Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Earth System Science, Stanford University, Stanford, CA, USA
Jeffrey P. Mitchell
Department of Plant Sciences, University of California, Davis, CA, USA
Jan W. Hopmans
Department of Land, Air and Water Resources, University of California,
Davis, CA, USA
Teamrat A. Ghezzehei
Life and Environmental Science, University of California, Merced, CA,
USA
Related authors
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021, https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Short summary
We took aerial photos of a grassland area using an unoccupied aerial vehicle and used the images to estimate soil moisture via machine learning. We were able to estimate soil moisture with high accuracy. Furthermore, by analyzing the machine learning models we developed, we learned how different factors drive the distribution of moisture across the landscape. Among the factors, rainfall, evapotranspiration, and topography were most important in controlling surface soil moisture distribution.
Teneille Nel, Manisha Dolui, Abbygail R. McMurtry, Stephanie Chacon, Joseph A. Mason, Laura M. Phillips, Erika Marin-Spiotta, Marie-Anne de Graaff, Asmeret A. Berhe, and Teamrat A. Ghezzehei
EGUsphere, https://doi.org/10.5194/egusphere-2025-5164, https://doi.org/10.5194/egusphere-2025-5164, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Buried ancient topsoils (Brady paleosol, Nebraska) sequester vast SOC. We found repeated drying/rewetting causes greater C loss than continuous wetting, destabilizing the slow-cycling C pool, especially in shallower soils. Decomposition rates are higher in erosional settings. Burial depth and moisture regime are key to the long-term vulnerability of these ancient C stocks under climate change.
Toshiyuki Bandai and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 26, 4469–4495, https://doi.org/10.5194/hess-26-4469-2022, https://doi.org/10.5194/hess-26-4469-2022, 2022
Short summary
Short summary
Scientists use a physics-based equation to simulate water dynamics that influence hydrological and ecological phenomena. We present hybrid physics-informed neural networks (PINNs) to leverage the growing availability of soil moisture data and advances in machine learning. We showed that PINNs perform comparably to traditional methods and enable the estimation of rainfall rates from soil moisture. However, PINNs are challenging to train and significantly slower than traditional methods.
Jing Yan and Teamrat Ghezzehei
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-52, https://doi.org/10.5194/bg-2022-52, 2022
Publication in BG not foreseen
Short summary
Short summary
Although hydraulic redistribution (HR) is a well-documented phenomenon, whether it is a passive happy accident or actively controlled by roots is not well understood. Our modeling study suggests HR is long-range feedback between roots that inhabit heterogeneously resourced soil regions. When nutrients and organic matter are concentrated in shallow layers that experience frequent drying, root-exudation facilitated HR allows plants to mineralize and extract the otherwise inaccessible nutrients.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021, https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Short summary
We took aerial photos of a grassland area using an unoccupied aerial vehicle and used the images to estimate soil moisture via machine learning. We were able to estimate soil moisture with high accuracy. Furthermore, by analyzing the machine learning models we developed, we learned how different factors drive the distribution of moisture across the landscape. Among the factors, rainfall, evapotranspiration, and topography were most important in controlling surface soil moisture distribution.
Jing Yan, Nathaniel A. Bogie, and Teamrat A. Ghezzehei
Biogeosciences, 17, 6377–6392, https://doi.org/10.5194/bg-17-6377-2020, https://doi.org/10.5194/bg-17-6377-2020, 2020
Short summary
Short summary
An uneven supply of water and nutrients in soils often drives how plants behave. We observed that plants extract all their required nutrients from dry soil patches in sufficient quantity, provided adequate water is available elsewhere in the root zone. Roots in nutrient-rich dry patches facilitate the nutrient acquisition by extensive growth, water release, and modifying water retention in their immediate environment. The findings are valuable in managing nutrient losses in agricultural systems.
Cited articles
Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M.,
Truu, J., Rees, R. M., and Smith, P.: A critical review of the impacts of
cover crops on nitrogen leaching, net greenhouse gas balance and crop
productivity, Glob. Chang. Biol., 25, 2530–2543,
https://doi.org/10.1111/gcb.14644, 2019.
Abdollahi, L., Schjønning, P., Elmholt, S., and Munkholm, L. J.: The
effects of organic matter application and intensive tillage and traffic on
soil structure formation and stability, Soil Tillage Res., 136, 28–37,
https://doi.org/10.1016/j.still.2013.09.011, 2014.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration: Guidelines for computing crop water requirements – FAO
Irrigation and drainage paper 56, Food and Agriculture Organization of the
United Nations, Rome, Italy, ISBN 92-5-104219-5, 1998.
Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F., and Justes,
E.: Temporal variation in soil physical properties improves the water
dynamics modeling in a conventionally-tilled soil, Geoderma, 243–244,
18–28, https://doi.org/10.1016/j.geoderma.2014.12.006, 2015.
Alvarez, R. and Steinbach, H. S.: A review of the effects of tillage systems
on some soil physical properties, water content, nitrate availability and
crops yield in the Argentine Pampas, Soil Tillage Res., 104, 1–15,
https://doi.org/10.1016/J.STILL.2009.02.005, 2009.
Angers, D. A. and Caron, J.: Plant-induced Changes in Soil Structure:
Processes and Feedbacks, Biogeochemistry, 42, 55–72,
https://doi.org/10.1023/A:1005944025343, 1998.
Araya, S.: Long-Term Impact of Cover Crop and Reduced Disturbance Tillage on Soil Pore Size Distribution and Soil Water Storage (v1.0), Zenodo [data set and code], https://doi.org/10.5281/zenodo.5974038, 2022.
Ashworth, A. J., DeBruyn, J. M., Allen, F. L., Radosevich, M., and Owens, P.
R.: Microbial community structure is affected by cropping sequences and
poultry litter under long-term no-tillage, Soil Biol. Biochem., 114,
210–219, https://doi.org/10.1016/J.SOILBIO.2017.07.019, 2017.
Assouline, S. and Or, D.: The concept of field capacity revisited: Defining
intrinsic static and dynamic criteria for soil internal drainage dynamics,
Water Resour. Res., 50, 4787–4802, https://doi.org/10.1002/2014WR015475,
2014.
Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L., and Ritz, K.:
Cover crop species have contrasting influence upon soil structural genesis
and microbial community phenotype, Sci. Rep., 9, 7473,
https://doi.org/10.1038/s41598-019-43937-6, 2019.
Baker, J. B., Southard, R. J., and Mitchell, J. P.: Agricultural Dust
Production in Standard and Conservation Tillage Systems in the San Joaquin
Valley, J. Environ. Qual., 34, 1260, https://doi.org/10.2134/jeq2003.0348,
2005.
Basche, A. and DeLonge, M.: The Impact of Continuous Living Cover on Soil
Hydrologic Properties: A Meta-Analysis, Soil Sci. Soc. Am. J., 81, 1179,
https://doi.org/10.2136/sssaj2017.03.0077, 2017.
Basche, A. D., Archontoulis, S. V., Kaspar, T. C., Jaynes, D. B., Parkin, T.
B., and Miguez, F. E.: Simulating long-term impacts of cover crops and
climate change on crop production and environmental outcomes in the
Midwestern United States, Agr. Ecosyst. Environ., 218, 95–106,
https://doi.org/10.1016/J.AGEE.2015.11.011, 2016a.
Basche, A. D., Kaspar, T. C., Archontoulis, S. V., Jaynes, D. B., Sauer, T.
J., Parkin, T. B., and Miguez, F. E.: Soil water improvements with the
long-term use of a winter rye cover crop, Agr. Water Manage., 172, 40–50,
https://doi.org/10.1016/j.agwat.2016.04.006, 2016b.
Blanco-Canqui, H. and Ruis, S. J.: No-tillage and soil physical environment,
Geoderma, 326, 164–200, https://doi.org/10.1016/j.geoderma.2018.03.011,
2018.
Büchi, L., Wendling, M., Amossé, C., Necpalova, M., and Charles, R.:
Importance of cover crops in alleviating negative effects of reduced soil
tillage and promoting soil fertility in a winter wheat cropping system,
Agric. Ecosyst. Environ., 256, 92–104,
https://doi.org/10.1016/j.agee.2018.01.005, 2018.
Burr-Hersey, J. E., Mooney, S. J., Bengough, A. G., Mairhofer, S., and Ritz,
K.: Developmental morphology of cover crop species exhibit contrasting
behaviour to changes in soil bulk density, revealed by X-ray computed
tomography, PLoS One, 12, e0181872,
https://doi.org/10.1371/journal.pone.0181872, 2017.
Duchene, O., Vian, J.-F., and Celette, F.: Intercropping with legume for
agroecological cropping systems: Complementarity and facilitation processes
and the importance of soil microorganisms. A review, Agr. Ecosyst.
Environ., 240, 148–161, https://doi.org/10.1016/J.AGEE.2017.02.019, 2017.
Durner, W.: Hydraulic conductivity estimation for soils with heterogeneous
pore structure, Water Resour. Res., 30, 211–223,
https://doi.org/10.1029/93WR02676, 1994.
Ekschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M.,
Gleixner, G., Hartmann, A., Kästner, M., Marhan, S., Miltner, A., Scheu,
S., and Wolters, V.: Soil-carbon preservation through habitat constraints
and biological limitations on decomposer activity, J. Plant Nutr. Soil Sci.,
171, 27–35, https://doi.org/10.1002/jpln.200700051, 2008.
Faunt, C. C.: Alluvial Boundary of California's Central Valley [Map]. Scale
Not Given, https://water.usgs.gov/lookup/getspatial?pp1766_Alluvial_Bnd (last access: 3 August 2022), 2012.
Fernandez, A. L., Sheaffer, C. C., Wyse, D. L., Staley, C., Gould, T. J.,
and Sadowsky, M. J.: Structure of bacterial communities in soil following
cover crop and organic fertilizer incorporation, Appl. Microbiol.
Biotechnol., 100, 9331–9341, https://doi.org/10.1007/s00253-016-7736-9,
2016.
Finney, D. M., Buyer, J. S., and Kaye, J. P.: Living cover crops have
immediate impacts on soil microbial community structure and function, J.
Soil Water Conserv., 72, 361–373, https://doi.org/10.2489/jswc.72.4.361,
2017.
Gao, L., Becker, E., Liang, G., Houssou, A. A., Wu, H., Wu, X., Cai, D., and
Degré, A.: Effect of different tillage systems on aggregate structure
and inner distribution of organic carbon, Geoderma, 288, 97–104,
https://doi.org/10.1016/j.geoderma.2016.11.005, 2017.
Gao, L., Wang, B., Li, S., Wu, H., Wu, X., Liang, G., Gong, D., Zhang, X.,
Cai, D., and Degré, A.: Soil wet aggregate distribution and pore size
distribution under different tillage systems after 16 years in the Loess
Plateau of China, Catena, 173, 38–47, https://doi.org/10.1016/j.catena.2018.09.043,
2019.
González-Sánchez, E. J., Kassam, A., Basch, G., Streit, B.,
Holgado-Cabrera, A., and Triviño-Tarradas, P.: Conservation Agriculture
and its contribution to the achievement of agri-environmental and economic
challenges in Europe, AIMS Agr. Food, 1, 387–408,
https://doi.org/10.3934/agrfood.2016.4.387, 2016.
Green, T. R., Ahuja, L. R., and Benjamin, J. G.: Advances and challenges in
predicting agricultural management effects on soil hydraulic properties,
Geoderma, 116, 3–27, https://doi.org/10.1016/S0016-7061(03)00091-0, 2003.
Greenland, D. J.: Soil Damage by Intensive Arable Cultivation: Temporary or
Permanent?, Philos. T. Roy. Soc. B, 281, 193–208,
https://doi.org/10.1098/rstb.1977.0133, 1977.
Grossman, R. B. and Reinsch, T. G.: Bulk Density and Linear Extensibility,
in: Methods of Soil Analysis, Part 4 – Physical Methods, edited by: Dane, J.
H. and Topp, G. C., Soil Science Society of America, Madison, Wisconsin,
201–228, https://doi.org/10.2136/sssabookser5.4.c9, 2002.
Hillel, D.: Environmental Soil Physics, Academic Press, San Diego, CA, ISBN 9780080544151, 1998.
Hudson, B. D.: Soil organic matter and available water capacity, J. Soil
Water Conserv., 49, 189–194, 1994.
Janzen, H. H.: Beyond carbon sequestration: soil as conduit of solar energy,
Eur. J. Soil Sci., 66, 19–32, https://doi.org/10.1111/ejss.12194, 2015.
Janzen, H. H., Janzen, D. W., and Gregorich, E. G.: The “soil health”
metaphor: illuminating or illusory?, Soil Biol. Biochem., 108167,
https://doi.org/10.1016/j.soilbio.2021.108167, 2021.
Jarvis, N. J.: A review of non-equilibrium water flow and solute transport
in soil macropores: principles, controlling factors and consequences for
water quality, Eur. J. Soil Sci., 58, 523–546,
https://doi.org/10.1111/j.1365-2389.2007.00915.x, 2007.
Johnson, A. M. M. and Hoyt, G. D. D.: Changes to the soil environment under
conservation tillage, Horttechnology, 9, 380–393,
https://doi.org/10.21273/HORTTECH.9.3.380, 1999.
Kassam, A., Friedrich, T., and Derpsch, R.: Global spread of Conservation
Agriculture, Int. J. Environ. Stud., 76, 29–51,
https://doi.org/10.1080/00207233.2018.1494927, 2019.
Kastanek, F. J. and Nielsen, D. R.: Description of Soil Water
Characteristics Using Cubic Spline Interpolation, Soil Sci. Soc. Am. J., 65,
279, https://doi.org/10.2136/sssaj2001.652279x, 2001.
Klute, A.: Water Retention: Laboratory Methods, in: Methods of Soil
Analysis: Part 1, Physical and Mineralogical Methods, 5.1, edited by: Klute,
A., Madison, Wisconsin, USA, 635–662,
https://doi.org/10.2136/sssabookser5.1.2ed.c26, 1986.
Lal, R., Reicosky, D. C., and Hanson, J. D.: Evolution of the plow over
10,000 years and the rationale for no-till farming, Soil Tillage Res., 93,
1–12, https://doi.org/10.1016/j.still.2006.11.004, 2007.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Li, Y., Chang, S. X., Tian, L., and Zhang, Q.: Conservation agriculture
practices increase soil microbial biomass carbon and nitrogen in
agricultural soils: A global meta-analysis, Soil Biol. Biochem., 121,
50–58, https://doi.org/10.1016/j.soilbio.2018.02.024, 2018.
Liu, J., Macrae, M. L., Elliott, J. A., Baulch, H. M., Wilson, H. F., and
Kleinman, P. J. A.: Impacts of Cover Crops and Crop Residues on Phosphorus
Losses in Cold Climates: A Review, J. Environ. Qual., 48, 850–868,
https://doi.org/10.2134/jeq2019.03.0119, 2019.
Madden, N. M., Southard, R. J., and Mitchell, J. P.: Conservation tillage
reduces PM10 emissions in dairy forage rotations, Atmos. Environ., 42,
3795–3808, https://doi.org/10.1016/j.atmosenv.2007.12.058, 2008.
Mapa, R. B., Green, R. E., and Santo, L.: Temporal Variability of Soil
Hydraulic Properties with Wetting and Drying Subsequent to Tillage, Soil
Sci. Soc. Am. J., 50, 1133,
https://doi.org/10.2136/sssaj1986.03615995005000050008x, 1986.
Martens, D. A.: Nitrogen cycling under different soil management systems, Adv. Agron., 70,
143–192, https://doi.org/10.1016/s0065-2113(01)70005-3, 2001.
Meurer, K., Barron, J., Chenu, C., Coucheney, E., Fielding, M., Hallett, P.,
Herrmann, A. M., Keller, T., Koestel, J., Larsbo, M., Lewan, E., Or, D.,
Parsons, D., Parvin, N., Taylor, A., Vereecken, H., and Jarvis, N.: A
framework for modelling soil structure dynamics induced by biological
activity, Glob. Chang. Biol., 26, 5382–5403,
https://doi.org/10.1111/gcb.15289, 2020.
Mitchell, J. P.: Conservation agriculture: systems thinking for sustainable
farming, Calif. Agr., 70, 53–55, 2016.
Mitchell, J. P., Klonsky, K. M., Miyao, E. M., and Hembree, K. J.:
Conservation tillage tomato production in California's San Joaquin Valley,
Agric. Nat. Resour., https://doi.org/10.3733/ucanr.8330, 2009.
Mitchell, J. P., Klonsky, K. M., Miyao, E. M., Aegerter, B. J., Shrestha,
A., Munk, D. S., Hembree, K. J., Madden, N. M., and Turini, T. A.: Evolution
of Conservation Tillage Systems for Processing Tomato in California's
Central Valley, Horttechnology, 22, 617–626, 2012.
Mitchell, J. P., Shrestha, A., Horwath, W. R., Southard, R. J., Madden, N.
M., Veenstra, J. J., and Munk, D. S.: Tillage and Cover Cropping Affect Crop
Yields and Soil Carbon in the San Joaquin Valley, California, Agron. J.,
107, 588, https://doi.org/10.2134/agronj14.0415, 2015.
Mitchell, J. P., Carter, L. M., Reicosky, D. C., Shrestha, A., Pettygrove,
G. S., Klonsky, K. M., Marcum, D. B., Chessman, D., Roy, R., Hogan, P., and
Dunning, L.: A history of tillage in California's Central Valley, Soil
Tillage Res., 157, 52–64, https://doi.org/10.1016/j.still.2015.10.015,
2016a.
Mitchell, J. P., Shrestha, A., and Munk, D. S.: Cotton response to long-term
no-tillage and cover cropping in the San Joaquin Valley, J. Cotton Sci., 20,
8–17, 2016b.
Mitchell, J. P., Shrestha, A., Dahlberg, J. A., Munk, D. S., and Hembree, K.
J.: Prospect of No-till Planting of Sorghum with and without Cover Cropping
in the San Joaquin Valley, Crop. Forage Turfgrass Manag., 2, 1–3,
https://doi.org/10.2134/cftm2015.0208, 2016c.
Mitchell, J. P., Shrestha, A., Mathesius, K., Scow, K. M., Southard, R. J.,
Haney, R. L., Schmidt, R., Munk, D. S., and Horwath, W. R.: Cover cropping
and no-tillage improve soil health in an arid irrigated cropping system in
California's San Joaquin Valley, USA, Soil Tillage Res., 165, 325–335,
https://doi.org/10.1016/j.still.2016.09.001, 2017.
Mitchell, J. P., Reicosky, D. C., Kueneman, E. A., Fisher, J., and Beck, D.:
Conservation agriculture systems, CAB Rev. Perspect. Agr. Vet. Sci. Nutr.
Nat. Resour., 14, 001, https://doi.org/10.1079/PAVSNNR201914001, 2019.
Moret, D. and Arrúe, J. L.: Dynamics of soil hydraulic properties during
fallow as affected by tillage, Soil Tillage Res., 96, 103–113,
https://doi.org/10.1016/j.still.2007.04.003, 2007.
Naab, J. B., Mahama, G. Y., Yahaya, I., and Prasad, P. V. V: Conservation
Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder
Farmers in North Western Ghana., Front. Plant Sci., 8, 996,
https://doi.org/10.3389/fpls.2017.00996, 2017.
National Cooperative Soil Survey: National Cooperative Soil Survey
Characterization Database, http://ncsslabdatamart.sc.egov.usda.gov/, last access: 8 January 2020.
Or, D., Leij, F. J., Snyder, V., and Ghezzehei, T. A.: Stochastic model for
posttillage soil pore space evolution, Water Resour. Res., 36, 1641–1652,
https://doi.org/10.1029/2000WR900092, 2000.
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., and Grace, P.:
Conservation agriculture and ecosystem services: An overview, Agr.
Ecosyst. Environ., 187, 87–105, https://doi.org/10.1016/J.AGEE.2013.10.010,
2014.
Peña-Sancho, C., López, M. V., Gracia, R., and Moret-Fernández,
D.: Effects of tillage on the soil water retention curve during a fallow
period of a semiarid dryland, Soil Res., 55, 114,
https://doi.org/10.1071/SR15305, 2016.
Pires, L. F., Cássaro, F. A. M., Reichardt, K., and Bacchi, O. O. S.:
Soil porous system changes quantified by analyzing soil water retention
curve modifications, Soil Tillage Res., 100, 72–77,
https://doi.org/10.1016/j.still.2008.04.007, 2008.
Pires, L. F., Borges, J. A. R., Rosa, J. A., Cooper, M., Heck, R. J.,
Passoni, S., and Roque, W. L.: Soil structure changes induced by tillage
systems, Soil Tillage Res., 165, 66–79,
https://doi.org/10.1016/j.still.2016.07.010, 2017.
Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., van Groenigen,
K. J., Lee, J., van Gestel, N., Six, J., Venterea, R. T., and van Kessel,
C.: When does no-till yield more? A global meta-analysis, F. Crop. Res.,
183, 156–168, https://doi.org/10.1016/J.FCR.2015.07.020, 2015.
R Core Team: R: A Language and Environment for Statistical Computing, version 3.6.0,
https://www.r-project.org/, 2019.
Rasmussen, K. J.: Impact of ploughless soil tillage on yield and soil
quality: A Scandinavian review, Soil Tillage Res., 53, 3–14,
https://doi.org/10.1016/S0167-1987(99)00072-0, 1999.
Rath, D., Bogie, N., Deiss, L., Parikh, S. J., Wang, D., Ying, S., Tautges, N., Berhe, A. A., Ghezzehei, T. A., and Scow, K. M.: Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage, SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, 2022.
Reicosky, D. C. and Allmaras, R. R.: Advances in Tillage Research in North
American Cropping Systems, J. Crop Prod., 8, 75–125,
https://doi.org/10.1300/J144v08n01_ 05, 2003.
Reicosky, D. C. and Forcella, F.: Cover crop and soil quality interactions
in agroecosystems, J. Soil Water Conserv., 53, 224–229, 1998.
Sanz-Cobena, A., Lassaletta, L., Aguilera, E., Prado, A. del, Garnier, J.,
Billen, G., Iglesias, A., Sánchez, B., Guardia, G., Abalos, D.,
Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R., Galán, E.,
Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., Pardo, G.,
Álvaro-Fuentes, J., Gilsanz, C., Báez, D., Doltra, J.,
González-Ubierna, S., Cayuela, M. L., Menéndez, S.,
Díaz-Pinés, E., Le-Noë, J., Quemada, M., Estellés, F.,
Calvet, S., van Grinsven, H. J. M., Westhoek, H., Sanz, M. J., Gimeno, B.
S., Vallejo, A., and Smith, P.: Strategies for greenhouse gas emissions
mitigation in Mediterranean agriculture: A review, Agr. Ecosyst. Environ.,
238, 5–24, https://doi.org/10.1016/J.AGEE.2016.09.038, 2017.
Sastre, B., Marques, M. J., García-Díaz, A., and Bienes, R.: Three
years of management with cover crops protecting sloping olive groves soils,
carbon and water effects on gypsiferous soil, Catena, 171, 115–124,
https://doi.org/10.1016/j.catena.2018.07.003, 2018.
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: Rosetta: A computer
program for estimating soil hydraulic parameters with hierarchical
pedotransfer functions, J. Hydrol., 251, 163–176,
https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D. A.
C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49–56, https://doi.org/10.1038/Nature10386, 2011.
Schwen, A., Bodner, G., Scholl, P., Buchan, G. D., and Loiskandl, W.:
Temporal dynamics of soil hydraulic properties and the water-conducting
porosity under different tillage, Soil Tillage Res., 113, 89–98,
https://doi.org/10.1016/j.still.2011.02.005, 2011.
Shelton, D., Jasa, P., Brown, L., and Hirschi, M.: Water Erosion, in:
Conservation Tillage Systems and Management, edited by: Ames, I., MidWest
Plan Service, Iowa State University, MWPS-45, ISBN 0-089373-088-2, 2000.
Simunek, J., van Genuchten, M. T., and Sejna, M.: The HYDRUS Software
Package for Simulating Two- and Three-Dimensional Movement of Water, Heat,
and Multiple Solutes in Variably-Saturated Porous Media, Technical Manual,
Version 2.0, https://www.pc-progress.com/downloads/Pgm_Hydrus3D2/HYDRUS3D Technical Manual.pdf (last access: 3 August 2022), 2012.
Steele, M., Coale, F., and Hill, R.: Winter Annual Cover Crop Impacts on No-Till Soil Physical Properties and Organic Matter, Soil Sci. Soc. Am. J., 76, 2164–2173, https://doi.org/10.2136/sssaj2012.0008, 2012.
Strudley, M., Green, T., and Ascough II, J.: Tillage effects on soil
hydraulic properties in space and time: State of the science, Soil Tillage
Res., 99, 4–48, https://doi.org/10.1016/j.still.2008.01.007, 2008.
Tautges, N. E., Chiartas, J. L., Gaudin, A. C. M., O'Geen, A. T., Herrera,
I., and Scow, K. M.: Deep soil inventories reveal that impacts of cover
crops and compost on soil carbon sequestration differ in surface and
subsurface soils, Glob. Chang. Biol., 25, 3753–3766,
https://doi.org/10.1111/gcb.14762, 2019.
Tavares Filho, J. and Tessier, D.: Characterization of soil structure and
porosity under long-term conventional tillage and no-tillage systems, Rev.
Bras. Ciência do Solo, 33, 1837–1844,
https://doi.org/10.1590/S0100-06832009000600032, 2009.
Twarakavi, N. K. C., Sakai, M., and Simunek, J.: An objective analysis of
the dynamic nature of field capacity, Water Resour. Res., 45, 1–9,
https://doi.org/10.1029/2009WR007944, 2009.
Upadhyaya, S. K., Lancas, K. P., Santos-Filho, A. G., and Raghuwanshi, N.
S.: One-pass tillage equipment outstrips conventional tillage method, Calif.
Agric., 55, 44–47, https://doi.org/10.3733/ca.v055n05p44, 2001.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Veenstra, J. J., Horwath, W. R., Mitchell, J. P., and Munk, D. S.:
Conservation tillage and cover cropping influence soil properties in
SanJoaquin Valley cotton-tomato crop, Calif. Agr., 60, 146–153, 2006.
Veenstra, J. J., Horwath, W. R., and Mitchell, J. P.: Tillage and Cover
Cropping Effects on Aggregate-Protected Carbon in Cotton and Tomato, Soil
Sci. Soc. Am. J., 71, 362, https://doi.org/10.2136/sssaj2006.0229, 2007.
Veihmeyer, F. J. and Hendrickson, A. H.: The moisture equivalent as a
measure of the field capacity of soils, Soil Sci., 32, 181–193,
https://doi.org/10.1097/00010694-193109000-00003, 1931.
Veloso, M. G., Angers, D. A., Tiecher, T., Giacomini, S., Dieckow, J., and
Bayer, C.: High carbon storage in a previously degraded subtropical soil
under no-tillage with legume cover crops, Agr. Ecosyst. Environ., 268,
15–23, https://doi.org/10.1016/j.agee.2018.08.024, 2018.
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T.,
Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D.,
Assouline, S., Baveye, P., Berli, M., Bruggemann, N., Finke, P., Flury, M.,
Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.
J., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet,
S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B.,
Montzka, C., Nowak, W., Pachepsky, Y. A., Padarian, J., Romano, N., Roth,
K., Rothfuss, Y., Rowe, E. C., Schwen, A., Simunek, J., Tiktak, A., Van Dam,
J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wohling, T.,
and Young, I. M.: Modeling Soil Processes: Review, Key Challenges, and New
Perspectives, Vadose Zo. J., 15, 1–57, https://doi.org/10.2136/vzj2015.09.0131,
2016.
Villamil, M. B., Bollero, G. A., Darmody, R. G., Simmons, F. W., and
Bullock, D. G.: No-Till Corn/Soybean Systems Including Winter Cover Crops,
Soil Sci. Soc. Am. J., 70, 1936, https://doi.org/10.2136/sssaj2005.0350,
2006.
Vrugt, J. A., van Wijk, M. T., Hopmans, J. W., and Šimunek, J.: One-,
two-, and three-dimensional root water uptake functions for transient
modeling, Water Resour. Res., 37, 2457–2470,
https://doi.org/10.1029/2000WR000027, 2001.
Zuber, S. M. and Villamil, M. B.: Meta-analysis approach to assess effect of
tillage on microbial biomass and enzyme activities, Soil Biol. Biochem., 97,
176–187, https://doi.org/10.1016/j.soilbio.2016.03.011, 2016.
Short summary
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on soil hydraulic properties. We measured soil water retention and conductivity and also conducted numerical simulations to compare soil water storage abilities under the different systems. Soils under NT and CC practices had improved soil structure. Conservation agriculture practices showed marginal improvement with respect to infiltration rates and water storage.
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on...