituello, C., Dal Ferro, N., Francioso, O., Simonetti, G., Berti, A., Piccoli,
I., Pisi, A., and Morari, F.: Effects of biochar on the dynamics of aggregate
stability in clay and sandy loam soils: Biochar effects on aggregate
stability dynamics, Eur. J. Soil Sci., 69, 827–842,
https://doi.org/10.1111/ejss.12676, 2018. a
Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via
cultivation of cover crops – A meta-analysis, Agriculture, Ecosystems &
Environment, 200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024, 2015. a
Qin, W., Assinck, F., Heinen, M., and Oenema, O.: Water and nitrogen use
efficiencies in citrus production: a meta-analysis, Agr. Ecosyst. Environ., 222, 103–111, https://doi.org/10.1016/j.agee.2016.01.052, 2016. a
Quemada, M., Baranski, M., Lange, M., Vallejo, A., and Cooper, J.:
Meta-analysis of strategies to control nitrate leaching in irrigated
agricultural systems and their effects on crop yield, Agr. Ecosyst.
Environ., 174, 1–10, https://doi.org/10.1016/j.agee.2013.04.018, 2013. a, b
Rabbi, S. M., Minasny, B., Salami, S. T., McBratney, A. B., and Young, I. M.:
Greater, but not necessarily better: The influence of biochar on soil
hydraulic properties, Eur. J. Soil Sci., 72, 2033–2048,
https://doi.org/10.1111/ejss.13105, 2021. a, b, c, d
Rabot, E., Wiesmeier, M., Schlüter, S., and Vogel, H.-J.: Soil structure
as an indicator of soil functions: A review, Geoderma, 314, 122–137,
https://doi.org/10.1016/j.geoderma.2017.11.009, 2018. a
Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., and
Corbeels, M.: Agro-ecological functions of crop residues under conservation
agriculture. A review, Agron. Sustain. Dev., 37, 26,
https://doi.org/10.1007/s13593-017-0432-z, 2017. a, b
Razzaghi, F., Obour, P. B., and Arthur, E.: Does biochar improve soil water
retention? A systematic review and meta-analysis, Geoderma, 361, 114055,
https://doi.org/10.1016/j.geoderma.2019.114055, 2020. a
Reeleder, R., Miller, J., Ball Coelho, B., and Roy, R.: Impacts of tillage,
cover crop, and nitrogen on populations of earthworms, microarthropods, and
soil fungi in a cultivated fragile soil, Appl. Soil Ecol., 33, 243–257,
https://doi.org/10.1016/j.apsoil.2005.10.006, 2006. a
Roarty, S., Hackett, R. A., and Schmidt, O.: Earthworm populations in twelve
cover crop and weed management combinations, Appl. Soil Ecol., 114,
142–151, https://doi.org/10.1016/j.apsoil.2017.02.001,
2017. a
Schmidt, H., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D., Sánchez Monedero, M. A., and Cayuela, M. L.: Biochar in agriculture – A
systematic review of 26 global metaanalyses, GCB Bioenergy, 13, 1708–1730,
https://doi.org/10.1111/gcbb.12889, 2021. a
Schreefel, L., Schulte, R., Boer, I., Schrijver, A. P., and Zanten, H.:
Regenerative agriculture – the soil is the base, Global Food Security, 26,
100404, https://doi.org/10.1016/j.gfs.2020.100404,
2020. a
Shakoor, A., Shahbaz, M., Farooq, T. H., Sahar, N. E., Shahzad, S. M., Altaf,
M. M., and Ashraf, M.: A global meta-analysis of greenhouse gases emission
and crop yield under no-tillage as compared to conventional tillage, Sci. Total Environ., 750, 142299,
https://doi.org/10.1016/j.scitotenv.2020.142299, 2021. a
Sun, H., Zhang, X., Liu, X., Liu, X., Ju, Z., and Shao, L.: The long-term
impact of irrigation on selected soil properties and grain production,
J. Soil Water Conserv., 73, 310–320,
https://doi.org/10.2489/jswc.73.3.310, 2018. a
Sun, W., Canadell, J., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., and
Huang, Y.: Climate drives global soil carbon sequestration and crop yield
changes under conservation agriculture, Glob. Change Biol., 26,
3325–3335, https://doi.org/10.1111/gcb.15001, 2020a. a
Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T.,
and Huang, Y.: Climate drives global soil carbon sequestration and crop yield
changes under conservation agriculture, Glob. Change Biol., 26,
3325–3335, https://doi.org/10.1111/gcb.15001,
2020b. a
Sun, Y., Zeng, Y., Shi, Q., Pan, X., and Huang, S.: No-tillage controls on
runoff: A meta-analysis, Soil Till. Res., 153, 1–6,
https://doi.org/10.1016/j.still.2015.04.007, 2015. a
Tamburini, G., Bommarco, R., Cherico Wanger, T., Kremen, C., Heijden, M.,
Liebman, M., and Hallin, S.: Agricultural diversification promotes multiple
ecosystem services without compromising yield, Science Advances, 6, 1715,
https://doi.org/10.1126/sciadv.aba1715, 2020a. a, b, c
Tamburini, G., Bommarco, R., Wanger, T. C., Kremen, C., Heijden, M. G. A.,
Liebman, M., and Hallin, S.: Agricultural diversification promotes multiple
ecosystem services without compromising yield, Science Advances, 6, eaba1715,
https://doi.org/10.1126/sciadv.aba1715,
2020b. a
Tonitto, C., David, M., and Drinkwater, L.: Replacing bare fallows with cover
crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield
and N dynamics, Agr. Ecosyst. Environ., 112, 58–72,
https://doi.org/10.1016/j.agee.2005.07.003, 2006.
a, b
Valkama, E., Lemola, R., Känkänen, H., and Turtola, E.: Meta-analysis
of the effects of undersown catch crops on nitrogen leaching loss and grain
yields in the Nordic countries, Agr. Ecosyst. Environ.,
203, 93–101, https://doi.org/10.1016/j.agee.2015.01.023, 2015. a, b
van Kessel, C., Venterea, R., Six, J., Adviento-Borbe, M., Linquist, B., and
Groenigen, K.-J.: Climate, duration, and N placement determine N2O
emissions in reduced tillage systems: a meta-analysis, Glob. Change Biol.,
19, 33–44, https://doi.org/10.1111/j.1365-2486.2012.02779.x, 2013. a
Venter, Z. S., Jacobs, K., and Hawkins, H.-J.: The impact of crop rotation on
soil microbial diversity: A meta-analysis, Pedobiologia, 59, 215–223,
https://doi.org/10.1016/j.pedobi.2016.04.001, 2016. a
Winter, S., Bauer, T., Strauss, P., Kratschmer, S., Paredes, D., Popescu, D.,
Landa, B., Guzmán, G., Gómez, J., Guernion, M., Zaller, J., and
Batáry, P.: Effects of vegetation management intensity on biodiversity
and ecosystem services in vineyards: a meta-analysis, J. Appl.
Ecol., 55, 2484–2495, https://doi.org/10.1111/1365-2664.13124, 2018. a
Yan, Y., Akbar Nakhli, S. A., Jin, J., Mills, G., Willson, C. S., Legates,
D. R., Manahiloh, K. N., and Imhoff, P. T.: Predicting the impact of biochar
on the saturated hydraulic conductivity of natural and engineered media,
J. Environ. Manage., 295, 113143,
https://doi.org/10.1016/j.jenvman.2021.113143, 2021. a
Yu, L., Zhao, X., Gao, X., and Siddique, K. H.: Improving/maintaining water-use
efficiency and yield of wheat by deficit irrigation: A global meta-analysis,
Agr. Water Manage., 228, 105906,
https://doi.org/10.1016/j.agwat.2019.105906, 2020. a
Yu, L., Zhao, X., Gao, X., Jia, R., Yang, M., Yang, X., Wu, Y., and Siddique,
K. H.: Effect of natural factors and management practices on agricultural
water use efficiency under drought: A meta-analysis of global drylands,
J. Hydrol., 594, 125977, https://doi.org/10.1016/j.jhydrol.2021.125977,
2021. a
Yu, X. and Lu, S.: Reconfiguration of macropore networks in a silty loam soil
following biochar addition identified by Xray microtomography and network
analyses, Eur. J. Soil Sci., 70, 591–603,
https://doi.org/10.1111/ejss.12773, 2019. a
Zuber, S. M. and Villamil, M. B.: Meta-analysis approach to assess effect of
tillage on microbial biomass and enzyme activities, Soil Biol.
Biochem., 97, 176–187, https://doi.org/10.1016/j.soilbio.2016.03.011, 2016. a, b
Executive editor
I think the paper contains some important messages for the management of soil water that have widespread implications
I think the paper contains some important messages for the management of soil water that have...
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to...