ASTM D422-63: Standard Test Method for Particle-Size Analysis of
Soils, Technical standard, ASTM International, West Conshohocken, PA, available at:
https://www.astm.org/d0422-63r07.html (last access: 14 January 2022), 2007. a
Beyler, C. L. and Hirschler, M. M.: Thermal Decomposition of Polymers, in:
SFPE Handbook of Fire Protection Engineering, edited by: DiNenno, P. J.,
National Fire Protection Association Massachusetts, USA, 2nd Edn., ISBN 978-0877654513, 2002.
a,
b,
c
Brandes, E., Henseler, M., and Kreins, P.: Identifying Hot-Spots for
Microplastic Contamination in Agricultural Soils – a Spatial Modeling
Approach for Germany, Environ. Res. Lett., 16, 104041,
https://doi.org/10.1088/1748-9326/ac21e6, 2021.
a
Cowger, W., Steinmetz, Z., Gray, A., Munno, K., Lynch, J., Hapich, H., Primpke,
S., De Frond, H., Rochman, C., and Herodotou, O.: Microplastic Spectral
Classification Needs an Open Source Community: Open Specy to the
Rescue!, Anal. Chem., 93, 7543–7548,
https://doi.org/10.1021/acs.analchem.1c00123,
2021.
a
David, J., Steinmetz, Z., Kučerík, J., and Schaumann, G. E.:
Quantitative Analysis of Poly(Ethylene Terephthalate)
Microplastics in Soil via Thermogravimetry – Mass
Spectrometry, Anal. Chem., 90, 8793–8799,
https://doi.org/10.1021/acs.analchem.8b00355, 2018.
a,
b
Dierkes, G., Lauschke, T., Becher, S., Schumacher, H., Földi, C., and
Ternes, T.: Quantification of Microplastics in Environmental Samples via
Pressurized Liquid Extraction and Pyrolysis-Gas Chromatography, Anal. Bioanal.
Chem., 411, 6959–6968,
https://doi.org/10.1007/s00216-019-02066-9, 2019.
a,
b,
c,
d
DIN 32645: Chemical Analysis – Decision Limit, Detection Limit and
Determination Limit under Repeatability Conditions – Terms, Methods,
Evaluation, Technical standard, Beuth, Berlin, Germany,
https://doi.org/10.31030/1465413, 2008.
a
EN 13655: Plastics – Thermoplastic Mulch Films Recoverable after Use, for
Use in Agriculture and Horticulture, Tech. Rep., European Committee for
Standardization, Brussels, Belgium, 2018.
a,
b
FAO: World Reference Base for Soil Resources 2014: International Soil
Classification System for Naming Soils and Creating Legends for Soil Maps,
Tech. Rep. 106, Food and Agriculture Organization, Rome, Italy,
available at:
http://www.fao.org/3/i3794en/I3794en.pdf (last access: 11 December 2021), 2014. a
Fu, Q., Tan, X., Ye, S., Ma, L., Gu, Y., Zhang, P., Chen, Q., Yang, Y., and
Tang, Y.: Mechanism Analysis of Heavy Metal Lead Captured by Natural-Aged
Microplastics, Chemosphere, 270, 128624,
https://doi.org/10.1016/j.chemosphere.2020.128624, 2021.
a
Grause, G., Chien, M.-F., and Inoue, C.: Changes during the Weathering of
Polyolefins, Polym. Degrad. Stabil., 181, 109364,
https://doi.org/10.1016/j.polymdegradstab.2020.109364, 2020.
a,
b
Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., and Purnell, P.: An
Overview of Chemical Additives Present in Plastics: Migration, Release,
Fate and Environmental Impact during Their Use, Disposal and Recycling,
J. Hazard. Mater., 344, 179–199,
https://doi.org/10.1016/j.jhazmat.2017.10.014, 2018.
a
Haider, N. and Karlsson, S.: Loss of Chimassorb 944 from LDPE and
Identification of Additive Degradation Products after Exposure to Water, Air
and Compost, Polym. Degrad. Stabil., 74, 103–112,
https://doi.org/10.1016/S0141-3910(01)00107-0, 2001.
a
Hamouz, K., Lachman, J., Dvořák, P., and Trnková, E.: Influence of
Non-Woven Fleece on the Yield Formation of Early Potatoes, Plant Soil
Environ., 52, 289–294,
https://doi.org/10.17221/3443-PSE, 2011.
a
Harms, I. K., Diekötter, T., Troegel, S., and Lenz, M.: Amount,
Distribution and Composition of Large Microplastics in Typical Agricultural
Soils in Northern Germany, Sci. Total Environ., 758,
143615,
https://doi.org/10.1016/j.scitotenv.2020.143615, 2021.
a,
b,
c,
d
Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor,
A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M.,
Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., and Wagner, M.:
Are We Speaking the Same Language? Recommendations for a
Definition and Categorization Framework for Plastic Debris,
Environ. Sci. Technol., 53, 1039–1047,
https://doi.org/10.1021/acs.est.8b05297, 2019.
a
Huang, Y., Liu, Q., Jia, W., Yan, C., and Wang, J.: Agricultural Plastic
Mulching as a Source of Microplastics in the Terrestrial Environment,
Environ. Pollut., 260, 114096,
https://doi.org/10.1016/j.envpol.2020.114096,
2020.
a,
b
Kim, S.-K., Kim, J.-S., Lee, H., and Lee, H.-J.: Abundance and Characteristics
of Microplastics in Soils with Different Agricultural Practices:
Importance of Sources with Internal Origin and Environmental Fate,
J. Hazard. Mater., 403, 123997,
https://doi.org/10.1016/j.jhazmat.2020.123997, 2021.
a
Laermanns, H., Lehmann, M., Klee, M., Löder, M. G. J., Gekle, S., and
Bogner, C.: Tracing the Horizontal Transport of Microplastics on Rough
Surfaces, Microplastics Nanoplastics, 1, 11,
https://doi.org/10.1186/s43591-021-00010-2,
2021.
a
Liu, E. K., He, W. Q., and Yan, C. R.: “White Revolution” to “white
Pollution” – Agricultural Plastic Film Mulch in China, Environ.
Res. Lett., 9, 091001,
https://doi.org/10.1088/1748-9326/9/9/091001, 2014.
a
Luo, Y., Zhang, Y., Xu, Y., Guo, X., and Zhu, L.: Distribution Characteristics
and Mechanism of Microplastics Mediated by Soil Physicochemical Properties,
Sci. Total Environ., 726, 138389,
https://doi.org/10.1016/j.scitotenv.2020.138389, 2020.
a
Maghchiche, A., Haouam, A., and Immirzi, B.: Use of Polymers and Biopolymers
for Water Retaining and Soil Stabilization in Arid and Semiarid Regions, J.
Taibah Univ. Sci., 4, 9–16,
https://doi.org/10.1016/S1658-3655(12)60022-3, 2010.
a
Magnusson, B. and Örnemark, U.: Eurachem Guide: The Fitness for
Purpose of Analytical Methods – A Laboratory Guide to
Method Validation and Related Topics, 2nd Edn.,
available at:
https://www.eurachem.org/index.php/publications/guides/mv (last access: 16 August 2021),
2014.
a,
b,
c
Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L., and De Yoreo,
J. J.: Developing a Molecular Picture of Soil Organic Matter –
Mineral Interactions by Quantifying Organo – Mineral Binding, Nat.
Commun., 8, 396,
https://doi.org/10.1038/s41467-017-00407-9, 2017.
a
Okoffo, E. D., Ribeiro, F., O'Brien, J. W., O'Brien, S., Tscharke, B. J.,
Gallen, M., Samanipour, S., Mueller, J. F., and Thomas, K. V.: Identification
and Quantification of Selected Plastics in Biosolids by Pressurized Liquid
Extraction Combined with Double-Shot Pyrolysis Gas Chromatography –
Mass Spectrometry, Sci. Total Environ., 715, 136924,
https://doi.org/10.1016/j.scitotenv.2020.136924, 2020.
a
Piehl, S., Leibner, A., Löder, M. G. J., Dris, R., Bogner, C., and
Laforsch, C.: Identification and Quantification of Macro- and Microplastics
on an Agricultural Farmland, Sci. Rep., 8, 17950,
https://doi.org/10.1038/s41598-018-36172-y, 2018.
a
Primpke, S., Fischer, M., Lorenz, C., Gerdts, G., and Scholz-Böttcher,
B. M.: Comparison of Pyrolysis Gas Chromatography/Mass Spectrometry and
Hyperspectral FTIR Imaging Spectroscopy for the Analysis of
Microplastics, Anal. Bioanal. Chem., 412, 8283–8298,
https://doi.org/10.1007/s00216-020-02979-w, 2020.
a
Scarascia-Mugnozza, G., Sica, C., and Russo, G.: Plastic Materials in
European Agriculture: Actual Use and Perspectives, J. Agr. Eng., 42,
15–28,
https://doi.org/10.4081/jae.2011.3.15, 2011.
a
Sponagel, H., Grottenthaler, W., Hartmann, K., Hartwich, R., Janetzko, P.,
Joisten, H., Kühn, D., Sabel, K., and Traidl, R.: Bodenkundliche
Kartieranleitung, Schweizerbart, Stuttgart, 5th Edn., ISBN 978-3-510-95920-4, 2005. a
Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger,
J., Muñoz, K., Frör, O., and Schaumann, G. E.: Plastic Mulching in
Agriculture. Trading Short-Term Agronomic Benefits for Long-Term Soil
Degradation?, Sci. Total Environ., 550, 690–705,
https://doi.org/10.1016/j.scitotenv.2016.01.153, 2016.
a,
b
Steinmetz, Z., Kintzi, A., Muñoz, K., and Schaumann, G. E.: A Simple Method
for the Selective Quantification of Polyethylene, Polypropylene, and
Polystyrene Plastic Debris in Soil by Pyrolysis-Gas Chromatography/Mass
Spectrometry, J. Anal. Appl. Pyrol., 147, 104803,
https://doi.org/10.1016/j.jaap.2020.104803, 2020.
a,
b,
c,
d,
e,
f,
g,
h,
i
Steinmetz, Z., Löffler, P., Eichhöfer, S., David, J., Muñoz, K., and Schaumann, G. E.: Data from: Are agricultural plastic covers a source of plastic debris in soil? A first screening study, figshare [data set],
https://doi.org/10.6084/m9.figshare.14742849, 2022.
a
Thomas, D., Schütze, B., Heinze, W. M., and Steinmetz, Z.: Sample
Preparation Techniques for the Analysis of Microplastics in
Soil – A Review, Sustainability, 12, 9074,
https://doi.org/10.3390/su12219074, 2020.
a,
b,
c,
d,
e,
f
Tocháček, J., Láska, K., Bálková, R., Krmíček,
L., Merna, J., Tupý, M., Kapler, P., Poláček, P., Čížková, K., and Buráň, Z.: Polymer Weathering in Antarctica,
Polym. Test., 77, 105898,
https://doi.org/10.1016/j.polymertesting.2019.105898,
2019.
a,
b
Tsuge, S., Ohtani, H., and Watanabe, C.: Pyrolysis – GC/MS Data Book of
Synthetic Polymers: Pyrograms, Thermograms and MS of
Pyrolyzates, Elsevier, Amsterdam, Boston, ISBN 978-0-444-53892-5, 2011. a
Wang, Z., Taylor, S. E., Sharma, P., and Flury, M.: Poor Extraction
Efficiencies of Polystyrene Nano- and Microplastics from Biosolids and Soil,
PLOS ONE, 13, e0208009,
https://doi.org/10.1371/journal.pone.0208009, 2018.
a
Wenig, P. and Odermatt, J.: OpenChrom: A Cross-Platform Open Source
Software for the Mass Spectrometric Analysis of Chromatographic Data, BMC
Bioinformatics, 11, 405,
https://doi.org/10.1186/1471-2105-11-405, 2010.
a
Wu, X., Lyu, X., Li, Z., Gao, B., Zeng, X., Wu, J., and Sun, Y.: Transport of
Polystyrene Nanoplastics in Natural Soils: Effect of Soil Properties,
Ionic Strength and Cation Type, Sci. Total Environ., 707,
136065,
https://doi.org/10.1016/j.scitotenv.2019.136065, 2020.
a
Zhang, D., Liu, H.-B., Hu, W.-L., Qin, X.-H., Ma, X.-W., Yan, C.-R., and Wang,
H.-Y.: The Status and Distribution Characteristics of Residual Mulching Film
in Xinjiang, China, J. Integr. Agr., 15,
2639–2646,
https://doi.org/10.1016/S2095-3119(15)61240-0, 2016.
a
Zhang, S., Yang, X., Gertsen, H., Peters, P., Salánki, T., and Geissen, V.:
A Simple Method for the Extraction and Identification of Light Density
Microplastics from Soil, Sci. Total Environ., 616/617, 1056–1065,
https://doi.org/10.1016/j.scitotenv.2017.10.213, 2018.
a