Articles | Volume 8, issue 1
SOIL, 8, 31–47, 2022
https://doi.org/10.5194/soil-8-31-2022
SOIL, 8, 31–47, 2022
https://doi.org/10.5194/soil-8-31-2022

Original research article 19 Jan 2022

Original research article | 19 Jan 2022

Are agricultural plastic covers a source of plastic debris in soil? A first screening study

Zacharias Steinmetz et al.

Related subject area

Soil protection and remediation (including soil monitoring)
Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape
Edward J. Jones, Patrick Filippi, Rémi Wittig, Mario Fajardo, Vanessa Pino, and Alex B. McBratney
SOIL, 7, 33–46, https://doi.org/10.5194/soil-7-33-2021,https://doi.org/10.5194/soil-7-33-2021, 2021
Short summary
Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging
Maria Catarina Paz, Mohammad Farzamian, Ana Marta Paz, Nádia Luísa Castanheira, Maria Conceição Gonçalves, and Fernando Monteiro Santos
SOIL, 6, 499–511, https://doi.org/10.5194/soil-6-499-2020,https://doi.org/10.5194/soil-6-499-2020, 2020
Short summary
Effectiveness of landscape decontamination following the Fukushima nuclear accident: a review
Olivier Evrard, J. Patrick Laceby, and Atsushi Nakao
SOIL, 5, 333–350, https://doi.org/10.5194/soil-5-333-2019,https://doi.org/10.5194/soil-5-333-2019, 2019
Short summary
Evaluating the carbon sequestration potential of volcanic soils in southern Iceland after birch afforestation
Matthias Hunziker, Olafur Arnalds, and Nikolaus J. Kuhn
SOIL, 5, 223–238, https://doi.org/10.5194/soil-5-223-2019,https://doi.org/10.5194/soil-5-223-2019, 2019
Short summary
Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms
Belinda C. Martin, Suman J. George, Charles A. Price, Esmaeil Shahsavari, Andrew S. Ball, Mark Tibbett, and Megan H. Ryan
SOIL, 2, 487–498, https://doi.org/10.5194/soil-2-487-2016,https://doi.org/10.5194/soil-2-487-2016, 2016
Short summary

Cited articles

Agrarmeteorologie Rheinland-Pfalz: Wetterdaten Pfalz, available at: https://www.wetter.rlp.de/Agrarmeteorologie/Wetterdaten/Pfalz, last access: 7 May 2021. a
ASTM D422-63: Standard Test Method for Particle-Size Analysis of Soils, Technical standard, ASTM International, West Conshohocken, PA, available at: https://www.astm.org/d0422-63r07.html (last access: 14 January 2022), 2007. a
Beriot, N., Peek, J., Zornoza, R., Geissen, V., and Huerta Lwanga, E.: Low Density-Microplastics Detected in Sheep Faeces and Soil: A Case Study from the Intensive Vegetable Farming in Southeast Spain, Sci. Total Environ., 755, 142653, https://doi.org/10.1016/j.scitotenv.2020.142653, 2021. a
Bertling, J., Zimmermann, T., and Rödig, L.: Kunststoffe in der Umwelt: Emissionen in landwirtschaftlich genutzte Böden, Tech. Rep., Fraunhofer-Gesellschaft, https://doi.org/10.24406/UMSICHT-N-633611, 2021. a, b
Beyler, C. L. and Hirschler, M. M.: Thermal Decomposition of Polymers, in: SFPE Handbook of Fire Protection Engineering, edited by: DiNenno, P. J., National Fire Protection Association Massachusetts, USA, 2nd Edn., ISBN 978-0877654513, 2002. a, b, c
Download
Short summary
To scrutinize the contribution of agricultural plastic covers to plastic pollution, we quantified soil-associated plastic debris (≤ 2 mm) in and around agricultural fields covered with different plastics. PP fleeces and 50 µm thick PE films did not emit significant amounts of plastic debris into soil during their 4-month use. However, thinner and perforated PE foils (40 µm) were associated with elevated PE contents of up to 35 mg kg−1. Their long-term use may thus favor plastic accumulation.