Articles | Volume 7, issue 1
https://doi.org/10.5194/soil-7-125-2021
https://doi.org/10.5194/soil-7-125-2021
Original research article
 | 
18 May 2021
Original research article |  | 18 May 2021

Added value of geophysics-based soil mapping in agro-ecosystem simulations

Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken

Related authors

Virtual joint field campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-106,https://doi.org/10.5194/gmd-2024-106, 2024
Revised manuscript accepted for GMD
Short summary
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022,https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
CLM5-FruitTree: a new sub-model for deciduous fruit trees in the Community Land Model (CLM5)
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022,https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
A comprehensive dataset of vegetation states, fluxes of matter and energy, weather, agricultural management, and soil properties from intensively monitored crop sites in western Germany
Tim G. Reichenau, Wolfgang Korres, Marius Schmidt, Alexander Graf, Gerhard Welp, Nele Meyer, Anja Stadler, Cosimo Brogi, and Karl Schneider
Earth Syst. Sci. Data, 12, 2333–2364, https://doi.org/10.5194/essd-12-2333-2020,https://doi.org/10.5194/essd-12-2333-2020, 2020

Related subject area

Soils and water
Depth extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing (CRNS) using the soil moisture analytical relationship (SMAR) model
Daniel Rasche, Theresa Blume, and Andreas Güntner
SOIL, 10, 655–677, https://doi.org/10.5194/soil-10-655-2024,https://doi.org/10.5194/soil-10-655-2024, 2024
Short summary
Addressing soil data needs and data gaps in catchment-scale environmental modelling: the European perspective
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024,https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Optimized fertilization using online soil nitrate data
Yonatan Yekutiel, Yuval Rotem, Shlomi Arnon, and Ofer Dahan
SOIL, 10, 335–347, https://doi.org/10.5194/soil-10-335-2024,https://doi.org/10.5194/soil-10-335-2024, 2024
Short summary
The effect of groundwater depth on topsoil organic matter mineralization during a simulated dry summer in North-West Europe
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
EGUsphere, https://doi.org/10.5194/egusphere-2024-559,https://doi.org/10.5194/egusphere-2024-559, 2024
Short summary
Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol
Shouhao Li, Shuiqing Chen, Shanshan Bai, Jinfang Tan, and Xiaoqian Jiang
SOIL, 10, 49–59, https://doi.org/10.5194/soil-10-49-2024,https://doi.org/10.5194/soil-10-49-2024, 2024
Short summary

Cited articles

Ali, M., Montzka, C., Stadler, A., Menz, G., Thonfeld, F., and Vereecken, H.: Estimation and validation of RapidEye-based time-series of leaf area index for winter wheat in the Rur catchment (Germany), Remote Sens.-Basel, 7, 2808–2831, https://doi.org/10.3390/rs70302808, 2015. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Irrigation and drainage paper 56 – Crop evapotranspiration, Guidelines for computing crop water requirements, FAO, Rome, Italy, 300, D05109, available at: http://www.fao.org/3/X0490E/X0490E00.htm (last access: 13 May 2021), 1998. 
Antle, J. M., Basso, B., Conant, R. T., Godfray, H. C. J., Jones, J. W., Herrero, M., Howitt, R. E., Keating, B. A., Munoz-Carpena, R., and Rosenzweig, C.: Towards a new generation of agricultural system data, models and knowledge products: Design and improvement, Agr. Syst., 155, 255–268, https://doi.org/10.1016/j.agsy.2016.10.002, 2017. 
Baker, F. G.: Variability of hydraulic conductivity within and between nine Wisconsin soil series, Water Resour. Res., 14, 103–108, 1978. 
Beck, P. S., Atzberger, C., Høgda, K. A., Johansen, B., and Skidmore, A. K.: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sens. Environ., 100, 321–334, 2006. 
Download
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.