Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-621-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-621-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of agricultural management on soil aggregates and associated organic carbon fractions: analysis of long-term experiments in Europe
Ioanna S. Panagea
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
Antonios Apostolakis
Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
Antonio Berti
DAFNAE Department, University of Padova, Legnaro PD, 35020, Italy
Jenny Bussell
Game and Wildlife Conservation Trust, Allerton Project, Loddington, Leicester, LE7 9XE, UK
Pavel Čermak
Crop Research Institute, Prague 6-Ruzyne, 161 06, Czech Republic
Jan Diels
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
Annemie Elsen
Soil Service of Belgium (BDB), Heverlee, 3001, Belgium
Helena Kusá
Crop Research Institute, Prague 6-Ruzyne, 161 06, Czech Republic
Ilaria Piccoli
DAFNAE Department, University of Padova, Legnaro PD, 35020, Italy
Jean Poesen
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
Institute of Earth and Environmental Sciences, Faculty of Earth Sciences and Spatial Management, Maria-Curie Skłodowska University, Lublin, 20-718, Poland
Chris Stoate
Game and Wildlife Conservation Trust, Allerton Project, Loddington, Leicester, LE7 9XE, UK
Mia Tits
Soil Service of Belgium (BDB), Heverlee, 3001, Belgium
Zoltan Toth
Institute of Agronomy, Georgikon Campus, Keszthely, Hungarian University of Agriculture and Life Sciences, Gödöllö, 2100, Hungary
Guido Wyseure
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
Related authors
No articles found.
Antoine Dille, Olivier Dewitte, Jente Broeckx, Koen Verbist, Andile Sindiso Dube, Jean Poesen, and Matthias Vanmaercke
EGUsphere, https://doi.org/10.5194/egusphere-2025-5056, https://doi.org/10.5194/egusphere-2025-5056, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In mountain regions, intense rainfall can trigger thousands of landslides within hours. Yet, while most efforts focus on where landslides start, the worst impacts often occur far downstream because slope material can mix with large runoffs. Studying Cyclone Idai’s impacts in eastern Zimbabwe, we found that landslide sources explain only one-fifth of total population exposure, highlighting the need to consider the full landslide–flood continuum to better protect people and plan safer landscapes.
Marit G. A. Hendrickx, Jan Vanderborght, Pieter Janssens, Sander Bombeke, Evi Matthyssen, Anne Waverijn, and Jan Diels
SOIL, 11, 435–456, https://doi.org/10.5194/soil-11-435-2025, https://doi.org/10.5194/soil-11-435-2025, 2025
Short summary
Short summary
We developed a method to estimate errors in soil moisture measurements using limited sensors and infrequent sampling. By analyzing data from 93 cropping cycles in agricultural fields in Belgium, we identified both systematic and random errors for our sensor setup. This approach reduces the need for extensive sensor networks and is applicable to agricultural and environmental monitoring and ensures more reliable soil moisture data, enhancing water management and improving model predictions.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Ilaria Piccoli, Felice Sartori, Riccardo Polese, and Antonio Berti
EGUsphere, https://doi.org/10.5194/egusphere-2022-1497, https://doi.org/10.5194/egusphere-2022-1497, 2023
Preprint archived
Short summary
Short summary
This manuscript deals with the evolution of soil organic carbon stock of a long-term experiment started in 1966 including different crop residue management. The main findings of the MS are that: crop residue increased C stock with an increment four times lower than what was suggested by the “4 per 1000 initiative”. The study demonstrated to be far from C saturation, being in the 30–47 % degree of saturation range.
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022, https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary
Short summary
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution of global satellite soil moisture observations to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in, for example, meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
Felice Sartori, Ilaria Piccoli, Riccardo Polese, and Antonio Berti
SOIL, 8, 213–222, https://doi.org/10.5194/soil-8-213-2022, https://doi.org/10.5194/soil-8-213-2022, 2022
Short summary
Short summary
This study aimed to evaluate the short-term effects of the transition from conventional to conservation agriculture on soil physical properties, by determining the best soil tillage and covering combination, to exploit the benefits of conservation agriculture from the first conversion years. The results proved that, despite an increase in bulk density and penetration resistance, soil under reduced tillage systems with a cover crop improved its hydraulic properties.
Cited articles
Ananyeva, K., Wang, W., Smucker, A. J., Rivers, M. L., and Kravchenko, A. N.:
Can intra-aggregate pore structures affect the aggregate's effectiveness in
protecting carbon?, Soil Biol. Biochem., 57, 868–875,
https://doi.org/10.1016/j.soilbio.2012.10.019, 2013. a
Andruschkewitsch, R., Koch, H. J., and Ludwig, B.: Effect of long-term tillage
treatments on the temporal dynamics of water-stable aggregates and on
macro-aggregate turnover at three German sites, Geoderma, 217/218, 57–64,
https://doi.org/10.1016/j.geoderma.2013.10.022, 2014. a, b, c
Apostolakis, A., Panakoulia, S., Nikolaidis, N. P., and Paranychianakis, N. V.:
Shifts in soil structure and soil organic matter in a chronosequence of
set-aside fields, Soil Till. Res., 174, 113–119,
https://doi.org/10.1016/j.still.2017.07.004, 2017. a, b
Batista, A., Nunes, M., Pessoa, T., and Libardi, P. L.: Seasonal Variation of
the Rhizosphere Soil Aggregation in an Oxisol, SSRN [preprint],
https://doi.org/10.2139/ssrn.4074493, 2022. a
Berner, A., Hildermann, I., Fließbach, A., Pfiffner, L., Niggli, U., and
Mäder, P.: Crop yield and soil fertility response to reduced tillage
under organic management, Soil Till. Res., 101, 89–96,
https://doi.org/10.1016/j.still.2008.07.012, 2008. a
Berti, A., Morari, F., Dal Ferro, N., Simonetti, G., and Polese, R.: Organic
input quality is more important than its quantity: C turnover coefficients in
different cropping systems, Europ. J. Agron., 77, 138–145,
https://doi.org/10.1016/j.eja.2016.03.005, 2016. a, b
Blanco-Canqui, H. and Lal, R.: No-Tillage and Soil-Profile Carbon
Sequestration: An On-Farm Assessment, Soil Sci. Soc. Am.
J., 72, 693–701, https://doi.org/10.2136/sssaj2007.0233, 2008. a, b, c
Boddey, R. M., Jantalia, C. P., Conceiçao, P. C., Zanatta, J. A., Bayer,
C., Mielniczuk, J., Dieckow, J., Dos Santos, H. P., Denardin, J. E., Aita,
C., Giacomini, S. J., Alves, B. J., and Urquiaga, S.: Carbon accumulation at
depth in Ferralsols under zero-till subtropical agriculture, Glob. Change
Biol., 16, 784–795, https://doi.org/10.1111/j.1365-2486.2009.02020.x, 2010. a
Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismányoky, T., Lipiec,
J., Tits, M., Tóth, Z., and Kätterer, T.: The effect of crop
residues, cover crops, manures and nitrogen fertilization on soil organic
carbon changes in agroecosystems: a synthesis of reviews, Mitig. Adapt. Strat. Gl., 25, 929–952,
https://doi.org/10.1007/s11027-020-09916-3, 2020. a
Camarotto, C., Piccoli, I., Dal Ferro, N., Polese, R., Chiarini, F., Furlan,
L., and Morari, F.: Have we reached the turning point? Looking for evidence
of SOC increase under conservation agriculture and cover crop practices,
Europ. J. Soil Sci., 71, 1050–1063, https://doi.org/10.1111/ejss.12953,
2020. a
Cambardella, C. A. and Elliott, E. T.: Particulate Soil Organic‐Matter
Changes across a Grassland Cultivation Sequence, Soil Sci. Soc.
Am. J., 56, 777–783, https://doi.org/10.2136/sssaj1992.03615995005600030017x,
1992. a, b, c
Cannell, R. Q.: Reduced tillage in north-west Europe-A review, Soil Till. Res., 5, 129–177, https://doi.org/10.1016/0167-1987(85)90028-5, 1985. a
Cardinael, R., Eglin, T., Guenet, B., Neill, C., Houot, S., and Chenu, C.: Is
priming effect a significant process for long-term SOC dynamics? Analysis of
a 52-years old experiment, Biogeochemistry, 123, 203–219,
https://doi.org/10.1007/s10533-014-0063-2, 2015. a
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six, J.:
Integrating plant litter quality, soil organic matter stabilization, and the
carbon saturation concept, Glob. Change Biol., 21, 3200–3209, 2015. a
Ceglar, A., Zampieri, M., Toreti, A., and Dentener, F.: Observed Northward
Migration of Agro-Climate Zones in Europe Will Further Accelerate Under
Climate Change, Earth's Future, 7, 1088–1101, https://doi.org/10.1029/2019EF001178,
2019. a
Chen, J., Zhu, R., Zhang, Q., Kong, X., and Sun, D.: Reduced-tillage
management enhances soil properties and crop yields in a alfalfa-corn
rotation: Case study of the Songnen Plain, China, Sci. Rep., 9,
1–10, https://doi.org/10.1038/s41598-019-53602-7, 2019. a, b
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and
Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge
gaps and potential innovations, Soil Till. Res., 188, 41–52,
https://doi.org/10.1016/j.still.2018.04.011, 2019. a
Cooper, H. V., Sjögersten, S., Lark, R. M., and Mooney, S. J.: To till
or not to till in a temperate ecosystem? Implications for climate change
mitigation, Environ. Res. Lett., 16, 054022,
https://doi.org/10.1088/1748-9326/abe74e, 2021. a, b, c, d
Dal Ferro, N., Piccoli, I., Berti, A., Polese, R., and Morari, F.: Organic
carbon storage potential in deep agricultural soil layers: Evidence from
long-term experiments in northeast Italy, Agr. Ecosyst.
Environ., 300, 106967, https://doi.org/10.1016/j.agee.2020.106967, 2020. a
De Clercq, T., Heiling, M., Dercon, G., Resch, C., Aigner, M., Mayer, L.,
Mao, Y., Elsen, A., Steier, P., Leifeld, J., and Merckx, R.: Predicting soil
organic matter stability in agricultural fields through carbon and nitrogen
stable isotopes, Soil Biol. Biochem., 88, 29–38,
https://doi.org/10.1016/j.soilbio.2015.05.011, 2015. a
De Clercq, T., Merckx, R., Elsen, A., and Vandendriessche, H.: Impact of
long-term compost amendments on soil fertility, soil organic matter fractions
and nitrogen mineralization, Acta Hortic., 1146, 79–86,
https://doi.org/10.17660/ActaHortic.2016.1146.10, 2016. a, b
Denef, K., Six, J., Paustian, K., and Merckx, R.: Importance of macroaggregate
dynamics in controlling soil carbon stabilization: Short-term effects of
physical disturbance induced by dry-wet cycles, Soil Biol.
Biochem., 33, 2145–2153, https://doi.org/10.1016/S0038-0717(01)00153-5, 2001. a, b
Denef, K., Six, J., Merckx, R., and Paustian, K.: Carbon Sequestration in
Microaggregates of No Tillage Soils with Different Clay Mineralogy, Soil
Sci. Soc. Am. J., 68, 1935–1944,
https://doi.org/10.2136/sssaj2004.1935, 2004. a
Denef, K., Zotarelli, L., Boddey, R. M., and Six, J.:
Microaggregate-associated carbon as a diagnostic fraction for
management-induced changes in soil organic carbon in two Oxisols, Soil
Biol. Biochem., 39, 1165–1172,
https://doi.org/10.1016/j.soilbio.2006.12.024, 2007. a, b
Devine, S., Markewitz, D., Hendrix, P., and Coleman, D.: Soil aggregates and
associated organic matter under conventional tillage, no-tillage, and forest
succession after three decades, PLoS ONE, 9, 1–12,
https://doi.org/10.1371/journal.pone.0084988, 2014. a
D'Hose, T., Cougnon, M., De Vliegher, A., Vandecasteele, B., Viaene, N.,
Cornelis, W., Van Bockstaele, E., and Reheul, D.: The positive
relationship between soil quality and crop production: A case study on the
effect of farm compost application, Appl. Soil Ecol., 75, 189–198,
https://doi.org/10.1016/j.apsoil.2013.11.013, 2014. a
Dignac, M. F., Derrien, D., Barré, P., Barot, S., Cécillon, L.,
Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde,
M., Klumpp, K., Lashermes, G., Maron, P. A., Nunan, N., Roumet, C., and
Basile-Doelsch, I.: Increasing soil carbon storage: mechanisms, effects of
agricultural practices and proxies. A review, Agron. Sustain.
Dev., 37, 14, https://doi.org/10.1007/s13593-017-0421-2, 2017. a, b
Dimoyiannis, D.: Seasonal soil aggregate stability variation in relation to
rainfall and temperature under Mediterranean conditions, Earth Surf.
Process. Land., 34, 860–866,
https://doi.org/10.1002/esp.1785, 2009. a
Du, Z., Angers, D. A., Ren, T., Zhang, Q., and Li, G.: The effect of no-till
on organic C storage in Chinese soils should not be overemphasized: A
meta-analysis, Agr. Ecosyst. Environ., 236, 1–11,
https://doi.org/10.1016/j.agee.2016.11.007, 2017. a
Elliott, E.: Aggregate Structure and Carbon, Nitrogen, and Phosphorus in
Native and Cultivated Soils, Soil Sci. Soc. Am. J., 50,
627–633, https://doi.org/10.2136/sssaj1986.03615995005000030017x, 1986. a
Elliott, E. T., Palm, C. A., Reuss, D. E., and Monz, C. A.: Organic matter
contained in soil aggregates from a tropical chronosequence: correction for
sand and light fraction, Agr. Ecosyst. Environ., 34,
443–451, https://doi.org/10.1016/0167-8809(91)90127-J, 1991. a, b
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., and Rumpel, C.:
Stability of organic carbon in deep soil layers controlled by fresh carbon
supply, Nature, 450, 277–280, https://doi.org/10.1038/nature06275, 2007. a, b
Fuentes, M., Govaerts, B., De León, F., Hidalgo, C., Dendooven, L.,
Sayre, K. D., and Etchevers, J.: Fourteen years of applying zero and
conventional tillage, crop rotation and residue management systems and its
effect on physical and chemical soil quality, Europ. J. Agron.,
30, 228–237, https://doi.org/10.1016/j.eja.2008.10.005, 2009. a
Fuentes, M., Hidalgo, C., Etchevers, J., de León, F., Guerrero, A.,
Dendooven, L., Verhulst, N., and Govaerts, B.: Conservation agriculture,
increased organic carbon in the top-soil macro-aggregates and reduced soil CO
2 emissions, Plant Soil, 355, 183–197, https://doi.org/10.1007/s11104-011-1092-4,
2012. a, b, c
Ghimire, R., Norton, U., Bista, P., Obour, A. K., and Norton, J. B.: Soil
organic matter, greenhouse gases and net global warming potential of
irrigated conventional, reduced-tillage and organic cropping systems,
Nutr. Cycl. Agr., 107, 49–62,
https://doi.org/10.1007/s10705-016-9811-0, 2017. a
Giannakis, G., Panakoulia, S., Nikolaidis, N., and Paranychianakis, N.:
Simulating Soil Fertility Restoration Using the CAST Model, Proced. Earth Plan. Sc., 10, 325–329, https://doi.org/10.1016/j.proeps.2014.08.027,
2014. a
Gross, A. and Glaser, B.: Meta-analysis on how manure application changes soil
organic carbon storage, Sci. Rep., 11, 1–13,
https://doi.org/10.1038/s41598-021-82739-7, 2021. a, b
Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E.,
Thomsen, I. K., Jørgensen, H. B., and Söderström, B.: How
does tillage intensity affect soil organic carbon? A systematic review,
Environ. Evid., 6, 1–8, https://doi.org/10.1186/s13750-017-0108-9, 2017. a, b, c
Hobson, D., Harty, M., Tracy, S. R., and McDonnell, K.: The effect of tillage depth and traffic management on soil properties and root development during two growth stages of winter wheat (Triticum aestivum L.), SOIL, 8, 391–408, https://doi.org/10.5194/soil-8-391-2022, 2022. a
Hoffmann, S. and Kismányoky, T.: Soil fertility in a long-term
fertilizer trial with different tillage systems, Arch. Agron.
Soil Sci., 46, 239–250, https://doi.org/10.1080/03650340109366175, 2001. a
Jastrow, J. D., Amonette, J. E., and Bailey, V. L.: Mechanisms controlling
soil carbon turnover and their potential application for enhancing carbon
sequestration, Climatic Change, 80, 5–23, https://doi.org/10.1007/s10584-006-9178-3,
2007. a
Jat, H. S., Datta, A., Choudhary, M., Yadav, A. K., Choudhary, V., Sharma,
P. C., Gathala, M. K., Jat, M. L., and McDonald, A.: Effects of tillage,
crop establishment and diversification on soil organic carbon, aggregation,
aggregate associated carbon and productivity in cereal systems of semi-arid
Northwest India, Soil Till. Res., 190, 128–138,
https://doi.org/10.1016/j.still.2019.03.005, 2019. a, b, c
Jirků, V., Kodešová, R., Mühlhanselová, M., and
Žigová, A.: Seasonal variability of soil structure and soil
hydraulic properties, in: 19th World Congress of Soil Science, Soil
Solutions for a Changing World, Brisbane, Australia, ISBN: 9780646537832, 2010. a
Karlen, D. L., Wollenhaupt, N. C., Erbach, D. C., Berry, E. C., Swan, J. B.,
Eash, N. S., and Jordahl, J. L.: Crop residue effects on soil quality
following 10-years of no-till corn, Soil Till. Res., 31, 149–167,
https://doi.org/10.1016/0167-1987(94)90077-9, 1994. a
Karlen, D. L., Cambardella, C. A., Kovar, J. L., and Colvin, T. S.: Soil
quality response to long-term tillage and crop rotation practices, Soil
Till. Res., 133, 54–64, https://doi.org/10.1016/j.still.2013.05.013, 2013. a, b
Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., and
Menichetti, L.: Roots contribute more to refractory soil organic matter than
above-ground crop residues, as revealed by a long-term field experiment,
Agr. Ecosyst. Environ., 141, 184–192,
https://doi.org/10.1016/j.agee.2011.02.029, 2011. a
Kay, B. D. and VandenBygaart, A. J.: Conservation tillage and depth
stratification of porosity and soil organic matter, Soil Till. Res., 66, 107–118, https://doi.org/10.1016/S0167-1987(02)00019-3, 2002. a
King, A. E., Congreves, K. A., Deen, B., Dunfield, K. E., Voroney, R. P., and
Wagner-Riddle, C.: Quantifying the relationships between soil fraction mass,
fraction carbon, and total soil carbon to assess mechanisms of physical
protection, Soil Biol. Biochem., 135, 95–107,
https://doi.org/10.1016/j.soilbio.2019.04.019, 2019. a, b
Kismányoky, T. and Tóth, Z.: Effect of mineral and organic
fertilization on soil organic carbon content as well as on grain production
of cereals in the IOSDV (ILTE) long-term field experiment, Keszthely,
Hungary, Arch. Agron. Soil Sci., 59, 1121–1131,
https://doi.org/10.1080/03650340.2012.712208, 2013. a
Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F., and van Kessel, C.:
The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon
Stabilization in Sustainable Cropping Systems, Soil Sci. Soc. Am. J., 69, 1078–1085, https://doi.org/10.2136/sssaj2004.0215, 2005. a
Kotronakis, M., Giannakis, G. V., Nikolaidis, N. P., Rowe, E. C., Valstar, J.,
Paranychianakis, N. V., and Banwart, S. A.: Modeling the Impact of Carbon
Amendments on Soil Ecosystem Functions Using the 1D-ICZ Model, Vol. 142,
Elsevier Inc., 1 Edn., https://doi.org/10.1016/bs.agron.2016.10.010, 2017. a, b
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil
organic matter into particulate and mineral-associated forms to address
global change in the 21st century, Glob. Change Biol., 26, 261–273,
https://doi.org/10.1111/gcb.14859, 2020. a
Lazcano, C., Zhu-Barker, X., and Decock, C.: Effects of Organic Fertilizers on
the Soil Microorganisms Responsible for N2O Emissions: A Review,
Microorganisms, 9, 983, https://doi.org/10.3390/microorganisms9050983, 2021. a
Lenth, R.: Estimated Marginal Means, aka Least-Squares Means,
https://CRAN.R-project.org/package=emmeans (last access: 29 October 2022), 2020. a
Li, Y., Li, Z., Chang, S. X., Cui, S., Jagadamma, S., Zhang, Q., and Cai, Y.:
Residue retention promotes soil carbon accumulation in minimum tillage
systems: Implications for conservation agriculture, Sci. Total
Environ., 740, 140147, https://doi.org/10.1016/j.scitotenv.2020.140147, 2020. a, b
Lin, Y., Ye, G., Kuzyakov, Y., Liu, D., Fan, J., and Ding, W.: Long-term
manure application increases soil organic matter and aggregation, and alters
microbial community structure and keystone taxa, Soil Biol.
Biochem., 134, 187–196, https://doi.org/10.1016/j.soilbio.2019.03.030, 2019. a, b, c, d
Liu, X. J. A., Finley, B. K., Mau, R. L., Schwartz, E., Dijkstra, P., Bowker,
M. A., and Hungate, B. A.: The soil priming effect: Consistent across
ecosystems, elusive mechanisms, Soil Biol. Biochem., 140,
107617, https://doi.org/10.1016/j.soilbio.2019.107617, 2020. a
Lugato, E., Simonetti, G., Morari, F., Nardi, S., Berti, A., and Giardini, L.:
Distribution of organic and humic carbon in wet-sieved aggregates of
different soils under long-term fertilization experiment, Geoderma, 157,
80–85, https://doi.org/10.1016/j.geoderma.2010.03.017, 2010. a
Luo, Z., Wang, E., and Sun, O. J.: Soil carbon change and its responses to
agricultural practices in Australian agro-ecosystems: A review and
synthesis, Geoderma, 155, 211–223, https://doi.org/10.1016/j.geoderma.2009.12.012,
2010. a
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D. J.,
Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin,
M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de Forges, A. C.,
Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I.,
Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C. C., Vågen, T. G.,
van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma,
292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017. a, b
Modak, K., Biswas, D. R., Ghosh, A., Pramanik, P., Das, T. K., Das, S., Kumar,
S., Krishnan, P., and Bhattacharyya, R.: Zero tillage and residue retention
impact on soil aggregation and carbon stabilization within aggregates in
subtropical India, Soil Till. Res., 202, 104649,
https://doi.org/10.1016/j.still.2020.104649, 2020. a, b, c, d, e
Mondal, S. and Chakraborty, D.: Global meta-analysis suggests that no-tillage
favourably changes soil structure and porosity, Geoderma, 405, 115443,
https://doi.org/10.1016/j.geoderma.2021.115443, 2022. a
Mühlbachová, G., Kusá, H., and Růžek, P.: Soil
characteristics and crop yields under differenttillage techniques, Plant,
Soil and Environment, 61, 566–572, https://doi.org/10.17221/567/2015-PSE, 2015. a
Nimmo, J.: Aggregation: Physical Aspects, Elsevier Inc.,
https://doi.org/10.1016/b978-0-12-409548-9.05087-9, 2013. a
Oades, J.: Soil organic matter and structural stability : mechanisms and
implications for management A, Plant Soil, 76, 319–337,
https://doi.org/10.1007/BF02205590, 1984. a
Ogle, S. M., Swan, A., and Paustian, K.: No-till management impacts on crop
productivity, carbon input and soil carbon sequestration, Agr. Ecosyst. Environ., 149, 37–49, https://doi.org/10.1016/j.agee.2011.12.010,
2012. a
Pan, J., Wang, J., Zhang, R., Tian, D., Cheng, X., Wang, S., Chen, C., Yang,
L., and Niu, S.: Microaggregates regulated by edaphic properties determine
the soil carbon stock in Tibetan alpine grasslands, Catena, 206, 105570,
https://doi.org/10.1016/j.catena.2021.105570, 2021. a
Panagea, I.: Data to support the publication “Impact of agricultural management on soil aggregates and associated organic carbon fractions: Analysis of long-term experiments in Europe”, Zenodo [data set], https://doi.org/10.5281/zenodo.7126484, 2022. a
Panagea, I. S., Berti, A., Čermak, P., Diels, J., Elsen, A., Kusá,
H., Piccoli, I., Poesen, J., Stoate, C., Tits, M., Toth, Z., and Wyseure, G.:
Soil Water Retention as Affected by Management Induced Changes of Soil
Organic Carbon: Analysis of Long-Term Experiments in Europe, Land, 10, 1362,
https://doi.org/10.3390/land10121362, 2021. a, b
Paul, B. K., Vanlauwe, B., Ayuke, F., Gassner, A., Hoogmoed, M., Hurisso,
T. T., Koala, S., Lelei, D., Ndabamenye, T., Six, J., and Pulleman, M. M.:
Medium-term impact of tillage and residue management on soil aggregate
stability, soil carbon and crop productivity, Agr. Ecosyst. Environ., 164, 14–22, https://doi.org/10.1016/j.agee.2012.10.003, 2013. a
Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G.,
Tiessen, H., Van Noordwijk, M., and Woomer, P. L.: Agricultural soils as a
sink, Soil Use Manag., 13, 230–244, 1997. a
Peigné, J., Vian, J. F., Payet, V., and Saby, N. P.: Soil fertility
after 10 years of conservation tillage in organic farming, Soil Till.
Res., 175, 194–204, https://doi.org/10.1016/j.still.2017.09.008, 2018. a, b
Piazza, G., Pellegrino, E., Moscatelli, M. C., and Ercoli, L.: Long-term
conservation tillage and nitrogen fertilization effects on soil aggregate
distribution, nutrient stocks and enzymatic activities in bulk soil and
occluded microaggregates, Soil Till. Res., 196, 104482,
https://doi.org/10.1016/j.still.2019.104482, 2020. a, b
Piccoli, I., Chiarini, F., Carletti, P., Furlan, L., Lazzaro, B., Nardi, S.,
Berti, A., Sartori, L., Dalconi, M. C., and Morari, F.: Disentangling the
effects of conservation agriculture practices on the vertical distribution of
soil organic carbon. Evidence of poor carbon sequestration in North-Eastern
Italy, Agr. Ecosyst. Environ., 230, 68–78,
https://doi.org/10.1016/j.agee.2016.05.035, 2016. a
Piccoli, I., Lazzaro, B., Furlan, L., Berti, A., and Morari, F.: Examining
crop root apparatus traits in a maize-soybean-winter wheat rotation under
conservation agriculture management, Europ. J. Agronomy, 122,
126171, https://doi.org/10.1016/j.eja.2020.126171, 2021. a
Plaza-Bonilla, D., Cantero-Martínez, C., and Álvaro-Fuentes, J.:
Tillage effects on soil aggregation and soil organic carbon profile
distribution under Mediterranean semi-arid conditions, Soil Use
Manag., 26, 465–474, https://doi.org/10.1111/j.1475-2743.2010.00298.x, 2010. a
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo,
M. F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog,
M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M.,
Soong, J., Trigalet, S., Vermeire, M. L., Rovira, P., van Wesemael, B.,
Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating
organic carbon fractions with varying turnover rates in temperate
agricultural soils – A comprehensive method comparison, Soil Biol.
Biochem., 125, 10–26, https://doi.org/10.1016/j.soilbio.2018.06.025, 2018. a, b
Powlson, D. S., Glendining, M. J., Coleman, K., and Whitmore, A. P.:
Implications for soil properties of removing cereal straw: Results from
long-term studies, Agron. J., 103, 279–287,
https://doi.org/10.2134/agronj2010.0146s, 2011. a
Pu, C., Kan, Z. R., Liu, P., Ma, S. T., Qi, J. Y., Zhao, X., and Zhang, H. L.:
Residue management induced changes in soil organic carbon and total nitrogen
under different tillage practices in the North China Plain, J.
Integr. Agr., 18, 1337–1347, https://doi.org/10.1016/S2095-3119(18)62079-9,
2019. a
R Core Team: R: A Language and Environment for Statistical Computing,
https://www.r-project.org/ (last access: 29 September 2022), 2019. a
RStudio Team: RStudio: Integrated Development Environment for R,
http://www.rstudio.com/ (last access: 29 September 2022), 2016. a
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter-a key but
poorly understood component of terrestrial C cycle, Plant Soil, 338,
143–158, https://doi.org/10.1007/s11104-010-0391-5, 2011. a
Rusinamhodzi, L., Corbeels, M., van Wijk, M. T., Rufino, M. C., Nyamangara, J.,
and Giller, K. E.: A meta-analysis of long-term effects of conservation
agriculture on maize grain yield under rain-fed conditions, Agron.
Sustain. Dev., 31, 657, https://doi.org/10.1007/s13593-011-0040-2, 2011. a
Sartori, F., Piccoli, I., Polese, R., and Berti, A.: Transition to conservation agriculture: how tillage intensity and covering affect soil physical parameters, SOIL, 8, 213–222, https://doi.org/10.5194/soil-8-213-2022, 2022. a
Schils, R., Olesen, J. E., Kersebaum, K. C., Rijk, B., Oberforster, M.,
Kalyada, V., Khitrykau, M., Gobin, A., Kirchev, H., Manolova, V., Manolov,
I., Trnka, M., Hlavinka, P., Paluoso, T., Peltonen-Sainio, P., Jauhiainen,
L., Lorgeou, J., Marrou, H., Danalatos, N., Archontoulis, S., Fodor, N.,
Spink, J., Roggero, P. P., Bassu, S., Pulina, A., Seehusen, T., Uhlen, A. K.,
Żyłowska, K., Nieróbca, A., Kozyra, J., Silva, J. V.,
Maçãs, B. M., Coutinho, J., Ion, V., Takáč, J.,
Mínguez, M. I., Eckersten, H., Levy, L., Herrera, J. M., Hiltbrunner,
J., Kryvobok, O., Kryvoshein, O., Sylvester-Bradley, R., Kindred, D., Topp,
C. F., Boogaard, H., de Groot, H., Lesschen, J. P., van Bussel, L., Wolf, J.,
Zijlstra, M., van Loon, M. P., and van Ittersum, M. K.: Cereal yield gaps
across Europe, Europ. J. Agron., 101, 109–120,
https://doi.org/10.1016/j.eja.2018.09.003, 2018. a
Schneider, F., Don, A., Hennings, I., Schmittmann, O., and Seidel, S. J.: The
effect of deep tillage on crop yield – What do we really know?, Soil Till. Res., 174, 193–204, https://doi.org/10.1016/j.still.2017.07.005, 2017. a
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner,
I., and Schulze, E. D.: Storage and stability of organic carbon in soils as
related to depth, occlusion within aggregates, and attachment to minerals,
Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013, 2013. a
Sheehy, J., Regina, K., Alakukku, L., and Six, J.: Impact of no-till and
reduced tillage on aggregation and aggregate-associated carbon in Northern
European agroecosystems, Soil Till. Res., 150, 107–113,
https://doi.org/10.1016/j.still.2015.01.015, 2015. a, b
Six, J. and Paustian, K.: Aggregate-associated soil organic matter as an
ecosystem property and a measurement tool, Soil Biol. Biochem.,
68, A4–A9, https://doi.org/10.1016/j.soilbio.2013.06.014, 2014. a, b
Six, J., Elliott, E., Paustian, K., and Doran, J. W.: Aggregation and Soil
Organic Matter Accumulation in Cultivated and Native Grassland Soils, Soil Sci. Soc. Am. J., 62, 1367–1377,
https://doi.org/10.2136/sssaj1998.03615995006200050032x, 1998. a
Six, J., Paustian, K., Elliott, E. T., and Combrink, C.: Soil Structure and
Organic Matter I. Distribution of Aggregate‐Size Classes and
Aggregate‐Associated Carbon, Soil Sci. Soc. Am. J., 64,
681–689, https://doi.org/10.2136/sssaj2000.642681x, 2000b. a, b, c
Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S. J., Gregorich, E. G., Paul, E. A., and Paustian, K.: Measuring and Understanding Carbon Storage in Afforested Soils by Physical Fractionation, Soil Sci. Soc. Am. J., 66, 1981–1987, https://doi.org/10.2136/sssaj2002.1981, 2002. a
Song, K., Xue, Y., Zheng, X., Lv, W., Qiao, H., Qin, Q., and Yang, J.: Effects
of the continuous use of organic manure and chemical fertilizer on soil
inorganic phosphorus fractions in calcareous soil, Sci. Rep., 7,
1164, https://doi.org/10.1038/s41598-017-01232-2, 2017. a
Song, K., Zheng, X., Lv, W., Qin, Q., Sun, L., Zhang, H., and Xue, Y.: Effects
of tillage and straw return on water-stable aggregates, carbon stabilization
and crop yield in an estuarine alluvial soil, Sci. Rep., 9, 1–11,
https://doi.org/10.1038/s41598-019-40908-9, 2019. a, b
Struijk, M., Whitmore, A. P., Mortimer, S. R., and Sizmur, T.: Obtaining more
benefits from crop residues as soil amendments by application as chemically
heterogeneous mixtures, SOIL, 6, 467–481, https://doi.org/10.5194/soil-6-467-2020,
2020. a
Thomsen, I. K., Olesen, J. E., Møller, H. B., Sørensen, P., and
Christensen, B. T.: Carbon dynamics and retention in soil after anaerobic
digestion of dairy cattle feed and faeces, Soil Biol. Biochem.,
58, 82–87, https://doi.org/10.1016/j.soilbio.2012.11.006, 2013. a
Tits, M., Elsen, A., Bries, J., and Vandendriessche, H.: Short-term and
long-term effects of vegetable, fruit and garden waste compost applications
in an arable crop rotation in Flanders, Plant Soil, 376, 43–59,
https://doi.org/10.1007/s11104-012-1318-0, 2014. a
Trumbore, S.: Radiocarbon and soil carbon dynamics, Ann. Rev. Earth
Pl. Sc., 37, 47–66,
https://doi.org/10.1146/annurev.earth.36.031207.124300, 2009. a
Van den Putte, A., Govers, G., Diels, J., Gillijns, K., and Demuzere, M.:
Assessing the effect of soil tillage on crop growth: A meta-regression
analysis on European crop yields under conservation agriculture, Europ. J. Agron., 33, 231–241, https://doi.org/10.1016/j.eja.2010.05.008, 2010. a
Varvel, G. E. and Wilhelm, W. W.: No-tillage increases soil profile carbon and
nitrogen under long-term rainfed cropping systems, Soil Till. Res., 114, 28–36, https://doi.org/10.1016/j.still.2011.03.005, 2011. a, b
Virto, I., Barré, P., Burlot, A., and Chenu, C.: Carbon input
differences as the main factor explaining the variability in soil organic C
storage in no-tilled compared to inversion tilled agrosystems,
Biogeochemistry, 108, 17–26, https://doi.org/10.1007/s10533-011-9600-4, 2012. a, b, c
Vonk, W. J., van Ittersum, M. K., Reidsma, P., Zavattaro, L., Bechini, L.,
Guzmán, G., Pronk, A., Spiegel, H., Steinmann, H. H., Ruysschaert, G.,
and Hijbeek, R.: European survey shows poor association between soil organic
matter and crop yields, Nutr. Cycl. Agroecosys., 118, 325–334,
https://doi.org/10.1007/s10705-020-10098-2, 2020. a
Wang, H., Boutton, T. W., Xu, W., Hu, G., Jiang, P., and Bai, E.: Quality of
fresh organic matter affects priming of soil organic matter and substrate
utilization patterns of microbes, Sci. Rep., 5, 10102,
https://doi.org/10.1038/srep10102, 2015. a
Webster, R.: Analysis of variance, inference, multiple comparisons and
sampling effects in soil research, Europ. J. Soil Sci., 58,
74–82, https://doi.org/10.1111/j.1365-2389.2006.00801.x, 2007. a
Wen, Y., Tang, Y., Wen, J., Wang, Q., Bai, L., Wang, Y., Su, S., Wu, C., Lv,
J., and Zeng, X.: Variation of intra-aggregate organic carbon affects
aggregate formation and stability during organic manure fertilization in a
fluvo-aquic soil, Soil Use Manag., 37, 151–163,
https://doi.org/10.1111/sum.12676, 2021. a, b
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer: New York,
NY, USA, 213 pp., https://doi.org/10.1007/978-0-387-98141-3, 2016. a
Wiesmeier, M., Hübner, R., and Kögel-Knabner, I.: Stagnating crop
yields: An overlooked risk for the carbon balance of agricultural soils?,
Sci. Total Environ., 536, 1045–1051,
https://doi.org/10.1016/j.scitotenv.2015.07.064, 2015. a
Williams, D. M., Blanco-Canqui, H., Francis, C. A., and Galusha, T. D.:
Organic farming and soil physical properties: An assessment after 40 years,
Agron. J., 109, 600–609, https://doi.org/10.2134/agronj2016.06.0372, 2017. a
Wortmann, C. S. and Shapiro, C. A.: The effects of manure application on soil
aggregation, Nutr. Cycl. Agroecosys., 80, 173–180,
https://doi.org/10.1007/s10705-007-9130-6, 2008. a
Xu, J., Han, H., Ning, T., Li, Z., and Lal, R.: Long-term effects of tillage
and straw management on soil organic carbon, crop yield, and yield stability
in a wheat-maize system, Field Crops Res., 233, 33–40,
https://doi.org/10.1016/j.fcr.2018.12.016, 2019. a
Yang, X.-M. and Wander, M. M.: Temporal changes in dry aggregate size and
stability: tillage and crop effects on a silty loam Mollisol in Illinois,
Soil Till. Res., 49, 173–183, 1998. a
Yin, Y., Wang, L., Liang, C., Xi, F., Pei, Z., and Du, L.: Soil Aggregate
Stability and Iron and Aluminium Oxide Contents Under Different Fertiliser
Treatments in a Long-Term Solar Greenhouse Experiment, Pedosphere, 26,
760–767, https://doi.org/10.1016/S1002-0160(15)60086-8, 2016. a
Zhang, J., Wei, D., Zhou, B., Zhang, L., Hao, X., Zhao, S., Xu, X., He, P.,
Zhao, Y., Qiu, S., and Zhou, W.: Responses of soil aggregation and
aggregate-associated carbon and nitrogen in black soil to different long-term
fertilization regimes, Soil Till. Res., 213, 105157,
https://doi.org/10.1016/j.still.2021.105157, 2021. a, b
Zhang, P., Wei, T., Jia, Z., Han, Q., and Ren, X.: Soil aggregate and crop
yield changes with different rates of straw incorporation in semiarid areas
of northwest China, Geoderma, 230-231, 41–49,
https://doi.org/10.1016/j.geoderma.2014.04.007, 2014. a
Zhao, H., Shar, A. G., Li, S., Chen, Y., Shi, J., Zhang, X., and Tian, X.:
Effect of straw return mode on soil aggregation and aggregate carbon content
in an annual maize-wheat double cropping system, Soil Till. Res.,
175, 178–186, https://doi.org/10.1016/j.still.2017.09.012, 2018.
a, b, c
Zheng, H., Liu, W., Zheng, J., Luo, Y., Li, R., Wang, H., and Qi, H.: Effect
of long-term tillage on soil aggregates and aggregate-associated carbon in
black soil of northeast China, PLoS ONE, 13, 1–18,
https://doi.org/10.1371/journal.pone.0199523, 2018. a
Short summary
The potential to reverse the negative effects caused in topsoil by inversion tillage, using alternative agricultural practices, was evaluated. Reduced and no tillage, and additions of manure/compost, improved topsoil structure and OC content. Residue retention had a positive impact on structure. We concluded that the negative effects of inversion tillage can be mitigated by reducing tillage intensity or adding organic materials, optimally combined with non-inversion tillage.
The potential to reverse the negative effects caused in topsoil by inversion tillage, using...